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Abstract

In a recent pioneering work, Andrews and Newman defined an extended function
pA,a(n) of their minimal excludant or “mex” of a partition function. By considering the
special cases pk,k(n) and p2k,k(n), they unearthed connections to the rank and crank
of partitions and some restricted partitions. In this paper, we build on their work and
obtain more general results associating the extended mex function with the number of
partitions of an integer with arbitrary bound on the rank and crank. We also derive
a new result expressing the smallest parts function of Andrews as a finite sum of the
extended mex function in consideration with a curious coefficient. We also obtain a
few restricted partition identities with some reminiscent of shifted partition identities.
Finally, we define and explore a new minimal excludant for overpartitions.

1 Introduction

In a series of two papers [4, 5], Andrews and Newman introduced the minimal excludant or
mex of an integer partition function and initiated the study of the connections of the mex
and its extended functions to other partition statistics. Given a partition π of an integer n,
they defined mex(π) to be the smallest positive integer that is not a part of π [4].
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Let p(n) denote the number of partitions of n. Following Andrews and Newman [5], we
define mexA,a(π) to be the smallest integer greater than or equal to a and congruent to a
modulo A that is not a part of the partition π. This restriction [5] on the smallest integer
being greater than or equal to a is not explicitly stated, but we believe is implied. Further,
define pA,a(n) to be the number of partitions π of n, where mexA,a(π) ≡ a (mod 2A) and
pA,a(n) to be the number of partitions π of n, where mexA,a(π) ≡ A + a (mod 2A). Then
p(n) = pA,a(n)+ pA,a(n). In Table 1, we illustrate an example when a > A for the partitions
of 6.

Partition π mex2,3(π) p2,3(6) p2,3(6)
6 3 X

5+1 3 X

4+2 3 X

4+1+1 3 X

3+3 5 X

3+2+1 5 X

3+1+1+1 5 X

2+2+2 3 X

2+2+1+1 3 X

2+1+1+1+1 3 X

1+1+1+1+1+1 3 X

Table 1: Calculating p2,3(6) and p2,3(6) from mex2,3(π) for partitions π of 6.

By convention, we define pA,a(0) = p(0) = 1 and p(n) = pA,a(n) = pA,a(n) = 0 for
negative n. We also define

FA,a =
∑

n≥0

pA,a(n)q
n

and
FA,a =

∑

n≥0

pA,a(n)q
n.

We use the standard q-series notation (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) and (a; q)∞ =
lim
n→∞

(a; q)n. When a = q, we write (q; q)n = (q)n and (q; q)∞ = (q)∞. We also define pe(n) and

po(n) to be the number of partitions of n into an even and odd number of parts respectively.
Then Andrews and Newman [5] noted that

∑

n≥0

pe(n)q
n =

∑

n≥0

q2n

(q)2n

and
∑

n≥0

po(n)q
n =

∑

n≥0

q2n+1

(q)2n+1

.
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We recall the partition statistics rank, crank, and spt. The rank of a partition is defined
as the largest part minus the number of parts. Let N(m,n) be the number of partitions of n
with rank m. The crank of a partition is defined as the largest part of the partition if there
are no ones as parts, and otherwise is the number of parts larger than the number of ones
minus the numbers of ones. Let M(m,n) be the number of partitions of n with crank m.
Finally, spt(n) is the total number of appearances of the smallest parts in all the partitions
of n.

Further, the k-th Atkin-Garvan rank moment [6] is defined by Nk(n) =
∞
∑

m=−∞

mkN(m,n).

Likewise the k-th Atkin-Garvan crank moment [6] is defined by Mk(n) =
∞
∑

m=−∞

mkM(m,n).

Further, the Garden of Eden partitions of n [15] are defined as the partitions of n that
have rank −2 or less.

Andrews and Newman [5] derived the generating functions for pk,k(n) and p2k,k(n) and
concluded some striking results, which are as follows:

Theorem 1 ([5], Theorem 2). If n is a non-negative integer, then p1,1(n) equals the number
of partitions of n with non-negative crank.

Theorem 2 ([5], Theorem 3). If n is a non-negative integer, then p3,3(n) equals the number
of partitions of n with rank ≥ −1.

Theorem 3 ([5], Theorem 4). If n is a non-negative integer, then p2,1(n) = pe(n).

In this work, we find the generating function for pA,a(n) in general for arbitrary positive
integers A, a, which leads us to discover more general results associating the mex with the
rank, crank, and spt statistics via elementary techniques, among other restricted partition
identities and some auxiliary results. As a consequence, we obtain the above three results
of Andrews and Newman as corollaries. Our motivation lies in the questions posed by the
authors [5] where they call for the search of comparable theorems and related statistics for
other pA,a(n).

We now present the statements of our main results.

Theorem 4. For every integer n ≥ 1, we have

p3,1(n) + p3,2(n) = p(n).

Theorem 5. If n is a non-negative integer, then

pA,a(n) = p(n) +
∑

m≥1

(p(n− (A

(

2m

2

)

+ a(2m)))− p(n− (A

(

2m− 1

2

)

+ a(2m− 1)))).

Theorem 6. If n is a non-negative integer, then p3,j+1(n) equals the number of partitions
of n with rank ≥ j, where j is a non-negative integer.
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Theorem 7. If n is a non-negative integer, then p1,j(n) equals the number of partitions of
n with crank ≥ j, where j is a non-negative integer.

As a consequence of Theorems 6 and 7, we obtain Corollaries 19 and 20 later, that
generalize Theorems 1 and 2 of Andrews and Newman, the proofs of which are included in
the next section.

Theorem 8. Let n be a non-negative integer. Then

N2(n) = 2
n−2
∑

r=0

(2r + 1)p3,r+2(n),

M2(n) = 2
n−1
∑

r=0

(2r + 1)p1,r+1(n).

Theorem 9. Let n be a non-negative integer. Then

spt(n) =
n−1
∑

r=0

(2r + 1)(p1,r+1(n)− p3,r+2(n)) =
n−1
∑

r=0

(2r + 1)(p3,r+2(n)− p1,r+1(n)).

Theorem 10. (Congruences for odd and even moduli) Let n be a non-negative integer.
Then, for every integer i ≥ 1, we have the following results:

(a) p2k,2k−i(n)− p2k,i(n) equals the number of partitions of n into parts 6≡ 0,±i (mod 2k)
for every integer k ≥ 2.

(b) p2k+1,2k+1−i(n)−p2k+1,i(n) equals the number of partitions of n into parts 6≡ 0,±i (mod
2k + 1) for every integer k ≥ 1.

As a consequence of the above theorem, we obtain the aforementioned result Theorem 3
of Andrews and Newman as a corollary, the proof of which is included in the next section.

Theorem 11. If n is a non-negative integer, then p2,3(n)− p4,6(n− 1) equals the number of
partitions of n into parts ≡ ±2,±8,±12,±14 (mod 32).

Theorem 12. If n is a non-negative integer, then p2,3(n)− p6,9(n− 2) equals the number of
partitions of n into parts ≡ ±1,±4,±6,±8,±10,±14 (mod 24).

Theorem 13. If n is a non-negative integer, then p2,3(n)−p10,15(n−4) equals the number of
partitions of n into distinct parts ≡ ±8,±12 (mod 40) and into parts 6≡ 0,±3,±4,±7,±10,
± 13,±17, 20 (mod 40).

Tables 2 and 3 illustrate our results for the rank, crank, and spt for the first few values
of n respectively.

The paper is organized as follows. In Section 2, we give the proofs of our main results.
Section 3 is devoted to studying some additional properties of the extended mex function
pA,a(n). We conclude with a glimpse into extending the minimal excludant to overpartitions
in Section 4.
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n p3,1(n) p3,2(n) p3,3(n) p1,2(n) Partitions of n Partitions of n
with rank ≥ j = 2 with crank ≥ j = 2

1 0 1 0 0 φ φ

2 1 1 0 1 φ 2
3 1 2 1 1 3 3
4 2 3 1 2 4 4, 2+2
5 3 4 2 2 5, 4+1 5, 3+2
6 5 6 3 4 6, 5+1, 4+2 6, 4+2, 3+3, 2+2+2
7 6 9 5 5 7, 6+1, 5+2, 5+1+1, 4+3 7, 5+2, 4+3, 3+2+2, 2+2+2+1
8 10 12 7 8 8, 7+1, 6+2, 6+1+1, 8, 6+2, 5+3, 4+4, 4+2+2,

5+3, 5+2+1, 4+4 3+3+2, 3+2+2+1, 2+2+2+2

Table 2: Example illustrating Theorems 4, 6, and 7.

n p3,2(n) p1,1(n) p3,3(n) p1,2(n) p3,4(n) p1,3(n) p3,5(n) p1,4(n) p3,6(n) p1,5(n) spt(n)
1 1 0 1 1 1 1 1 1 1 1 1
2 1 1 2 1 2 2 2 2 2 2 3
3 2 2 2 2 3 2 3 3 3 3 5
4 3 3 4 3 4 4 5 4 5 5 10
5 4 4 5 5 6 5 6 6 7 6 14

Table 3: Example illustrating Theorem 9.

2 Proof of the main results

We simultaneously state and prove some background theorems and lemmas in the build up to
the proof of our main results stated in the previous section. In the following two theorems,
we find the generating functions for pA,a(n) and pA,a(n) for arbitrary values of A and a.
These two are at the heart of proving all our subsequent results.

Theorem 14. FA,a(q) =
1

(q)∞

∑

n≥0

(−1)nq
An(n−1)

2
+an.

Proof. The generating function for pA,a(n) is

∑

n≥0

qa+(a+A)+···+(a+(2n−1)A)

∞
∏

m=1
m 6=a+2nA

(1− qm)
=

1

(q)∞

∑

n≥0

qa+(a+A)+···+a+(2n−1)A(1− qa+2nA)

=
1

(q)∞

∑

n≥0

q2n
2A−nA+2na(1− qa+2nA)

=
1

(q)∞

∑

n≥0

(q
(2n)2A−(2n)A+2(2n)a

2 − q
(2n+1)2A−(2n+1)A+2(2n+1)a

2 )
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=
1

(q)∞

∑

n≥0

(−1)nq
n
2
A+(2a−A)n

2

=
1

(q)∞

∑

n≥0

(−1)nq
An(n−1)

2
+an.

Theorem 15. FA,a(q) =
1

(q)∞

∑

n≥0

(−1)nq
An(n+1)

2
+a(n+1).

Proof. The generating function for pA,a(n) is

∑

n≥0

qa+(a+A)+(a+2A)+···+(a+2nA)

∞
∏

m=1
m 6=a+(2n+1)A

(1− qm)
=

1

(q)∞

∑

n≥0

qa+(a+A)+(a+2A)+···+(a+2nA)(1− qa+(2n+1)A)

=
1

(q)∞

∑

n≥0

q(2n+1)(nA+a)(1− qa+A+2nA)

=
1

(q)∞

∑

n≥0

(−1)nq
(n+1)(nA+2a)

2

=
1

(q)∞

∑

n≥0

(−1)nq
An(n+1)

2
+a(n+1).

2.1 Proof of Theorem 4

Proof. Using Theorem 14, we have

F3,1(q) =
∑

n≥0

p3,1(n)q
n =

1

(q)∞

∑

n≥0

(−1)nq
n(3n−1)

2 ,

F3,2(q) =
∑

n≥0

p3,2(n)q
n =

1

(q)∞

∑

n≥0

(−1)nq
n(3n+1)

2 .

Adding the two, we have

F3,1(q) + F3,2(q) =
∑

n≥0

(p3,1(n) + p3,2(n))q
n

=
1

(q)∞

∑

n≥0

(−1)n(q
n(3n−1)

2 + q
n(3n+1)

2 )

=
1

(q)∞

(

2 +
∑

n≥1

(−1)n(q
n(3n−1)

2 + q
n(3n+1)

2 )
)

= 1 +
∑

n≥0

p(n)qn,
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where the last step follows from Euler’s pentagonal number theorem [2, p. 11].
Therefore,

∑

n≥1

(p3,1(n)+p3,2(n))q
n =

∑

n≥1

p(n)qn. Comparing the coefficients of qn on both

sides, we obtain the theorem.

2.2 Proof of Theorem 5

Proof. Theorem 14 gives

FA,a(q) =
∑

n≥0

pA,a(n)q
n

=
1

(q)∞

∑

n≥0

(−1)nq
An(n−1)

2
+an

=
(

∑

n≥0

p(n)qn
)(

1 +
∑

n≥1

(qAn(2n−1)+a.2n − qA(n−1)(2n−1)+a(2n−1))
)

=
∑

n≥0

(

p(n) +
∑

m≥1

(p(n− (A

(

2m

2

)

+ a(2m)))−

p(n− (A

(

2m− 1

2

)

+ a(2m− 1))))
)

qn.

Comparing the coefficients of qn on both sides, we obtain the theorem.

Lemma 16. If n is a non-negative integer, then pA,a(n) = p(n) for every a > n.

Proof. If a > n, then a is not a part of every partition π of n and hence, we have mexA,a(π) =
a. The lemma follows.

Corollary 17. If n is a non-negative integer, then pA,a(n) = 0 for every a > n.

2.3 Proof of Theorem 6

Proof. Dyson [10] gave the generating function for the number of partitions of n with rank
≥ j.

∑

m≥j

∑

n≥0

N(m,n)qn =
1

(q)∞

∑

n≥1

(−1)n−1q
n(3n−1)

2 (1− qn)
∑

m≥j

qnm

=
1

(q)∞

∑

n≥1

(−1)n−1q
n(3n−1)

2
+nj

=
1

(q)∞

∑

n≥0

(−1)nq
3n(n+1)

2
+(n+1)(j+1)

=
∑

n≥0

p3,j+1(n)q
n.

Comparing the coefficients of qn on both sides, we obtain the theorem.
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As a result, we obtain the following corollaries.

Corollary 18. If n is a non-negative integer, then p3,3(n) equals the number of Garden of
Eden partitions of n.

Proof. The result follows from substituting j = 2 in Theorem 6. Then, since N(m,n) =
N(−m,n), we have that p3,3(n) equals the number of partitions of n with rank ≥ 2, which
equals the number of partitions of n with rank ≤ −2, which is equinumerous with the Garden
of Eden partitions.

Corollary 19. If n is a non-negative integer, then p3,j+1(n) equals the number of partitions
of n with rank < j, where j is a non-negative integer.

2.4 Proof of Theorem 7

Proof. Garvan [12] gave the generating function for the number of partitions of n with crank
≥ j.

∑

m≥j

∑

n≥0

M(m,n)qn =
1

(q)∞

∑

n≥1

(−1)n−1q
n(n−1)

2 (1− qn)
∑

m≥j

qnm

=
1

(q)∞

∑

n≥1

(−1)n−1q
n(n−1)

2
+nj

=
1

(q)∞

∑

n≥0

(−1)nq
n(n+1)

2
+(n+1)j

=
∑

n≥0

p1,j(n)q
n.

Comparing the coefficients of qn on both sides, we obtain the theorem.

As a result, we obtain the following corollary.

Corollary 20. If n is a non-negative integer, then p1,j(n) equals the number of partitions of
n with crank < j, where j is a non-negative integer.

2.5 Proof of Theorem 1

Proof. The result follows from substituting j = 1 in Corollary 20. Then p1,1(n) equals the
number of partitions of n with crank ≤ 0, which equals the number of partitions of n with
crank ≥ 0 since M(m,n) =M(−m,n).

2.6 Proof of Theorem 2

Proof. The result follows from substituting j = 2 in Corollary 19. Then p3,3(n) equals the
number of partitions of n with rank ≤ 1, which equals the number of partitions of n with
rank ≥ −1 since N(m,n) = N(−m,n).
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2.7 Proof of Theorem 8

Proof. We have the following generating function for the second rank moment due to An-
drews [3]

∑

n≥0

1

2
N2(n)q

n =
−1

(q)∞

∑

n≥1

(−1)nq
n(3n+1)

2 (1 + qn)

(1− qn)2

=
−1

(q)∞

∑

n≥1

(−1)nq
n(3n+1)

2

∑

r≥0

(2r + 1)qrn

=
−1

(q)∞

∑

r≥0

(2r + 1)
∑

n≥1

(−1)nq
n(3n+1)

2
+rn

=
∑

r≥0

(2r + 1)

(

1

(q)∞

∑

n≥0

(−1)nq
3n(n+1)

2
+(r+2)(n+1)

)

=
∑

n≥0

(

n−2
∑

r=0

(2r + 1)p3,r+2(n)
)

qn,

where the last step follows from Corollary 17.
Similarly, the generating function for the second crank moment due to Garvan [13] is

∑

n≥0

1

2
M2(n)q

n =
−1

(q)∞

∑

n≥1

(−1)nq
n(n+1)

2 (1 + qn)

(1− qn)2

=
−1

(q)∞

∑

n≥1

(−1)nq
n(n+1)

2

∑

r≥0

(2r + 1)qrn

=
−1

(q)∞

∑

r≥0

(2r + 1)
∑

n≥1

(−1)nq
n(n+1)

2
+rn

=
∑

r≥0

(2r + 1)

(

1

(q)∞

∑

n≥0

(−1)nq
n(n+1)

2
+(r+1)(n+1)

)

=
∑

n≥0

(

n−1
∑

r=0

(2r + 1)p1,r+1(n)
)

qn,

where the last step follows from Corollary 17. Comparing the coefficients of qn on both sides
of the two equations, we obtain the theorem.

2.8 Proof of Theorem 9

Proof. Andrews [3] gave the following identity relating the smallest parts function to the
second rank moment

spt(n) = np(n)−
1

2
N2(n).
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Dyson [11] showed that 1
2
M2(n) = np(n). Then, using Theorem 8, we have

spt(n) = np(n)−
1

2
N2(n) =

1

2
M2(n)−

1

2
N2(n)

=
n−1
∑

r=0

(2r + 1)(p1,r+1(n)− p3,r+2(n))

=
n−1
∑

r=0

(2r + 1)(p3,r+2(n)− p1,r+1(n)).

The rest of our results concern the connections of the extended mex function pA,a(n)
with partitions of the integer n having certain congruence conditions on the parts. As a
motivation, we consider the celebrated Ramanujan theta function

ψ(−q) =
∞
∑

n=−∞

(−1)nqn(2n−1) =
(q2; q2)∞
(−q; q2)∞

.

Then

(q4; q4)∞(q3; q4)∞(q; q4)∞ = (q4; q4)∞(q; q2)∞

=
(q2; q2)∞(q; q2)∞

(q2; q4)∞

=
(q2; q2)∞
(−q; q2)∞

=
∞
∑

n=−∞

(−1)nqn(2n−1)

=
∑

n≥0

(−1)nqn(2n−1) −
∑

n≥0

(−1)nq2(n+1)2+(n+1)

=
∑

n≥0

(−1)n(q
4n(n−1)

2
+n − q

4n(n+1)
2

+3(n+1))

and so,
1

(q)∞
(q4; q4)∞(q3; q4)∞(q; q4)∞ =

∑

n≥0

(p4,1(n)− p4,3(n))q
n.

Thus, we see that p4,1(n)− p4,3(n) equals the number of partitions of n into parts congruent
to 2 modulo 4. This find indicates the presence of a general class of identities involving
congruences of similar type. We discover the two such families of identities in Theorem 10
using Jacobi’s triple product identity.
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Theorem 21. (Jacobi’s triple product identity, [2, p. 21]) For z 6= 0 and |q| < 1,

∞
∑

n=−∞

znqn
2

=
∏

n≥0

(1− q2n+2)(1 + zq2n+1)(1 + z−1q2n+1).

Theorem 22. (Andrews, [2, p. 22]) The following is an equivalent form of Jacobi’s triple
product identity, due to Andrews

∞
∑

n=−∞

(−1)nq(2k+1)n(n+1)/2−in =
∏

n≥0

(1− q(2k+1)(n+1))(1− q(2k+1)n+i)(1− q(2k+1)(n+1)−i).

Lemma 23. The following is another equivalent form of Jacobi’s triple product identity:

∞
∑

n=−∞

(−1)nqkn(n+1)−in =
∏

n≥0

(1− q2k(n+1))(1− q2kn+i)(1− q2k(n+1)−i).

Proof. The proof follows from substituting z → −qk−i and q → qk in Jacobi’s triple product
identity in Theorem 21.

2.9 Proof of Theorem 10

Proof. (a) Using Lemma 23, we have

∏

n≥1
n 6≡0,±i (mod 2k)

1

1− qn
=

1

(q)∞

∑

n≥0

(−1)nq
2kn(n+1)

2
−in(1− q(2n+1)i)

=
1

(q)∞

∑

n≥0

(−1)nq
2kn(n−1)

2
+(2k−i)n −

1

(q)∞

∑

n≥0

(−1)nq
2kn(n+1)

2
+i(n+1)

=
∑

n≥0

(p2k,2k−i(n)− p2k,i(n))q
n.

(b) Using Theorem 22, we have

∏

n≥1
n 6≡0,±i (mod 2k+1)

1

1− qn
=

1

(q)∞

∑

n≥0

(−1)nq
(2k+1)n(n+1)

2
−in(1− q(2n+1)i)

=
1

(q)∞

∑

n≥0

(−1)n(q
(2k+1)n(n−1)

2
+(2k+1−i)n − q

(2k+1)n(n+1)
2

+i(n+1))

=
∑

n≥0

(p2k+1,2k+1−i(n)− p2k+1,i(n))q
n.

Comparing the coefficients of qn on both sides in (a) and (b) above, we obtain the
theorem.
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2.10 Proof of Theorem 3

Proof. The following is a consequence of Cauchy’s identity due to Euler [2, p. 19]

∑

n≥0

tn

(q)n
=

1

(t; q)∞
.

Substituting t = −q in the above identity, we get

∑

n≥0

(−1)nqn

(q)n
=

1

(−q; q)∞
,

∑

n≥0

q2n

(q)2n
−
∑

n≥0

q2n+1

(q)2n+1

= (q; q2)∞,

∑

n≥0

(pe(n)− po(n))q
n = (q; q2)∞. (1)

Theorem 10 (a) gives

∏

n≥1
n 6≡0,±i (mod 2k)

1

1− qn
=
∑

n≥0

(p2k,2k−i(n)− p2k,i(n))q
n.

Multiplying by (q)∞ on both sides, we have
∏

n≥0

(1− q2k(n+1))(1− q2kn+i)(1− q2k(n+1)−i) = (q)∞
∑

n≥0

(p2k,2k−i(n)− p2k,i(n))q
n.

Using Lemma 23, we then have

∞
∑

n=−∞

(−1)nqkn(n+1)−in = (q)∞
∑

n≥0

(p2k,2k−i(n)− p2k,i(n))q
n.

Substituting k = i = 1, we get

∞
∑

n=−∞

(−1)nqn
2

= (q)∞
∑

n≥0

(p2,1(n)− p2,1(n))q
n,

Then, using Gauss’ identity [2, Eq. (2.2.12), p. 23], we have

∑

n≥0

(p2,1(n)− p2,1(n))q
n =

1

(q)∞

∞
∑

n=−∞

(−1)nqn
2

=
1

(−q)∞
= (q; q2)∞. (2)

Comparing equations (1) and (2), we have pe(n) − po(n) = p2,1(n) − p2,1(n). Also, pe(n) +
po(n) = p(n) = p2,1(n) + p2,1(n). Adding and subtracting, we have p2,1(n) = pe(n) and
p2,1(n) = po(n) respectively.

12



The three results below allow us to obtain shifted partition type identities between the
difference of mexes and partitions with congruence conditions on the parts.

Theorem 24. (Blecksmith, Brillhart, and Gerst [7])

(a)
∏

n≥1
n 6≡±(2,8,12,14) (mod 32)

(1− qn) =
∑

n≥1

(−1)n(q2n
2−1 − qn

2−1).

(b)
∏

n≥1
n 6≡±(1,4,6,8,10,11) (mod 24)

(1− qn) =
∑

n≥1

(−1)n(q3n
2−1 − qn

2−1).

Theorem 25. (Blecksmith, Brillhart, and Gerst [8])

∏

n≥1
n≡0,±3
(mod 10)

(1− qn)
∏

n≥1
n≡±4

(mod 40)

(1− qn)
∏

n≥1
n≡±8

(mod 20)

(1 + qn) =
∑

n≥1

(−1)n(q5n
2−1 − qn

2−1).

2.11 Proof of Theorem 11

Proof.

∑

n≥1

(−1)n(q2n
2−1 − qn

2−1) =
∑

n≥0

(−1)nqn
2+2n −

∑

n≥0

(−1)nq2n
2+4n+1

= (q)∞
∑

n≥0

p2,3(n)q
n − (q)∞

∑

n≥0

p4,6(n)q
n+1

= (q)∞

(

1 +
∑

n≥1

(p2,3(n)− p4,6(n− 1))qn
)

= (q)∞
∑

n≥0

(p2,3(n)− p4,6(n− 1))qn,

where the last step follows from the fact that pA,a(0) = 1 and pA,a(n) = 0 for n < 0. Then,
dividing both sides by (q)∞ and using Theorem 24 (a), we have our result.
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2.12 Proof of Theorem 12

Proof.
∑

n≥1

(−1)n(q3n
2−1 − qn

2−1) =
∑

n≥0

(−1)nqn
2+2n −

∑

n≥0

(−1)nq3n
2+6n+2

= (q)∞
∑

n≥0

p2,3(n)q
n − (q)∞

∑

n≥0

p6,9(n)q
n+2

= (q)∞

(

1 +
∑

n≥1

(p2,3(n)− p6,9(n− 2))qn
)

= (q)∞
∑

n≥0

(p2,3(n)− p6,9(n− 2))qn,

where the last step follows from the fact that pA,a(0) = 1 and pA,a(n) = 0 for n < 0. Then,
dividing both sides by (q)∞ and using Theorem 24 (b), we have our result.

2.13 Proof of Theorem 13

Proof.
∑

n≥1

(−1)n(q5n
2−1 − qn

2−1) =
∑

n≥0

(−1)nqn
2+2n −

∑

n≥0

(−1)nq5n
2+10n+4

= (q)∞
∑

n≥0

p2,3(n)q
n − (q)∞

∑

n≥0

p10,15(n)q
n+4

= (q)∞

(

1 +
∑

n≥1

(p2,3(n)− p10,15(n− 4))qn
)

= (q)∞
∑

n≥0

(p2,3(n)− p10,15(n− 4))qn,

where the last step follows from the fact that pA,a(0) = 1 and pA,a(n) = 0 for n < 0. Then,
dividing both sides by (q)∞ and using Theorem 25 where we convert all the congruence
conditions to modulo 40, we have

∑

n≥0

(p2,3(n)− p10,15(n− 4))qn =

∏

n≥1
n≡0,±(3,4,7,10,13,17),20

(mod 40)

(1− qn)
∏

n≥1
n≡±(8,12)
(mod 40)

(1 + qn)

(q)∞

=

∏

n≥1
n≡±(8,12)
(mod 40)

(1 + qn)

∏

n≥1
n 6≡0,±(3,4,7,10,13,17),20

(mod 40)

(1− qn)
.
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Comparing the coefficients of qn on both sides, we obtain the theorem.

3 Some auxiliary results

We present some interesting properties of the extended mex function pA,a(n) that we came
across through computational evidence.

Theorem 26. If n is a non-negative integer, then pA,a(n − (a− A)) = pA,a−A(n) for every
a > A.

Proof. For all a > A, we have

∑

n≥0

pA,a−A(n)q
n =

1

(q)∞

∑

n≥0

(−1)nq
An(n+1)

2
+(a−A)(n+1)

=
1

(q)∞

∑

n≥0

(−1)nq
An(n−1)

2
+an+(a−A)

=
∑

n≥0

pA,a(n)q
n+(a−A)

=
∑

n≥0

pA,a(n− (a− A))qn.

Comparing the coefficients of qn on both sides, we obtain the theorem.

Corollary 27. If n is a non-negative integer, then p3,6(n− 3) equals the number of Garden
of Eden partitions of n.

Proof. The result follows from Corollary 18 and considering A = 3, a = 6 in Theorem 26.

Theorem 28. For any integer n ≥ 2, pn,k(n) = p(n)− p(n− k) for every integer k ≥ 1.

Proof. pn,k(n) enumerates all partitions of n except n− k of those whose largest part is less
than or equal to k. Hence pn,k(n) = p(n)− p(n− k).

Theorem 29. For any non-negative integer n, we have

p3,n(n)− p1,n−1(n) = 0 ∀n ≥ 2,

p3,n+1(n)− p1,n(n) = 1 ∀n ≥ 1.

Proof. The statements can be proved using the recurrence relation in Theorem 5 similar to
the proof of Lemma 16.
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4 Minimal excludant of overpartitions

Analogous to Andrews’ and Newman’s minimal excludant or “mex” of a partition function,
we define what we call the “mex” of overpartitions. A surprising but welcome discovery is
its connection to the Ramanujan function R(q). This is a work in progress and will appear
in a forthcoming paper. We present our initial findings here.

Recall that an overpartition is a partition in which the first occurrence of a number may
be overlined [9]. For an overpartition π, we define mex(π) to be the smallest positive integer
that is not a part of π. For example, if we consider the following two overpartitions

π1 = 14 + 12 + 9 + 7 + 4 + 3 + 2 + 1,

π2 = 5 + 4 + 4 + 2 + 1,

then, mex(π1) = 5 and mex(π2) = 3. Let m(n) denote the number of overpartitions of n
having the property that no positive integer less than mex(π) is overlined. As an example,
below are the eight overpartitions of 3

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

Then, for π ∈ {3, 3, 2 + 1, 1 + 1 + 1}, the quantity mex(π) has the stated property, and

hence m(3) = 4. Let M(q) =
∞
∑

n=0

m(n)qn. Then

Theorem 30. We have M(q) = P (q) (2 − R(q)), where P (q) = (−q;q)∞
(q;q)∞

is the generating

function for the number of overpartitions of n and R(q) =
∞
∑

n=0

q
n(n+1)

2

(−q; q)n
is Ramanujan’s

function from his Lost Notebook.

Remark 31. The function R(q) has been studied by Andrews [1]. It is also the generating
function for number of partitions into distinct parts with even rank minus those with odd
rank.

To prove the above theorem, we need a result of Gasper and Rahman [14, Appendix II,
Formula II.5], which we state as a lemma below.

Lemma 32. 1φ1(a; c; q,
c
a
) =

( c
a
; q)∞

(c; q)∞
.

The proof of the lemma follows easily from a suitable substitution and limit in Heine’s
transformation. We replace a 7→ q and c 7→ −zq in the above lemma to get

∞
∑

n=0

znq
n(n−1)

2

(−zq; q)n
= 1 + z. (3)
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4.1 Proof of Theorem 30

Proof. By standard combinatorial arguments, we deduce that

M(q) =
∞
∑

n=0

m(n)qn

=
∞
∑

n=0

q1+2+···+(n−1)
∞
∏

m=n+1

(1 + qm)

∞
∏

m=1
m 6=n

(1− qm)

=
(−q; q)∞
(q; q)∞

∞
∑

n=0

q
n(n−1)

2 (1− qn)

(−q; q)n

=
(−q; q)∞
(q; q)∞

(

∞
∑

n=0

q
n(n−1)

2

(−q; q)n
−

∞
∑

n=0

q
n(n+1)

2

(−q; q)n

)

= P (q)(2−R(q)) (substituting z = 1 in equation (3)).

5 Conclusion

It would be interesting to investigate more identities of the shifted partition nature as in
Theorems 11, 12, and 13, since a pattern emerges in the difference of the extended mex
function in the three identities. A related line of inquiry would be if certain other linear
combination of mexes lead to further restricted partition identities. Secondly, the role and
significance of the coefficient 2r + 1 in the identity for spt(n) sparks our curiosity. Thirdly,
keeping in tradition with a very common question raised in the literature on the minimal
excludant, bijective proofs of the theorems stated in the paper would be of great interest.
Lastly, although our major focus in the paper has been connecting the mex with other par-
tition statistics, the last two auxiliary results indicate the existence of more such properties
within the extended mex function pA,a(n) and could be a realm worthy of further exploration.
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