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Abstract

We fix a positive integer k and look for solutions n ∈ N of the equations φ(n+k) =
φ(n) and φ(n + k) = 2φ(n). For k ≤ 12 · 10100, we prove that Fermat primes can be
used to build five solutions for the first equation when k is even, and five for the second
one when k is odd. Furthermore, for k ≤ 4 ·1058, we show that for the second equation
there are at least three solutions when k is even. Our work increases the previously
known minimal number of solutions for both equations.
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1 Introduction

Euler’s phi function φ(n) counts the number of positive integers less than or equal to n that
are coprime with n. In 1956, Sierpiński [7] considered the equation

φ(n+ k) = φ(n), (1)

and proved that, for every positive integer k, there exists at least one solution. This result
was improved by Schinzel [5], who showed that (1) has at least two solutions for every
positive integer k ≤ 8 · 1047. The upper bound on k was extended to 2 · 1058 by Schinzel and
Wakulicz [6] for all k, and to 1.38 · 1026595411 by Holt [3] for even k. All these results were
obtained exhibiting explicit solutions, built proving (or assuming) the existence of prime
numbers satisfying certain conditions. Graham, Holt and Pomerance [1] showed that, for
even k, if we take j and r such that j and j+k have the same prime factors, and the numbers
jr/g + 1, (j + k)r/g + 1, with g = gcd(j, j + k), are both primes not dividing j, then

n = j

(

j + k

g
r + 1

)

is a solution of (1) [1, Theorem 1]. Despite the lack of general results, numerical evidence
suggests that (1) has infinitely many solutions for every fixed k. This can be proven for some
special values of k (cf. [9]).

In the same spirit of Sierpiński, Makowski [4] considered the equation

φ(n+ k) = 2φ(n), (2)

finding one solution for all fixed k. More recently, the same equation was studied by Hasanal-
izade [2], who proved that (2) has at least two solutions for all k ≤ 4 · 1058 and at least three
solutions for some odd k ≤ 4 · 1058 [2, Theorem 1]. Hasanalizade also gave [2, Lemma 1] a
modified version of [1, Theorem 1], valid for odd k multiple of 3 and for equation (2).

In this paper we find new solutions for (1) and (2). These solutions are obtained in two
ways. First, we consider Fermat prime numbers and show that for each Fermat prime it is
possible to build a solution for (1), when k is even, and for (2), when k is odd. Numerically,
we show that these solutions can be actually built for k ≤ 2 · 10100. Since only five Fermat
primes are known, this method provides five different solutions. Second, we exhibit a new
solution for equation (2) for even k. Together with the results of Hasanalizade, this gives
our main theorem.

Theorem 1. Equation (2) has at least three solutions for all k ≤ 4 · 1058.

We conclude the paper by providing several ways of building particular solutions when
certain conditions are met.
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2 The equation φ(n) = φ(n + k)

Let Fm denote the m-th Fermat number

Fm = 22
m

+ 1.

It is known that Fm is prime for m = 0, . . . , 4, while it is composite for all 5 ≤ m ≤ 32. It
is not known whether or not there exist other values of m such that Fm is prime.

Let a and b be positive integers. If the prime factors of a are contained in the prime
factors of b we write a |∗ b. If a |∗ b, then it is easy to see that

φ(ab) = aφ(b).

Moreover, a has the same prime factors as b if and only if a |∗ b and b |∗ a. In this case, we
have that

aφ(b) = bφ(a).

We prove the following result:

Theorem 2. Equation (1) has at least six solutions for all even k ≤ 12 · 10100.

Proof. We build a solution for each Fm prime, exploiting the elementary fact that (Fm−1) |∗ k
for even k.

Case 1: gcd(Fm, k) = 1. We have that

n = (Fm − 1)k = 22
m

k

is a solution of (1). In fact

φ(n+ k) = φ(Fmk) = φ(Fm)φ(k) = (Fm − 1)φ(k),

and
φ(n) = φ((Fm − 1)k) = (Fm − 1)φ(k).

Note that in this case we have no upper bound on the values of k.

Case 2: Fm | k. Assume that there exists a positive integer r such that (Fm − 1)r + 1 and
Fmr + 1 are both primes and do not divide k. Then

n = (Fm − 1)(Fmr + 1)k

is a solution of (1). In fact

φ(n+ k) = φ(((Fm − 1)Fmr + Fm)k) = φ(Fm((Fm − 1)r + 1)k) = Fm(Fm − 1)rφ(k),

while
φ(n) = φ((Fm − 1)(Fmr + 1)k) = Fm(Fm − 1)rφ(k).
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m r
0 10100 + 9760
1 10100 + 60128
2 10100 + 150326
3 10100 + 51326
4 10100 + 14786

Table 1: Values of m and r.

We have that (Fm − 1)r+ 1 and Fmr+ 1 are both prime, for the values of m and r given in
table 1.

The numbers (Fm−1)r+1 and Fmr+1 are certainly prime with k, taking k ≤ 12 ·10100.
Indeed, since 2Fm | k, taking k < Fm((Fm−1)r+1), neither (Fm−1)r+1 nor Fmr+1 divide
k. We point out that different choices of m and r provide different solutions. To these we
must add the previously known solutions. In particular, Sierpiński’s solution might coincide
with one of our solutions for some k, while Schinzel’s solution differs from the ones we
provided. Indeed, Schinzel found a solution building a sequence of odd primes q1, q2, . . . , qℓ,
such that 2qi − 1 is prime for i = 1, . . . , ℓ, and 2qi − 1 6= qj for i, j = 1 . . . ℓ. Then, for even
k < q1q2 · · · qℓ, there exists a prime qj in the sequence such that both qj and 2qj − 1 do not
divide k. Schinzel’s solution n = (2qj − 1)k differs from our solutions, since the former is an
odd multiple of k, while the latter is an even multiple of k. This brings the minimal number
of known solutions to six for all even k ≤ 2 · 10100.

Remark 3. It is a well-known conjecture by Dickson that for any fixed a, b there exist infinitely
many positive integers r such that both ar + 1 and br + 1 are prime. Following Graham,
Holt and Pomerance [1], we write P(a, b) if such a property holds. Assuming P(Fm, Fm − 1)
for m = 0, . . . , 4, we can remove the upper bound on k, obtaining that (1) has at least six
solutions for all even k.

Remark 4. Assume that Fm divides k, for some fixed m. Then, for any r such that (Fm −
1)r + 1 and Fmr + 1 are both prime and do not divide k, we find a solution n depending on
r. Different values of r yield different solutions. As a consequence, if P(Fm, Fm − 1) is true,
then equation (1) has an infinite number of solutions for all even k such that Fm | k.

3 The equation φ(n + k) = 2φ(n)

Our main results concern the number of solutions of (2). As for equation (1), there is
substantial difference in the solutions that can be found for even k and odd k. For equation
(1), it has already been observed [1, Table 1] that solutions abound for even k, while they
are scarce for odd k. After an extensive numerical investigation, we find that the same
phenomenon holds for equation (2), with the parity of k inverted. Indeed, we have an
analogous version of Theorem 2 (with a similar proof), that holds for odd k instead of even
k.
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Theorem 5. Equation (2) has at least five solutions for all odd k ≤ 6 · 10100.

Proof. We build a solution for each Fm prime, noting that gcd(Fm − 1, k) = 1, and that

Fm − 1 = 2φ(Fm − 1).

Case 1: gcd(Fm, k) = 1. We have that

n = (Fm − 1)k = 22
m

k

is a solution of (2). Again, in this case we have no upper bound on the values of k for which
we find solutions.

Case 2: Fm | k. Assume that there exists a positive integer r such that (Fm − 1)r+ 1 and
Fmr + 1 are both primes and do not divide k. Then

n = (Fm − 1)(Fmr + 1)k

is a solution of (1). Reasoning similarly to Theorem 2, we have five solutions for all odd
k ≤ 6 · 10100. Indeed, since Fm | k, taking k < Fm((Fm − 1)r+ 1), neither (Fm − 1)r+ 1 nor
Fmr + 1 divide k.

Remark 6. Remarks 3 and 4 are also valid in this case, replacing even k with odd k. In
particular for m = 0, Remark 4 applied to equation (2) has, as a consequence, the second
part of [2, Lemma 1].

When k is even, equation (2) has at least two solutions. The solution n = k was noticed
by Makowski [4]. Another solution was found by Hasanalizade [2], building a sequence of
primes [8, A001259]. Here we recall the construction. Take a sequence of primes 3 = p1 <
p2 < · · · < pm satisfying, for all i = 2, . . . ,m, the following conditions:

• (pi − 2) |
∏

j≤i−1

pj,

• (pi − 1) |∗ 2
∏

j≤i−1

pj,

and such that
∏

j pj does not divide k. Let pℓ be the smallest prime of the sequence such
that gcd(pℓ, k) = 1. Then n = pℓ/(pℓ−2)k is a solution of equation (2). Building the explicit
sequence of primes {3, 5, 7, 17, 19, 37, 97, 113, 257, 401, 487, 631, 971, 1297, 1801, 19457, 22051,
28817, 65537, 157303, 160001}, we have one solution different from n = k for all even k ≤
4 · 1058.

Now we find a new third solution for even k.

Theorem 7. Equation (2) has at least three solutions for all even k ≤ 4 · 1058.

Proof. Assume that there exists a sequence of prime numbers 2 = p1 < p2 < · · · < pm and of
positive integers a2 < · · · < am such that, for all i = 2, . . . ,m, the following conditions hold:
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• pi = 2ai + 1,

• ai |
∗

∏

j≤i−1

pj,

• (ai + 1) |
∏

j≤i−1

pj,

and such that
∏

j pj does not divide k. Let pℓ be the smallest prime such that gcd(pℓ, k) = 1.
Then n = aℓk/(aℓ + 1) is a solution of (2). In fact

φ(n+ k) = φ

(

2aℓ + 1

aℓ + 1
k

)

= 2aℓφ

(

k

aℓ + 1

)

,

and

2φ(n) = 2φ

(

aℓ
aℓ + 1

k

)

= 2aℓφ

(

k

aℓ + 1

)

.

A sequence of primes [8, A358717], up to 108, satisfying the above assumptions is given by

{2, 3, 5, 11, 19, 37, 73, 109, 1459, 2179, 2917, 4357, 8713}.

The product of the prime numbers in the above sequence is of the order of 6 ·1026, and
∏

j pj
does not divide k, for k <

∏

j pj. To improve the upper bound on k, we slightly modify our
argument. We proceed as follows:

• If k is not divisible by 2 · 3 · 5 · 11 · 19, then we simply apply our argument with no
changes.

• If 2 ·3 ·5 ·7 ·11 ·19 | k, we take the sequence starting with 2, 3, 5, 7 and then built using
the rules as explained before. The solution to (2) will be again n = aℓk/(aℓ+1), where
ℓ is the smallest index such that gcd(pℓ, k) = 1. The sequence [8, A358718] continues
as

{2, 3, 5, 7, 11, 13, 19, 29, 37, 41, 43, 59, 73, 83, 109, 113, 131, 163, 173, 181,

227, 257, 331, 347, 353, 379, 419, 491, 523, 571, 601, 653, 661, 677, . . . , 12011}.

In this case, since the sequence contains the number 7, it becomes dense enough in the
primes to give a large upper bound. We find that such upper bound can be taken to
be of the order of 2 · 10310.

• If 2 · 3 · 5 · 11 · 19 | k, gcd(7, k) = 1, and gcd(13, k) = 1, then n = 36k/55 is a solution
of (2).

• If 2 ·3 ·5 ·11 ·13 ·19 | k, gcd(7, k) = 1, and gcd(23, k) = 1, then n = 66k/95 is a solution
of (2).
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• If 2 · 3 · 5 · 11 · 13 · 19 · 23 | k and gcd(7, k) = 1, we find, proceeding as before, the
following sequence [8, A358719]:

{2, 3, 5, 11, 13, 23, 19, 37, 73, 109, 131, 229, 457, 571, 1459, 1481, 2179, 2621,

2917, 2963, 4357, 8713, 49921, 1318901, 3391489, 6782977, 13565953},

that gives the upper bound of 2 · 1083.

We conclude the proof by observing that our solution differs from the previously known
solutions, since in our case n < k. Indeed, Hasanalizade’s solutions [2] satisfy n ≥ k.

Remark 8. Our trick can be repeated as many times as desired to improve the upper bound
on k, as long as we can find particular solutions.

As a consequence we obtain our main theorem.

Proof of Theorem 1. Theorem 5 proves that for all odd k ≤ 2 · 10100 there are at least five
solutions to equation (2), while Theorem 7 proves that for all even k ≤ 4 · 1058 we have at
least three solutions. Overall, we get three solutions for all k ≤ 4 · 1058.

Remark 9. We recall that while the upper bound on k for our new solution is fairly high,
increasing the upper bound of 4 ·1058 for Hasanalizade’s solution would require a lot of effort,
as pointed out by Holt [3].

4 Special solutions

We open the section with a modified version of the first part of [2, Lemma 1]. Our result
removes the assumption 3 | k.

Lemma 10. Let k be an odd positive integer. Suppose that j is a positive integer such that

j and 2j + k have the same prime factors. Take g = gcd(j, 2j + k) and consider a positive

integer r such that 2jr/g + 1 and (2j + k)r/g + 1 are both prime and coprime with k. Then

n = 2j

(

2j + k

g
r + 1

)

is a solution of equation (2).

Proof. We have that

φ(n+ k) = φ

(

2j

(

2j + k

g
r + 1

)

+ k

)

= φ

(

(2j + k)

(

2j

g
r + 1

))

= 2jφ(2j + k)
r

g
,

and

2φ(n) = 2φ

(

2j

(

2j + k

g
r + 1

))

= 2φ(2j)φ

(

2j + k

g
r + 1

)

= 2φ(2j)(2j + k)
r

g
.
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We conclude the result using that

2jφ(2j + k) = 2jφ(2(2j + k)) = φ(4j(2j + k)) = 2φ(2j)(2j + k).

Motivated by explicit computations, we would like to find more general formulas that
provide new families of solutions to (2). In practice, we always find at least four solutions in
the range n ≤ 106, for k ≤ 104. The only value of k for which we find exactly 4 solutions is
k = 6. In that case, the solutions are

n ∈ {4, 6, 7, 10}.

A computer search yielded no other solutions n ≤ 108 for k = 6. We notice that n = 6 is
the solution given by Makowski and n = 10 is the solution from Hasanalizade, while n = 4
is obtained via our method with aℓ = 2. There is no known family of solutions providing
n = 7. In an attempt to find such a family, we prove the following result.

Proposition 11. Assume that there exists a prime p such that 2p− 1 is prime, gcd(p, k) =
1, gcd(2p− 1, k) = 1, and (p− 1) | k. Then

n =
p

p− 1
k

is a solution of (2).

Proof. It is immediate to check that

φ(n+ k) = φ

(

k
p

p− 1
+ k

)

= φ

(

k
2p− 1

p− 1

)

= (2p− 2)φ

(

k

p− 1

)

,

and

2φ(n) = 2φ

(

k
p

p− 1

)

= 2(p− 1)φ

(

k

p− 1

)

.

We can take p = 7 and obtain the solution n = 7, for k = 6. Unfortunately, this cannot
be generalized to all even k, since the condition (p−1) | k is satisfied only for a finite number
of p and it might happen that none of them satisfies the other requirements (e.g., k = 10).

We observe that for all odd k, thanks to Proposition 11, we can take p = 2 and recover
the solution n = 2k given by Makowski.

Finally, we conclude the paper by giving one more way of building solutions in another
special case.
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Proposition 12. Let k be an even positive integer. Assume that there exists m such that

m | k, gcd(m+ 2, k) = 1, gcd(m+ 4, k) = 1, and φ(m+ 2) = φ(m+ 4). Then

n =
m+ 4

m
k

is a solution of (2).

Proof. Again, it is immediate to check that

φ(n+ k) = φ

(

k
m+ 4

m
+ k

)

= 2φ

(

k
m+ 2

m

)

= 2φ(m+ 2)φ

(

k

m

)

,

and

2φ(n) = 2φ

(

k
m+ 4

m

)

= 2φ(m+ 4)φ

(

k

m

)

.
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