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Abstract

For each positive integer b larger than 1, we obtain the shortest intervals that always

contain a b-adic palindrome and a b-adic antipalindrome. We also give some results on

the classification of b-adic twin palindromes, gaps that occur infinitely often between

b-adic palindromes, and the irrationality of the sum of reciprocals of a particular type

of b-adic palindrome.
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1 Introduction

Let b and n be integers, b ≥ 2, and n ≥ 1, and let n = (nknk−1 · · ·n0)b be the b-adic expansion
of n with nk 6= 0. We call n a palindrome in base b (or b-adic palindrome) if nk−i = ni for
0 ≤ i ≤ ⌊k/2⌋. As usual, if we write a number without specifying the base, then it is always
in base 10, and if we write n = (nknk−1 · · ·n0)b, then it means that n =

∑k
i=0 nib

i, nk 6= 0,
and 0 ≤ ni < b for all i = 0, 1, . . . , k. The sequence of 10-adic palindromes and the sequence
of palindromic primes in base 10 are given, respectively, as A002113 and A002385 in the
On-Line Encyclopedia of Integer Sequences (OEIS) [13]. In addition, we write ⌊x⌋ for the
greatest integer less than or equal to x and ⌈x⌉ for the least integer larger than or equal to
x. It seems that there is more than one intuitive definition for antipalindromic structure,
so we will try to cover more than one, too. Suppose that n is a b-adic antipalindrome of a
particular type, to be defined below. We say that

n is of type 0 (or no middle type) if k is odd and nk−i + ni = b− 1 for 0 ≤ i ≤ ⌊k/2⌋;
n is of type 1 (or one middle type) if nk−i + ni = b− 1 for 0 ≤ i ≤ ⌊k/2⌋;
n is of type 2 (or free middle type) if nk−i + ni = b− 1 for 0 ≤ i ≤ ⌊(k − 1)/2⌋;
n is of type 3 (or asymmetric type) if nk−i 6= ni for 0 ≤ i ≤ ⌊(k − 1)/2⌋.

If 1 ≤ n < b, then k = 0 and n is defined to be a b-adic antipalindrome of types 2 and
3. When k is odd, types 0, 1, and 2 are the same; when k is even, they are different, as it
is necessary that b is odd and 2n k

2

= b − 1 for type 1 (one middle type), but there is no

restriction on b and n k
2

for type 2 (free middle type). We remark that types 0 and 1 appear

in the work of Bai, Meleshko, Riasat, and Shallit [2] and Dvořáková, Kruml, and Ryzak [6].
Type 3 (asymmetric type) is modified from the notion of antipalindromic composition in the
article by Andrews, Just, and Simay [1], and a generalization by Huang [7]. Type 2 uses the
equality nk−i + ni = b− 1 as in types 0 and 1, and the index condition i ≤ ⌊(k − 1)/2⌋ as in
type 3. The sequence of binary antipalindromes of type 0 is given as A035928 in OEIS [13].

The interval (n2, (n+ 1)2] obviously contains a square, and Legendre conjectured that it
also contains a prime for all large n ∈ N, but this is still open. Replacing the existence or
nonexistence of primes and squares in the interval such as (n2, (n+ 1)2] by that of b-adic
palindromes and b-adic antipalindromes leads to an easier problem than that of the primes,
but less obvious and more interesting than that of squares. We should remark here that the
analogy between primes and palindromes is artificial; we mention it merely for the form of
questions being asked. Nevertheless, by Phunphayap and Pongsriiam’s results [9, Theorems
9–10], we see that if Ab(x) and s(x) are, respectively, the number of b-adic palindromes and
squares less than or equal to x, then Ab(x) ≍ s(x). Here, if f(x) and g(x) are positive for
all large x, then we write f(x) ≍ g(x) to mean that there are constants c1, c2 > 0 such that
c2g(x) ≤ f(x) ≤ c1g(x) for all large x. This motivates us to compare or find a connection
between squares and palindromes. Based on his recent work [8, 9, 10, 12], Pongsriiam gave
a talk on races between palindromes in different bases in a conference on algebra for young
researchers, which led to the writing of this article. We obtain the intervals having minimal
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length that always contain a b-adic palindrome and a b-adic antipalindrome, respectively.
The reader will see that the forms of some answers are connected to squares or square roots
and look like analogs of Legendre’s conjecture on primes in short intervals; see for example
in Corollaries 3, 17, and 21.

2 Main results

We split our main results into four subsections: (i) palindromes in short intervals, (ii) twin
palindromes and fixed gaps between palindromes, (iii) antipalindromes of types 0, 1, and 2,
and (iv) antipalindromes of type 3. We begin with palindromes as follows.

2.1 Palindromes in short intervals

Theorem 1. Let b be an integer not less than 2. Let c =
√
b +

√
b−1 and (xn) the strictly

increasing sequence of all b-adic palindromes. Then

xn+1 − xn ≤ c
√
xn − 1 for all n ≥ 2,

and the inequality is sharp in the sense that there are infinitely many n ∈ N such that

xn+1 − xn = c
√
xn − 1. (1)

In fact, we obtain that (1) holds whenever xn = bk + 1, k ≥ 3, and k is odd.

Proof. Let n = (nknk−1 · · ·n1n0)b be a b-adic palindrome with n ≥ 2 and nk 6= 0, and let m
be the smallest b-adic palindrome larger than n. If 2 ≤ n < b − 1, then m = n + 1, and so
m−n = 1 ≤ c

√
n− 1. If n = b−1, then b ≥ 3 andm = n+2, and som−n = 2 ≤ c

√
n− 1. If

b ≤ n ≤ b2, thenm = n+ℓ where ℓ = 2 or ℓ = b+1, and thusm−n ≤ b+1 = c
√
b ≤ c

√
n− 1.

So assume throughout that n > b2. Then k ≥ 2. If n = bk+1−1, then m−n = 2 ≤ c
√
n− 1.

So assume that n 6= bk+1 − 1. Then ni 6= b− 1 for some i = 0, 1, 2, . . . , k.

Case 1: k is odd and n k+1

2

6= b− 1. Let y = b
k+1

2 + b
k−1

2 . Then n+ y is a b-adic palindrome,

and so m ≤ n+ y. This and n ≥ bk + 1 imply that

m− n√
n− 1

≤ y√
n− 1

≤ b
k+1

2 + b
k−1

2

b
k
2

= c.

Case 2: k is even and n k
2

6= b − 1. Similar to Case 1, we obtain m ≤ n + b
k
2 , and so

(m− n)/
√
n− 1 ≤ 1 ≤ c.

Case 3: k is odd and n k+1

2

= b− 1. Let i be the largest integer such that 0 ≤ i < k−1
2

and

ni 6= b− 1. Let y = bi+1 + bi. Then n+ y is a b-adic palindrome, and so

m− n√
n− 1

≤ y√
n− 1

≤ b
k−1

2 + b
k−3

2

b
k
2

=
1√
b
+

1

b
√
b
≤ c.
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Case 4: k is even and n k
2

= b − 1. Let i be the largest integer such that 0 ≤ i < k
2
and

ni 6= b− 1. Similar to Case 3, we obtain m ≤ n+ bi+1 + bi and

m− n√
n− 1

≤ 1 +
1

b
≤ c.

In any case, we obtain m−n ≤ c
√
n− 1, which proves the first part of this theorem. Next, if

n = bk+1 where k is an odd integer not less than 3, then m = n+ b
k+1

2 + b
k−1

2 , and therefore

m− n = cb
k
2 = c

√
n− 1.

This proves the second part. So the proof is complete.

Corollary 2. Let b be an integer not less than 2 and let (xn) be the strictly increasing
sequence of b-adic palindromes. Then

lim sup
n→∞

xn+1 − xn√
xn

=
√
b+

1√
b

and lim inf
n→∞

(xn+1 − xn) = 2.

Proof. The limit supremum follows immediately from Theorem 1. For the limit infimum,
suppose y is the nonzero leading digit of xn, and y0 is the last digit of xn in the b-adic
expansion of xn, where xn ≥ b. If y0 6= b − 1, then the last digit of xn + 1 is y0 + 1 6= y, so
xn+1 is not a b-adic palindrome. If y0 = b− 1, then the last digit of xn+1 is zero, so xn+1
cannot be a b-adic palindrome. This shows that if xn ≥ b, then xn+1 ≥ xn + 2. In addition,
if xn = bk − 1 where k is a positive integer, then xn+1 = xn + 2. So the limit infimum above
is 2.

Corollary 3. Let b be an integer not less than 2 and let c =
√
b +

√
b−1. Then for each

integer n ≥ 2, there exists a b-adic palindrome in the interval
(

n, n+ c
√
n− 1

]

.

Furthermore, the interval is best possible in the sense that there are infinitely many n such
that the open interval

(

n, n+ c
√
n− 1

)

does not contain a b-adic palindrome.

Proof. Let n ≥ 2 and A = (n, n + c
√
n− 1]. If n is a b-adic palindrome, then the result

follows immediately from Theorem 1. Suppose n is not a b-adic palindrome. Then we have

xm < n < xm+1 where xm and xm+1 are consecutive b-adic palindromes.

Then xm+1 > n and xm+1 ≤ xm + c
√
xm − 1 < n + c

√
n− 1. So xm+1 ∈ A. If n = bk + 1

and k is an odd integer not less than 3, then Theorem 1 implies that the open interval
(n, n+ c

√
n− 1) does not contain a b-adic palindrome.

The limit infimum in Corollary 2 leads us to the study of twin palindromes. If m > n,
then we say that m and n are b-adic twin palindromes if m and n are b-adic palindromes
and m = n + 2. In the next subsection, we determine all b-adic twin palindromes and give
some related results.
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2.2 Twin palindromes and fixed gaps between palindromes

Theorem 4. (Classification of all 2-adic twin palindromes) Let n be a 2-adic palindrome.
Then n + 2 is a 2-adic palindrome if and only if n = 2k+1 − 1 for some integer k ≥ 0, or
n = (101)2.

Proof. It is clear that if n = (101)2 or n = 2k+1−1 for some integer k ≥ 0, then n+2 is a 2-adic
palindrome. Next, assume that m = n+2 is a 2-adic palindrome. Let n = (nknk−1 · · ·n1n0)b
and m = (mℓmℓ−1 · · ·m1m0)b where k ≥ 0.

For 0 ≤ k ≤ 2, we see that the 2-adic palindromes having at most 3 digits are (1)2 = 2−1,
(11)2 = 22 − 1, (101)2, and (111)2 = 23 − 1, which are either (101)2 or of the form 2k+1 − 1
for some integer k ≥ 0. So we assume that k ≥ 3.

If n1 = 0, then we have k = ℓ, m1 = 1, ni = mi for all i 6= 1, and so 1 = m1 = mk−1 =
nk−1 = n1 = 0, a contradiction. Therefore ni = 1 for all i ≤ 1. Let j be the largest integer
less than or equal to ⌊k/2⌋ such that ni = 1 for all i ≤ j. Suppose that j < ⌊k/2⌋. Then
nj+1 = 0. Therefore mj+1 = 1, ni = mi for all i > j + 1, and mi = 0 for all 1 ≤ i ≤ j. Then
0 = m1 = mk−1 = nk−1 = n1 = 1, a contradiction. Therefore j = ⌊k/2⌋. Then ni = 1 for all
i. Thus n = 2k+1 − 1.

Theorem 5. (Classification of all b-adic twin palindromes) Let b be an integer not less than
3 and let n be a b-adic palindrome not less than b. Then n+ 2 is a b-adic palindrome if and
only if n = bk+1 − 1 for some integer k ≥ 0.

Proof. It is clear that bk+1+1 and bk+1−1 are b-adic twin palindromes for every integer k ≥ 0.
Next, let m and n be b-adic twin palindromes and m > n ≥ b. Let n = (nknk−1 · · ·n1n0)b
and m = (mℓmℓ−1 · · ·m1m0)b, where k ≥ 1.

If n0 ≤ b − 3, then k = ℓ, ni = mi for all 1 ≤ i ≤ k, and m0 = n0 + 2. By the fact that
nk = n0, nk = mk, and mk = m0, we have

m0 = n0 + 2 = nk + 2 = mk + 2 = m0 + 2,

which is not possible. If n0 = b− 2, then mℓ = m0 = 0, which is false. Therefore n0 = b− 1,
and so mℓ = m0 = 1.

If ℓ = k, then 0 < nk ≤ mℓ = 1. Thus 1 = nk = n0 = b − 1, which is a contradiction.
Thus we obtain ℓ = k + 1 and mk+1 = m0 = 1. Therefore n + 2 = m ≥ bk+1 + 1, and so
bk+1 > n ≥ bk+1 − 1. Hence n = bk+1 − 1.

It is known that the sum of reciprocals of all twin primes converges, that is,

∑

p and p+ 2 are
prime numbers

(

1

p
+

1

p+ 2

)

(2)

converges. This result was given by Brun [4], and the constant (2) is called Brun’s constant.
It is unknown whether Brun’s constant is irrational or rational. If we obtained the irra-
tionality of the constant, then we would conclude the infinitude of twin primes. We remark
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again that the mention of primes is only for the visual form of questions being asked. Instead
of twin primes, we investigate the irrationality of the sum of reciprocals of all twin b-adic
palindromes as follows:

Theorem 6. For each integer b ≥ 2, the sum of reciprocals of all b-adic twin palindromes
converges to an irrational number, that is,

∑

m and n are b-adic
twin palindromes

and m > n

(

1

n
+

1

m

)

/∈ Q. (3)

Proof. Fix b ≥ 2. By Theorems 4 and 5, it suffices to show that

∞
∑

k=1

(

1

bk − 1
+

1

bk + 1

)

= 2
∞
∑

k=1

bk

b2k − 1
(4)

is irrational. Define L(z) =
∑∞

k=1 z
k/(b2k − 1) on |z| < b2. Then we see that

L(z)− L
(

z/b2
)

=
∞
∑

k=1

zk − (z/b2)k

b2k − 1
=

∞
∑

k=1

( z

b2

)k

=
z

b2 − z
.

Therefore we have

L(z) =
z

b2 − z
+ L(z/b2)

=
z

b2 − z
+

z

b4 − z
+ L(z/b4)

= · · · =
N
∑

k=1

z

b2k − z
+ L(z/b2N ).

Since limN→∞ L(z/b2N) = 0, we obtain L(z) =
∑∞

k=1 z/(b
2k− z). Substituting z = b in L(z),

we see that the right-hand side of (4) is equal to 2
∑∞

k=1 b/(b
2k − b). By Borwein’s result [3,

Theorem 1], the sum
∑∞

k=1 1/(b
2k − b) is irrational. Therefore (4) is irrational.

The irrationality of (4) is a direct consequence of Borwein’s result. Recall that the
function

Lq(z) =
∞
∑

k=1

zk

qk − 1
=

∞
∑

k=1

z

qk − z

is called the q-logarithmic function. The irrationality and Q-linear independence of the
special values of Lq(z) are well-studied. For example, by Tachiya’s result [14, Example 1],
the following three numbers

1, Lq(1) =
∞
∑

k=1

1

qk − 1
, Lq(−1) = −

∞
∑

k=1

1

qk + 1

6



are linearly independent over Q, which also immediately implies the irrationality of (4). We
will use Lq(z) again in Conjecture 7 and Theorem 14.

We next investigate a more general setting. For all integers b ≥ 2 and d ≥ 1, we define

R(b; d) = {(n,m) ∈ N2 | m and n are b-adic palindromes, and m− n = d}, (5)

C(b; d) =
∑

(n,m)∈R(b;d)

(

1

n
+

1

m

)

.

In view of the case d = 2, we expect the irrationality of C(b; d) for some other values of d ≥ 3
too. Nevertheless, not all C(b; d) are irrational. For instance, if R(b; d) is a finite set, then
C(b; d) is rational. So we will first determine all values of d such that R(b; d) is an infinite
set. Secondly, we describe all except a finite number of elements of R(b; d) when R(b; d) is
infinite. After that we prove the irrationality of C(b; d) for all b and d such that R(b; d) is
infinite by assuming Bundschuh and Väänänen’s conjecture [5].

Before stating the conjecture, we defineK∗ = K\{0} to be the set of all nonzero elements

of a field K, and qA = {qa | a ∈ A} for every A ⊆ R. We also write L
(n)
q (z) for the nth

derivative of Lq(z). Then Bundschuh and Väänänen’s conjecture is as follows.

Conjecture 7 ([5, Conjecture]). Let K be either Q or an imaginary quadratic number field,
let q ∈ K be an integral element, and let z1, . . . , zm ∈ K∗ \ qN be such that zµ/zµ′ /∈ qZ for
µ 6= µ′. Then for each ℓ ∈ N, the 1 + ℓm numbers

1, Lq(z1), . . . , Lq(zm), . . . , L
(ℓ−1)
q (z1), . . . , L

(ℓ−1)
q (zm) (6)

are linearly independent over K.

Remark 8. Note that Lq(z) − Lq(z
′) ∈ K for all z, z′ ∈ K∗ \ qN with z/z′ ∈ qZ. Indeed, for

all z ∈ K and m ∈ Z, it follows that

Lq(zq
m) =

∞
∑

k=1

zqm

qk − zqm
=

∞
∑

k=1

z

qk−m − z
.

Therefore Lq(zq
m)− Lq(z) ∈ K.

We will apply Conjecture 7 with ℓ = 1 to give a conditional proof of the irrationality
of C(b; d) for all suitable integers d ≥ 3, but before that we need some lemmas to obtain
the values of d such that R(b; d) is infinite and describe its elements explicitly. Throughout
Lemmas 9–11, we assume that n, m, and d are positive integers, m = n + d, and both m
and n are b-adic palindromes. We also write n, m, and d as

n = (nknk−1 · · ·n1n0)b, m = (mℓmℓ−1 · · ·m1m0)b, and

d = (drdr−1 · · · d1d0)b, (7)

where k, ℓ, r ≥ 0, nk,mℓ, dr 6= 0, and 0 ≤ ni,mi, di < b for all i.
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Lemma 9. If 0 ≤ r ≤ (k − 1)/2, then ni = b − 1 for all i ∈ [r, k − r]. The condition
0 ≤ r ≤ (k − 1)/2 is best possible in the sense that if k is even and r = k/2, then there are
infinitely many n satisfying all of the other conclusions except for nk/2 = b− 1.

Proof. Let 0 ≤ r ≤ (k − 1)/2. We first show that

2br+1 > (nrnr−1 · · ·n1n0)b + d ≥ br+1. (8)

Since the two integers in the middle of (8) are less than br+1, the first inequality holds. Next,
suppose that (nrnr−1 · · ·n1n0)b + d < br+1. Then k = ℓ, mi = ni for all i ∈ (r, k], and

(mrmr−1 · · ·m1m0)b = (nrnr−1 · · ·n1n0)b + d. (9)

By (9), we see that mj 6= nj for some j ∈ [0, r], and therefore mk−j = nk−j = nj 6= mj,
which contradicts the assumption that m is a b-adic palindrome. So the second inequality
in (8) is proved.

We next show that
ni = b− 1 for all i ∈ (r, k − r). (10)

We note that if r ≤ (k− 2)/2, then the interval (r, k− r) is not empty and we need to prove
that (10) holds. If r = (k−1)/2, then (r, k−r)∩Z = ∅; in this case, we can skip the proof of
(10) and proceed to the proof of (11). So in the proof of (10), we assume that r ≤ (k−2)/2.

Suppose ni 6= b − 1 for some i ∈
(

r,
⌈

k
2

⌉)

. Let j be the smallest integer in
(

r,
⌈

k
2

⌉)

such
that nj 6= b − 1. Then ni = b − 1 for i ∈ (r, j), and by (8), we also obtain mj = nj + 1,
k = ℓ, and mi = ni for all i ∈ (j, k]. Therefore nj + 1 = mj = mk−j = nk−j = nj, which
is a contradiction. Thus ni = b − 1 for all i ∈

(

r,
⌈

k
2

⌉)

. Since n is a palindrome, we obtain
that nk−i = ni = b − 1 for all i ∈

(

r,
⌈

k
2

⌉)

. So, if k is odd, then (10) is proved. If k is
even, then ni = b − 1 for all i ∈ (r, k − r) \

{

k
2

}

, and it remains to show that n k
2

= b − 1.

So let k be even and suppose that n k
2

6= b − 1. Then by (8), we obtain m k
2

= n k
2

+ 1,

k = ℓ, mi = ni for all i ∈
(

k
2
, k
]

, and mi = 0 for all i ∈
(

r, k
2

)

. If r ≤ k
2
− 2, then

0 = m k
2
−1 = m k

2
+1 = n k

2
+1 = n k

2
−1 = b− 1, a contradiction. So r = k

2
− 1. Since mi = ni for

all i ∈
(

k
2
, k
]

, we obtain that mi = mk−i = nk−i = ni for all i ∈ [0, r]. Therefore mi = ni for

all i 6= k
2
and m k

2

= n k
2

+1. Thus b
k
2 = br+1 > d = m−n = b

k
2 , which is not possible. Hence

n k
2

= b− 1 and (10) is proved.

The remaining part of the proof is to show

nr = nk−r = b− 1. (11)

Suppose that nk−r < b − 1. By (8) and (10), it follows that k = ℓ, mk−r = nk−r + 1, and
mr = dr + nr + i− b, where i = 0 or 1. Therefore

dr + nr + i− b = mr = mk−r = nk−r + 1 = nr + 1 ≥ nr + i,

and so dr ≥ b, which is a contradiction. Hence nr = nk−r = b− 1 and the proof of the first
part is complete. For the second part, let k be an even integer not less than 2, r = k/2,

8



d = bk/2, n =
∑

0≤i≤k nib
i, where nk 6= 0, nk/2 ∈ [0, b − 2], ni ∈ [0, b), ni = nk−i for all

i ∈ [0, k], and m = n+ d. Then m and n are b-adic palindromes and nk/2 6= b− 1. Since k is
arbitrary, there are infinitely many such n, and the second part of this lemma is proved.

We remark that the example given in the second part of the proof of Lemma 9 was
also used in the construction of the longest arithmetic progressions of palindromes in base
b = 10 by Pongsriiam [11]. It will be used again in a forthcoming article of Phunphayap and
Pongsriiam on longest arithmetic progressions of b-adic palindromes for all large b. So the
optimal bound 0 ≤ r ≤ (k − 1)/2 in Lemma 9 may not be necessary in this paper, but it
will be useful in the future. Similarly, Lemma 10 is given in an optimal form as follows.

Lemma 10. If 0 ≤ r ≤ k/2 and ni = b−1 for all i ∈ [0, k], then d = 2. If k is odd, r = k+1
2
,

and ni = b− 1 for all i ∈ [0, k], then d ≥ 2 and if d 6= 2, then the smallest possible value of

d is d = 2 + b
k+1

2 . In particular, the bound 0 ≤ r ≤ k/2 in the first statement is optimal.

Proof. For the first statement, assume that 0 ≤ r ≤ k/2 and ni = b − 1 for all i ∈ [0, k].
Then n = bk+1 − 1. By m = n + d = bk+1 + (d − 1) and 0 ≤ d − 1 < br+1, we have
ℓ = k + 1, mk+1 = 1, and mi = 0 for all i ∈ (r, k]. Since m is a b-adic palindrome, we have
m0 = 1. Since m is a b-adic palindrome, we conclude that mi = 0 for all i ∈ [1, k]. Hence
m = bk+1 + 1. Therefore

d = m− n =
(

bk+1 + 1
)

−
(

bk+1 − 1
)

= 2,

as required. Next, let k be odd, r = k+1
2
, and ni = b− 1 for all i ∈ [0, k]. Then n = bk+1 − 1

and it is obvious that n + 1 is not a b-adic palindrome. So d ≥ 2. So assume that d 6= 2.
Then m > bk+1+1 and the smallest b-adic palindrome larger than bk+1+1 is bk+1+1+ b

k+1

2 .
Therefore the smallest value of d is

d =
(

bk+1 + 1 + b
k+1

2

)

−
(

bk+1 − 1
)

= 2 + b
k+1

2 .

This completes the proof.

After we have Lemma 9, we can split our consideration into two cases. The first case is
that ni = b−1 for all i ∈ [0, r), which leads to Lemma 10. The second case is that nj 6= b−1
for some j ∈ [0, r) which is considered in the next lemma as follows.

Lemma 11. Let 1 ≤ r ≤ (k− 1)/2 and let j be the largest integer in the interval [0, r) such
that nj < b− 1. Then j = r − 1 and d = br + br−1. Furthermore, if b = 2, then r ≥ 2.

Proof. We first note that since nk−j = nj < b−1 and j ≤ r−1, we have n ≤ bk+1−1−bk−j ≤
bk+1 − 1− bk−r+1 and so

m = n+ d ≤ bk+1 − 1− bk−r+1 + br+1 < bk+1.

Therefore ℓ = k. Next, we suppose by way of contradiction that j < r − 1. The choice of j
implies that ni = b− 1 for all i ∈ (j, r). By applying Lemma 9, we also have ni = b− 1 for

9



all i ∈ [r, k − r]. Since n is a b-adic palindrome, we obtain ni = b − 1 for all i ∈ (j, k − j).
We assert that

(nj · · ·n0)b + (dj · · · d0)b < bj+1. (12)

If (12) does not hold, then it follows that mi = di for all i ∈ (j, r], mi = 0 for all i ∈ (r, k−j),
and mk−j = nk−j + 1, which implies 0 = mk−r = mr = dr, a contradiction. Thus (12)
holds. Similarly, if there exists an integer i ∈ (j, r) such that di > 0, then we obtain
0 = mk−r = mr = dr, which is not possible. Therefore di = 0 for all i ∈ (j, r).

Combining the above discussion, we have

di = 0 for j < i < r, (13)

(mj · · ·m0)b = (nj · · ·n0)b + (dj · · · d0)b < bj+1, (14)

ℓ = k,mi = ni for k − j < i ≤ k, mk−j = nk−j + 1, (15)

mi = 0 for r < i < k − j, mr = dr − 1, (16)

mi = b− 1 for j < i < r. (17)

Recall that j + 1 < r. So we can substitute i = k − j − 1 in (16) and i = j + 1 in (17) to
obtain 0 = mk−j−1 = mj+1 = b − 1, which is a contradiction. Therefore j = r − 1. Then
(14), (15), and (16) can be rewritten as

(mr−1 · · ·m0)b = (nr−1 · · ·n0)b + (dr−1 · · · d0)b < br, (18)

ℓ = k,mi = ni for k − r + 1 < i ≤ k, mk−r+1 = nk−r+1 + 1, (19)

mi = 0 for r < i ≤ k − r, mr = dr − 1. (20)

Then (20) implies that 0 = mk−r = mr = dr − 1, and so dr = 1. Next, we assert that

di = 0 for every i ∈ [0, r − 1). (21)

Suppose that (21) does not hold. Let j′ be the smallest integer in the interval [0, r− 1) such
that dj′ 6= 0. Then we substitute i = k − j′ in (19) to obtain mk−j′ = nk−j′ . In addition,
since di = 0 for all i ∈ [0, j′), we obtain that mj′ = nj′ + dj′ or mj′ = nj′ + dj′ − b. Therefore

nj′ = nk−j′ = mk−j′ = mj′ ≡ nj′ + dj′ (mod b),

which implies dj′ = 0 contradicting the choice of j′. Hence (21) holds. Then (19), (18), and
(21) imply that nk−r+1 + 1 = mk−r+1 = mr−1 = nr−1 + dr−1 = nk−r+1 + dr−1, and hence
dr−1 = 1. Therefore d = br + br−1.

In the case b = 2 and r = 1, we see that d = (11)2 and m0 ∈ {0, 1}. However, it is easy
to see that m0 = 0 implies mk = m0 = 0, and m0 = 1 implies nk = n0 = 0, which is a
contradiction. Thus, if b = 2, then r ≥ 2. This completes the proof.

We are now ready to give the proof of the desired results. In the statement of the next
theorem, we call a pair (r, b) of integers admissible if (r, b) satisfies that r ≥ 2 if b = 2, and
r ≥ 1 otherwise. For every admissible pair (r, b), we find the explicit forms of all except a
finite number of elements of R(b; d) as follows.

10



Theorem 12. Let b and d be integers, b ≥ 2, and d ≥ 1. Then the following statements
hold.

(i) If b = 2, then R(b; d) is infinite if and only if d = 2 or d = 2r + 2r−1 for some r ≥ 2.

(ii) If b ≥ 3, then R(b; d) is infinite if and only if d = 2 or d = br + br−1 for some r ≥ 1.

(iii) For every admissible pair (r, b), there exists an exceptional finite set E = E(r, b) ⊆ N2

such that (n,m) ∈ R(b; br + br−1) \ E if and only if

n =
∑

0≤i<r

nib
k−i + (b− 1)

∑

r≤i≤k−r

bi +
∑

0≤i<r

nib
i, and (22)

m = n+ br + br−1

for some integers k ≥ 2r + 1, n0 ∈ [1, b), nr−1 ∈ [0, b − 1), and ni ∈ [0, b) for all
i ∈ (0, r − 1).

Remark 13. If r = 1, then (22) in Theorem 12 means that b ≥ 3, k ≥ 3, 1 ≤ n0 < b− 1, and

n = n0b
k + (b− 1)

∑

1≤i≤k−1

bi + n0,

and therefore n+ br + br−1 = (n0 +1)bk + (n0 +1). If r ≥ 2 and n is defined as in (22), then

n+ br + br−1 =
∑

0≤i<r−1

nib
k−i + (nr−1 + 1)bk−r+1 + (nr−1 + 1)br−1

+
∑

0≤i<r−1

nib
i

=
∑

0≤i<r

nib
k−i + bk−r+1 + br−1 +

∑

0≤i<r

nib
i.

In addition, we can also rewrite (22) as

n =
∑

0≤i<r

nib
k−i + bk−r+1 − br +

∑

0≤i<r

nib
i. (23)

We use the form (22) in the proof of Theorem 12 and use both (22) and (23) in the proof of
Theorem 14.

Proof of Theorem 12. It is easy to see that (bk − 1, bk + 1) ∈ R(b; 2) for all k ∈ N, and so
R(b; d) is infinite when d = 2. Next, let r ≥ 2 and d = br + br−1. Let n be defined as in
(22) and let m = n+ d. Then it is not difficult to check that (n,m) ∈ R(b; d). Since k is an
arbitrary integer not less than 2r + 1, there are infinitely many n satisfying (22). Therefore

11



R(b; d) is infinite. In the case b ≥ 3 and r = 1, the above proof still works. So the “if” parts
of (i) and (ii) are proved. In addition, the set

E = E(r, b) =
{

(n′,m′) ∈ N2 | n′ < b2r+1 and m′ = n′ + d
}

(24)

is finite and does not contain (n,m). So (n,m) ∈ R(b; d) \ E . This proves the “if” part of
(iii).

Next, assume that R(b; d) is infinite. Let E be defined as in (24). Then E is finite, and
so R(b; d) \ E is infinite. Let (n,m) ∈ R(b; d) \ E . Then n and m are b-adic palindromes,
m = n + d, and n ≥ b2r+1. We write n, m, and d as in (7). Then 0 ≤ r ≤ (k − 1)/2. By
Lemma 9, we obtain ni = b− 1 for all i ∈ [r, k− r]. If r = 0, then this means that ni = b− 1
for all i ∈ [0, k], and we can apply Lemma 10 to obtain d = 2, which proves the “only if”
parts of (i) and (ii). If ni = b− 1 for all i ∈ [0, r), then this also leads to Lemma 10 and the
conclusion that d = 2. So assume that r ≥ 1 and j is the largest integer in [0, r) such that
nj < b− 1. Then Lemma 11 implies the “only if” parts of (i) and (ii).

So it remains to prove the “only if” part of (iii). We now have (n,m) in R(b; d)\E where
d = br + br−1, r ∈ N, and r ≥ 2 if b = 2. We also have k ≥ 2r + 1, ni = b − 1 for all
i ∈ [r, k − r], nj = nr−1 < b− 1. Since n is a b-adic palindrome, we have n0 6= 0. Therefore
n0 ∈ [1, b), nr−1 ∈ [0, b− 1), ni ∈ [0, b) for all i ∈ [0, k], and ni = nk−i for all i ∈ [0, k]. Hence
n is of the form (22). This proves the “only if” part of (iii) and so the proof is complete.

Theorem 14. Assume that Conjecture 7 with ℓ = 1 is true. Then for every admissible pair
(r, b), the constant C(b; br + br−1) is irrational.

Proof. Fix an admissible pair (r, b). For n = (nknk−1 · · ·nr · · ·n0)b with n0 ∈ [1, b), nr−1 ∈
[0, b− 1), and ni ∈ [0, b) for all i ∈ (0, r − 1), we define

Q = Q(n) = Q(n0, . . . , nr, . . . , nk) = br +
∑

0≤i<r

nib
2r−1−i,

P0 = P0(n) = P0(n0, . . . , nr, . . . , nk) = br −
∑

0≤i<r

nib
i,

P1 = P1(n) = P1(n0, . . . , nr, . . . , nk) = −br−1 −
∑

0≤i<r

nib
i.

By Theorem 12, the constant C(b; br + br−1) is irrational if and only if the sum

∑

n

(

1

n
+

1

n+ br + br−1

)

=
∑

n0,n1,...,nr−1

∞
∑

k=2r+1

(

1

n
+

1

n+ br + br−1

)

(25)

is irrational, where n ranges over all positive integers of the form (22) satisfying that n0 ∈
[1, b), nr−1 ∈ [0, b − 1), and ni ∈ [0, b) for all i ∈ (0, r − 1). By adding the finite number of
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terms with k = 2r, we can replace
∑∞

k=2r+1 with
∑∞

k=2r in (25) and obtain that C(b; br+br−1)
is irrational if and only if

∑

n0,n1,...,nr−1

∞
∑

k=2r

(

1

n
+

1

n+ br + br−1

)

=
∑

n0,n1,...,nr−1

( ∞
∑

k=1

1

Qbk − P0

+
∞
∑

k=1

1

Qbk − P1

)

=
∑

n0,n1,...,nr−1

Lb(P0/Q)

P0

+
∑

n0,n1,...,nr−1

Lb(P1/Q)

P1

(26)

is irrational. We remark that Pi/Q 6= bk for all k ≥ 1 and i ∈ {0, 1}. Let S0 and S1 be
the first and second sums in (26), respectively. For each i ∈ {0, 1} and n ∈ N, we define

z
(i)
n = Pi(n)/Q(n). The sign of each Pi is (−1)i by the definition of Pi. So we have z

(0)
n > 0

and z
(1)
n < 0 for all n. By Remark 8 and combining terms Lb(z

(i)
n ) and Lb(z

(i)
n′ ) in Si satisfying

z
(i)
n /z

(i)
n′ ∈ bZ, the sum Si can be rewritten as

B(i) +
∑

n

A(i)
n Lb(z

(i)
n ),

where the sum is taken over all a finite number of n, B(i) ∈ Q, A
(i)
n ∈ Q∗, (−1)iA

(i)
n > 0,

z
(i)
n ∈ Q∗ \ bN, (−1)iz

(i)
n > 0, and z

(i)
n /z

(i)
n′ /∈ bZ for n 6= n′. Therefore (26) is equal to

B(0) + B(1) +
∑

n

A(0)
n Lb(z

(0)
n ) +

∑

n

A(1)
n Lb(z

(1)
n ).

We remark that z
(1)
n /z

(0)
n′ < 0 implies z

(1)
n /z

(0)
n′ /∈ bZ. Hence, Conjecture 7 with ℓ = 1 implies

the irrationality of (26).

In the next subsection, we first give a lemma which is a key to the construction of large
gaps between b-adic antipalindromes of types 0, 1, and 2.

2.3 Antipalindromes of types 0, 1, and 2 in short intervals

From this point on, for each n ∈ N and j = 0, 1, 2, we let fj(n) be the smallest b-adic
antipalindrome of type j that is larger than n.

Lemma 15. Let b and k be integers larger than 1. Then the following statements hold.

(i) For each j ∈ {0, 1, 2}, the b-adic antipalindromes of type j are uniquely determined by
their first half digits. More precisely, if y =

∑k
i=0 yib

i and n =
∑k

i=0 nib
i are b-adic

antipalindromes of the same type j ∈ {0, 1, 2} and yi = ni for each i ≥ ⌈k/2⌉, then
y = n.

13



(ii) For each j ∈ {0, 1}, if n is a b-adic antipalindrome of type j, then n is a b-adic
antipalindrome of type j + 1.

(iii) For each n ∈ N, we have f0(n) ≥ f1(n) ≥ f2(n).

(iv) If n = bk, then f2(n) = bk + b⌈ k
2⌉ − 2.

(v) If n = bk+1 − b⌈ k
2⌉, then f2(n) = bk+1 + b⌈ k+1

2 ⌉ − 2.

(vi) If n = bk + bk−j − b
k+1

2 + bj+1 − 2 where k ≥ 11, k is odd, and j = ⌊k/3⌋, then

f2(n) = bk + bk−j + b
k+1

2 − bj − 2.

(vii) If n = bk + bk−j − b
k
2
+1 +

(

b−1
2

)

b
k
2 + bj+1 − 2 where k ≥ 10, k is even, and j = ⌊k/3⌋,

then f1(n) = bk + bk−j +
(

b+1
2

)

b
k
2 − bj − 2.

Proof. The statements (i) to (iii) are obvious, so we skip the proof. Next, we prove (iv). Let

n = bk = (nknk−1 · · ·n0)b and m = bk + b⌈ k
2⌉ − 2 = (mkmk−1 · · ·m0)b,

where nk = 1, ni = 0 for all i < k, mk = 1, mi = 0 for ⌈k/2⌉ ≤ i < k, mi = b − 1
for 0 < i < ⌈k/2⌉, and m0 = b − 2. It is straightforward to check that m is a b-adic
antipalindrome of type 2 larger than n. Suppose that y is a b-adic antipalindrome of type
2 satisfying n < y ≤ m. By comparing the digits of n, y,m, we see that yi = mi for all
i ≥ ⌈k/2⌉. Therefore we obtain by (i) that y = m. This shows that f2(n) = m.

Next, let n = bk+1 − b⌈ k
2⌉ = (nknk−1 · · ·n0)b where ni = b − 1 for i ≥ ⌈k/2⌉ and ni = 0

for i < ⌈k/2⌉. Let m = bk+1 + b⌈ k+1

2 ⌉ − 2 and let y be a b-adic antipalindrome of type 2
satisfying n < y ≤ m. If n < y < bk+1, then y = (yk · · · y0)b where yi = b − 1 for i ≥ ⌈k/2⌉
and yj > 0 for some j < ⌈k/2⌉, which implies that y is not a b-adic antipalindrome of type
2, a contradiction. So bk+1 ≤ y ≤ m. Then the first half digits of y and m are the same. So
we obtain by (i) that y = m. This shows that f2(n) = m.

Next, let n be defined as in (vi). Then

n = bk + (b− 1)
∑

k+1

2
≤i≤k−j−1

bi + (b− 1)
∑

1≤i≤j

bi + (b− 2) = (nknk−1 · · ·n0)b,

where nk = 1, ni = b − 1 for i ∈ [1, j] ∪
[

k+1
2
, k − j − 1

]

, n0 = b − 2, and ni = 0 otherwise.
Let y be the smallest b-adic antipalindrome larger than n. By comparing the digits as in the
proof of (iv) and (v), we see that if

n < y < bk + bk−j,

then y is not a b-adic antipalindrome. Therefore

y ≥ bk + bk−j.

14



Let m = bk+bk−j+b
k+1

2 −bj−2 = (mkmk−1 · · ·m0)b where mk = mk−j = 1, mj = m0 = b−2,
mi = b− 1 for i ∈ (0, j)∪

(

j, k+1
2

)

, and mi = 0 otherwise. Then m is a b-adic antipalindrome
larger than n. Therefore bk + bk−j ≤ y ≤ m. By comparing the digits of bk + bk−j, m, y, and
applying (i), we obtain that f2(n) = y = m.

Next, let n be defined as in (vii). The proof of (vii) is similar to (vi), so we skip some
details. We have

n = bk + (b− 1)
∑

k
2
<i<k−j

bi +

(

b− 1

2

)

b
k
2 + (b− 1)

∑

1≤i≤j

bi + (b− 2).

By comparing the digits, we see that there is no b-adic antipalindromes that lie in the
interval (n, n + y] where y = b

k
2 − bj+1 + 1. In addition, the integers in the interval

[

n+ y + 1, bk + bk−j +
(

b−1
2

)

b
k
2

)

are not b-adic antipalindromes since their middle digits

(the digit corresponding to b
k
2 ) are not b−1

2
. Therefore f1(n) ≥ bk + bk−j +

(

b−1
2

)

b
k
2 . Let

m = bk+bk−j+
(

b+1
2

)

b
k
2 −bj−2. Then m is a b-adic antipalindrome larger than n. Therefore

bk + bk−j +

(

b− 1

2

)

b
k
2 ≤ f1(n) ≤ m.

By comparing the digits and applying (i), we obtain f1(n) = m, as required. This completes
the proof.

Theorem 16. Let b be an integer not less than 2 and (xn) the strictly increasing sequence
of b-adic antipalindromes of type 2 (free middle type). Then

xn+1 − xn ≤ 2
√
b
√
xn for all n ∈ N, (27)

and (27) is sharp in the sense that

lim sup
n→∞

xn+1 − xn√
xn

= 2
√
b.

Proof. Throughout the proof, all b-adic antipalindromes are of type 2. Let n be a b-adic
antipalindrome, and write n = (nknk−1 · · ·n0)b with nk 6= 0. Let m = f2(n). If 1 ≤ n < b−1,
then m = n + 1 and so m − n < 2

√
b
√
n. It is easy to see that b, b + 1, . . . , b + (b − 3) are

not b-adic antipalindromes, but b + (b − 2) is. So if n = b − 1, then m = 2n, and so
m−n < 2

√
b
√
n. By listing all b-adic antipalindromes in [b, b3], it is straightforward to check

that if b ≤ n < b3, then m − n ≤ 2b − 2 < 2
√
b
√
n. So we assume that n ≥ b3. Therefore

k ≥ 3. Next, we split the calculations into 6 cases.

Case 1: k is odd and n k+1

2

6= b − 1. Then n k−1

2

≥ 1. Let y = b
k+1

2 − b
k−1

2 = (b − 1)b
k−1

2 .

Then n+ y is a b-adic antipalindrome, and so m ≤ n+ y. Therefore

m− n√
n

≤ y√
n
≤ b

k+1

2 − b
k−1

2√
bk

=
√
b−

√
b−1,
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which is less than 2
√
b.

Case 2: k is even and n k
2

6= b − 1. Then n + b
k
2 is a b-adic antipalindrome. Therefore

m− n ≤ b
k
2 <

√
n < 2

√
b
√
n.

Case 3: k is even and ni = b − 1 for all i ≥ k/2. Then ni = 0 for all i < k/2, and so

n = bk+1 − b
k
2 . By Lemma 15, we obtain m = bk+1 + b

k+2

2 − 2. If b ≥ 3, then

m− n√
n

<
b

k+2

2 + b
k
2

√

bk+1 − b
k
2

<
b

k+2

2 + b
k
2

√

bk+1/2
=

√
2
(√

b+
√
b−1
)

< 2
√
b.

Since k ≥ 3 and k is even, we have k ≥ 4. So if b = 2, then

m− n√
n

<
2

k+2

2 + 2
k
2

√

2k+1 − 2
k
2

=

√
2 +

√
2−1

√
1− 2−(k+2)/2

≤
√
2 +

√
2−1

√

7/8
< 2

√
2.

So, in any case, we have m− n < 2
√
b
√
n.

Case 4: k is even, n k
2

= b − 1, and ni 6= b − 1 for some i > k/2. Then ni 6= 0 for some

i < k/2. Let j be the largest integer less than k
2
such that nj 6= 0. Then nk−j 6= b− 1. Let

y = 2b
k
2 − bj+1 − bj = b

k
2 + (b− 1)

∑

j<i< k
2

bi − bj.

Then n+ y is a b-adic antipalindrome, and so m− n ≤ y < 2b
k
2 < 2

√
n < 2

√
b
√
n.

Case 5: k is odd and ni = b − 1 for all i ≥ k+1
2
. Then ni = 0 for all i ≤ k−1

2
and so

n = bk+1 − b
k+1

2 . By Lemma 15, we obtain m = bk+1 + b
k+1

2 − 2. Therefore

m− n < 2b
k+1

2 = 2
√
b · b k

2 < 2
√
b
√
n.

Case 6: k is odd, n k+1

2

= b − 1, and ni 6= b − 1 for some i > k+1
2
. Then ni 6= 0 for some

i < k−1
2
. Let j be the largest integer less than k−1

2
such that nj 6= 0. Then nk−j 6= b− 1. Let

y = 2b
k+1

2 − bj+1 − bj = b
k+1

2 + (b− 1)
∑

j<i< k+1

2

bi − bj.

Then n+ y is a b-adic antipalindrome. Therefore

m− n ≤ y < 2b
k+1

2 = 2
√
b · b k

2 < 2
√
b
√
n.

From Cases 1–6, we conclude that xn+1 − xn ≤ 2
√
b
√
xn for all n ≥ 1.
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For the limit supremum, we construct a specific n similar to Case 6 where k ≥ 11, k is
odd, and j = ⌊k/3⌋. That is, we let

n = bk + (b− 1)
∑

k+1

2
≤i≤k−j−1

bi + (b− 1)
∑

1≤i≤j

bi + (b− 2)

= bk + bk−j − b
k+1

2 + bj+1 − 2,

where k ≥ 11, k is odd, and j = ⌊k/3⌋. By Lemma 15, we obtain

m = bk + bk−j + b
k+1

2 − bj − 2.

Therefore

m− n√
n

=
2b

k+1

2 − bj+1 − bj√
n

=
2
√
b− bj+1− k

2 − bj−
k
2

√

1 + b−j − b
1−k
2 + bj+1−k − 2b−k

,

which converges to 2
√
b as k → ∞. Therefore (m − n)/

√
n converges to 2

√
b as n → ∞.

This proves

lim sup
n→∞

xn+1 − xn√
xn

= 2
√
b,

as required. So the proof is complete.

Corollary 17. Let b be an integer not less than 2 and c = 2
√
b. Then for each n ∈ N, the

interval (n, n + c
√
n] always contains a b-adic antipalindrome of type 2 (free middle type).

This is best possible in the sense that if ε > 0 is given, then there are infinitely many n ∈ N

such that the interval (n, n+ (c− ε)
√
n] does not contain a b-adic antipalindrome of type 2.

Proof. We apply Theorem 16 and an argument similar to Corollary 3 to obtain this corollary.

Theorem 18. Let b be an integer not less than 2 and (xn) the strictly increasing sequence
of b-adic antipalindromes of type 0 (no middle type). Then xn+1 − xn < cn(b − 1)xn for all
n ∈ N, where

cn = 1 +
2b

(b− 1)
(√

n+ 1− 1
) . (28)

In addition, we have

lim sup
n→∞

xn+1 − xn

xn

= b− 1.

Proof. Since type 0 is similar to type 2, we can slightly modify the proof of Theorem 16 to
obtain a proof of this theorem. In fact, types 0 and 2 are the same when the number of digits
k+1 is even. In this proof, unless stated otherwise, b-adic antipalindromes are of type 0. Let
n ≥ b and let n = (nknk−1 · · ·n0)b be a b-adic antipalindrome with nk 6= 0. Let m = f0(n).
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By the definition of type 0, we obtain that k is odd. So the three cases of even integer k
in Theorem 16 do not occur in this proof. In addition, it is straightforward to check that if
b ≤ n ≤ b3, then n ≤ (b− 1)b and

m− n

n
≤ max

{

b− 1

b+ (b− 2)
,
b3 + (b− 2)

(b− 1)b

}

=
b2 + b+ 2

b

= (b− 1)

(

1 +
2(b+ 1)

(b− 1)b

)

< cn(b− 1).

So we assume that n ≥ b3 + 1. So k ≥ 3. Furthermore, if n k+1

2

6= b − 1, then we can use

exactly the same calculation as in Case 1 of Theorem 16 to obtain

m− n ≤
(√

b−
√
b−1
)√

n < (b− 1)cnn. (29)

So it remains to consider the results corresponding to Cases 5 and 6 in Theorem 16.

Case 1: k is odd, n k+1

2

= b − 1, and ni 6= b − 1 for some i > k+1
2
. This is the same as in

Case 6 in Theorem 16 and the same calculation still work. Therefore

m− n ≤ 2
√
b
√
n < (b− 1)cnn. (30)

Case 2: k is odd and ni = b − 1 for all i ≥ k+1
2
. This is similar to Case 5 in Theorem

16. We have n = bk+1 − b
k+1

2 and f2(n) = bk+1 + b
k+1

2 − 2. By Lemma 15, we obtain
f0(n) ≥ f2(n) ≥ bk+1. Since k + 1 is even, the integers in the interval

[

bk+1, bk+2
)

are not
b-adic antipalindromes of type 0. So f0(n) ≥ bk+2. Since k + 2 is odd, types 0 and 2 are
the same in the interval

[

bk+2, bk+3
)

. Therefore the smallest b-adic antipalindrome of types
0 and 2 that is larger than bk+2 is the same too. Thus

m = f0(n) = f2
(

bk+2
)

= bk+2 + b
k+3

2 − 2.

Since n < bk+1 − 1, we have

m− n

n
=

bk+2 − bk+1

bk+1 − b
k+1

2

+
b

k+3

2 + b
k+1

2

bk+1 − b
k+1

2

− 2

bk+1 − b
k+1

2

= (b− 1)



1 +
1

b
k+1

2 − 1
+

b+ 1

(b− 1)
(

b
k+1

2 − 1
)



− 2

bk+1 − b
k+1

2

(31)

< (b− 1)



1 +
2b

(b− 1)
(

b
k+1

2 − 1
)





< (b− 1)

(

1 +
2b

(b− 1)
(√

n+ 1− 1
)

)

= (b− 1)cn.
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This proves xn+1 − xn < (b − 1)cnxn for all n ≥ 1. Then it also follows that the limit
supremum of (xn+1 − xn)/xn is less than or equal to b − 1. Furthermore, we obtain from
(31) that (m − n)/n converges to b − 1 as k → ∞. This proves the remaining parts of this
theorem.

Corollary 19. Let b be an integer not less than 2. If a positive real number ε is given, then
the interval (n, (b+ ε)n) contains a b-adic antipalindrome of type 0 (no middle type) for all
large n, and there are infinitely many m ∈ N such that the interval (m, (b − ε)m] does not
contain a b-adic antipalindrome of type 0.

Proof. This follows immediately from the limit supremum in Theorem 18.

If b is even, then the equality 2n k
2

= b − 1 is not possible, and so types 0 and 1 are

equivalent. If b is odd, then type 1 is a bit different from types 0 and 2 as shown in the next
theorem.

Theorem 20. Let b be an integer not less than 2 and (xn) the strictly increasing sequence
of b-adic antipalindromes of type 1 (one middle type). Then the following statements hold.

(i) If b is even, then xn+1 − xn < (b− 1)cnxn for all n ∈ N, and

lim sup
n→∞

xn+1 − xn

xn

= b− 1,

where cn is defined as (28).

(ii) If b is odd, then xn+1 − xn ≤ (b+ 1)
√
xn for all n ∈ N, and

lim sup
n→∞

xn+1 − xn√
xn

= b+ 1.

Proof. The statement (i) follows immediately from Theorem 18. So we only need to prove
(ii). In this proof, unless stated otherwise, all b-adic antipalindromes are of type 1. Assume
that b is odd, n is a b-adic antipalindrome represented as n = (nknk−1 · · ·n0)b with nk 6= 0,
and m = f1(n). By listing all b-adic antipalindromes in [1, b3), it is straightforward to check
that if n ≤ b3, then m − n ≤ (b + 1)

√
n. So assume that n ≥ b3. Therefore k ≥ 3. If k is

even, then n k
2

= b−1
2

6= b − 1. So Cases 3 and 4 in the proof of Theorem 16 do not occur

here, but we cannot simply follow Case 2 in Theorem 16 because when k is even, the middle
digits of m and n are fixed to be b−1

2
. We still need to split the calculation into 5 cases as

follows.

Case 1: k is even and ni 6= b− 1 for some i > k
2
. Then ni 6= 0 for some i < k

2
. Let j be the

largest integer less than k
2
such that nj 6= 0. Then nk−j 6= b−1. Let y = b

k
2
+1+b

k
2 −bj+1−bj.

Then n+ y is a b-adic antipalindrome. Therefore

m− n ≤ y < b
k
2
+1 + b

k
2 = (b+ 1)b

k
2 < (b+ 1)

√
n. (32)
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Case 2: k is even and ni = b − 1 for all i > k
2
. Then ni = 0 for all i < k

2
. Then

n = bk+1 − b
k
2
+1 +

(

b−1
2

)

b
k
2 . Let

y = b
k
2
+1 +

(

b+ 1

2

)

b
k
2 − 2

= b
k
2
+1 +

(

b− 1

2

)

b
k
2 + (b− 1)

∑

0<i< k
2

bi + (b− 2).

Then n+ y is a b-adic antipalindrome. Recall that k ≥ 3 and k is even. So k ≥ 4. Moreover,
b ≥ 3 since b ≥ 2 and b is odd. Therefore

m− n√
n

≤ y√
n
<

2b
k
2
+1

√

bk+1 − b
k
2
+1

=
2
√
b

√

1− b−
k
2

≤ 2
√
b√

1− b−2
< b+ 1.

So we have m− n < (b+ 1)
√
n.

Case 3: k is odd and n k+1

2

6= b− 1. Then we follow Case 1 of Theorem 16 to obtain

m− n ≤ (
√
b−

√
b−1)

√
n ≤ (b+ 1)

√
n.

Case 4: k is odd, n k+1

2

= b− 1, and ni 6= b− 1 for some i > k+1
2
. This is the same as Case

6 of Theorem 16 and the same calculation still works. Therefore

m− n < 2
√
b
√
n ≤ (b+ 1)

√
n.

Case 5: k is odd and ni = b − 1 for all i ≥ k+1
2
. This is similar to Case 5 in Theorem 16

and Case 2 in Theorem 18. Then n = bk+1 − b
k+1

2 and f2(n) = bk+1 + b
k+1

2 − 2. By Lemma
15, we have f1(n) ≥ f2(n) ≥ bk+1. Since k + 1 is even, the b-adic antipalindromes of type

1 in the interval
[

bk+1, bk+2
)

have their middle digit (the digit corresponding to b
k+1

2 ) equal
to b−1

2
. Since f2(n) is a b-adic antipalindrome of type 2 having middle digit equal to 0 and

f1(n) > f2(n), we see that m = f1(n) = f2(n) +
(

b−1
2

)

b
k+1

2 . Therefore

m− n√
n

=

(

b+3
2

)

b
k+1

2 − 2
√

bk+1 − b
k+1

2

<
b+ 3

2
√

1− b−
k+1

2

(33)

≤ b+ 3

2
√
1− b−2

< b+ 1.

From Cases 1–5, we obtain xn+1 − xn ≤ (b + 1)
√
xn for all n ≥ 1. For the limit supremum,

we construct the integers n as in Case 1 where k ≥ 10, k is even, j = ⌊k/3⌋, and

n = bk + bk−j − b
k
2
+1 +

(

b− 1

2

)

b
k
2 + bj+1 − 2.
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By Lemma 15, we obtain m = n+ y where y = b
k
2
+1+ b

k
2 − bj+1− bj. It is easy to verify that

y/
√
n converges to b + 1 as k → ∞. Therefore (m − n)/

√
n converges to b + 1 as n → ∞.

This proves the remaining part of this theorem.

Corollary 21. If b ≥ 2 and b is even, then type 0 (no middle type) in Corollary 19 can be
replaced by type 1 (one middle type), and the same result holds. If b ≥ 3, b is odd, and ε > 0,
then the interval (n, n+ (b+ 1)

√
n] contains a b-adic antipalindrome of type 1 for all n ≥ b,

and there are infinitely many m ∈ N such that the interval (m,m+ (b+ 1− ε)
√
m] does not

contain a b-adic antipalindrome of type 1.

Proof. This follows immediately from the limit supremum in Theorem 20.

2.4 Antipalindromes of type 3 in short intervals

Recall that the antipalindromes of type 3 (asymmetric type) are those with the property
nk−i 6= ni for 0 ≤ i ≤ ⌊(k − 1)/2⌋. We begin with a lemma on f3(n) as follows.

Lemma 22. Let b be an integer not less than 3. Then the following statements hold.

(i) If k ≥ 1 and n = bk+1 − 1− b⌈ k
2⌉−1
b−1

, then

f3(n) = bk+1 +
b⌈ k+1

2 ⌉ − 1

b− 1
− 1. (34)

(ii) If k is odd, k ≥ 11, j = ⌊k/3⌋, and n = bk + bk−j − b
k+1
2 −bj+1

b−1
− 1, then

f3(n) = bk + bk−j +
b

k+1

2 − bj+1

b− 1
+

bj − b

b− 1
. (35)

Proof. Let n be defined as in (i) and let m be the number on the right-hand side of (34).
Then

n = (b− 1)
∑

⌈ k
2⌉≤i≤k

bi + (b− 2)
∑

0≤i<⌈ k
2⌉

bi and

m = bk+1 +
∑

0<i<⌈ k+1

2 ⌉
bi.

Let y = (ykyk−1 · · · y0)b and n < y ≤ bk+1 − 1. By comparing the digits of n, y, and bk+1 − 1,
we see that yi = b − 1 for

⌈

k
2

⌉

≤ i ≤ k and yj = b − 1 for some j <
⌈

k
2

⌉

. This implies
that yj = yk−j, and so y is not a b-adic antipalindrome of type 3. This shows that there
is no b-adic antipalindrome of type 3 in the interval

(

n, bk+1
)

. In addition, the integer bk+1

is not a b-adic antipalindrome of type 3. Therefore f3(n) > bk+1. It is easy to see that
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m is a b-adic antipalindrome of type 3 larger than n. Thus bk+1 < f3(n) ≤ m. Next, let
z = (zk+1zk · · · z0)b and bk+1 < z < m. Then zk+1 = 1 and zi = 0 for

⌈

k+1
2

⌉

≤ i ≤ k. If
zi 6= 0 for every i ∈

(

0,
⌈

k+1
2

⌉)

, then zi = 1 for all i ∈
(

0,
⌈

k+1
2

⌉)

, which implies z ≥ m, a
contradiction. Therefore zj = 0 for some j ∈

(

0,
⌈

k+1
2

⌉)

. So zj = zk+1−j and z is not a b-adic
antipalindrome of type 3. This implies that f3(n) ≥ m. Hence f3(n) = m, as required.

Next, we prove (ii). So let n be defined as in (ii) and let m be the number on the
right-hand side of (35). Then

n = bk + (b− 1)
∑

k+1

2
≤i<k−j

bi + (b− 2)
∑

j<i< k+1

2

bi + (b− 1)
∑

0≤i≤j

bi,

n+
∑

j<i< k+1

2

bi = bk + bk−j − 1, and

m = bk + bk−j +
∑

j<i< k+1

2

bi +
∑

0<i<j

bi.

Let y = (ykyk−1 · · · y0)b. Suppose that n < y ≤ bk + bk−j − 1. Then yi = ni for
k+1
2

≤ i ≤ k.
If yi 6= b− 1 for every i ∈

(

j, k+1
2

)

, then yi = b− 2 for all i ∈
(

j, k+1
2

)

, which implies y = n,
a contradiction. Therefore yi = b− 1 for some i ∈

(

j, k+1
2

)

. Then yi = yk−i and so y is not a
b-adic antipalindrome of type 3. This shows that there is no b-adic antipalindrome of type
3 in the interval

(

n, bk + bk−j − 1
]

. It is easy to check that m is a b-adic antipalindrome of
type 3 larger than n. Therefore

bk + bk−j ≤ f3(n) ≤ m.

Suppose bk + bk−j ≤ y < m. We will show that y is not a b-adic antipalindrome of type 3.
We have yi = mi for all i ∈

[

k+1
2
, k
]

. If yi = 0 for some i ∈
(

j, k+1
2

)

, then yi = yk−i and we
are done. So we can assume that yi = 1 for all i ∈

(

j, k+1
2

)

. Then yj = 0. If yi 6= 0 for every
i ∈ (0, j), then yi = 1 for all i ∈ (0, j), which implies y ≥ m, a contradiction. So yi = 0
for some i ∈ (0, j). Thus yi = yk−i and y is not a b-adic antipalindrome of type 3. This
shows that there is no b-adic antipalindrome of type 3 in the interval

[

bk + bk−j,m
)

. Hence
f3(n) = m, and the proof is complete.

Remark 23. If b = 2, then the b-adic antipalindromes of types 2 and 3 are the same. The

constants 2
√
b in Theorem 16 and 2

√
b

b−1
in Theorem 24 are also the same when b = 2. So we

do not need to give a proof of Theorem 24 when b = 2.

Theorem 24. Let b be an integer not less than 2, c = 2
√
b

b−1
, and (xn) the strictly increasing

sequence of b-adic antipalindromes of type 3 (asymmetric type). Then xn+1−xn ≤ c
√
xn for

all n ≥ b and

lim sup
n→∞

xn+1 − xn√
xn

= c.
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Proof. By Remark 23, we can assume that b ≥ 3. Unless stated otherwise, all b-adic an-
tipalindromes in this proof are of type 3. Let n be a b-adic antipalindrome represented as
n = (nknk−1 · · ·n0)b, where nk 6= 0. Let m be the smallest b-adic antipalindrome larger than
n. By listing all b-adic antipalindromes less than b3, it is straightforward to check that if
b ≤ n < b3, then m − n ≤ c

√
n. So we can assume that n ≥ b3, and so k ≥ 3. Before

proceeding further, we first give the following observation that will be used throughout the
proof:

(A1) If there exists an integer i ≤
⌊

k−1
2

⌋

such that ni 6= b − 1 and ni + 1 6= nk−i, then
m− n < c

√
n.

(A2) If there is an integer i ≤
⌊

k−1
2

⌋

such that ni ≤ b− 3, then m− n < c
√
n.

(A3) If k is odd and n k−1

2

= b− 1, then m− n < c
√
n.

To prove (A1), we only need to observe that if the condition in (A1) is satisfied, then n+ bi

is a b-adic antipalindrome, and therefore

m− n√
n

≤ bi√
n
≤ b⌊ k−1

2 ⌋
b

k
2

≤ 1√
b
< c.

Next, if the condition in (A2) is satisfied, then n + bi or n + 2bi is a b-adic antipalindrome,
and so

m− n√
n

≤ 2bi√
n
≤ 2b⌊ k−1

2 ⌋
b

k
2

≤ 2√
b
< c.

Finally, suppose that the condition in (A3) is satisfied. Then n k+1

2

6= b− 1. So n+ b
k−1

2 is a

b-adic antipalindrome. Therefore m− n ≤ b
k−1

2 ≤ √
n/

√
b < c

√
n.

We now proceed to give a proof of this theorem.

Case 1: k is odd and ni = b − 2 for all i < k−1
2
. By (A2) and (A3), we can assume that

n k−1

2

= b − 2. Then by (A1), we can further assume that ni + 1 = nk−i for all i ≤ k−1
2
.

Therefore nk−i = b− 1 for all i ≤ k−1
2
. By Lemma 22, we obtain m = bk+1 + b

k+1
2 −1
b−1

− 1. In

addition, we have n ≥ bk+1 − b
k+1

2 . Therefore

m− n√
n

=
2

b− 1

(

b
k+1

2 − 1√
n

)

<
2

b− 1

(

b
k+1

2

√

bk+1 − b
k+1

2

)

=
2

b− 1

(

1
√

1− b−
k+1

2

)

≤ 2

b− 1

(

1√
1− b−1

)

< c.
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Case 2: k is odd and ni 6= b− 2 for some i < k−1
2
. Similar to Case 1, by applying (A2) and

(A3), we can assume that n k−1

2

= b− 2 and ni ∈ {b− 2, b− 1} for all i < k−1
2
. By (A1), we

can also assume that

if i ≤ k − 1

2
and ni 6= b− 1, then ni + 1 = nk−i. (36)

So, in particular, n k+1

2

= b − 1, and for 0 ≤ i < k−1
2
, we have ni = b − 2 if and only if

nk−i = b − 1. If ni = b − 1 for all i > k+1
2
, then ni = b − 2 for all i ≤ k−1

2
, which is not

the case we are considering. So ni 6= b − 1 for some i > k+1
2
. For convenience, let i0 be the

smallest integer larger than k+1
2

such that ni0 6= b − 1 and write i0 = k − j where j < k−1
2
.

Then ni = b− 2 and nk−i = b− 1 for all i ∈
(

j, k−1
2

]

. Let y0 = b− n0 and yi = b− 1− ni for
0 < i ≤ k−1

2
. In addition, let z0 = zj = 0, zi = 1 for j < i ≤ k−1

2
, and zi = max{0, 1− nk−i}

for 0 < i < j. Then for i ∈ (0, j), we have zi ∈ {0, 1}, zi = 0 if and only if nk−i 6= 0, and
zi = 1 if and only if nk−i = 0. Let

y =
∑

0≤i≤ k−1

2

yib
i and z =

∑

0≤i≤ k−1

2

zib
i.

Then

n+ y =
∑

k−j<i≤k

nib
i + (nk−j + 1)bk−j,

n+ y + z =
∑

k−j<i≤k

nib
i + (nk−j + 1)bk−j +

∑

j<i≤ k−1

2

bi +
∑

0<i<j

zib
i.

Then n + y + z is a b-adic antipalindrome, and so m− n ≤ y + z. Since ni ∈ {b− 1, b− 2}
for all i ∈

[

0, k−1
2

]

, we see that y0 ≤ 2 and yi ≤ 1 for all i ∈
(

0, k−1
2

]

. In addition, we have
z0 = 0 and zi ≤ 1 for all i ∈

(

0, k−1
2

]

. Therefore yi + zi ≤ 2 for all i ∈
[

0, k−1
2

]

. Hence

m− n ≤ y + z ≤ 2
∑

0≤i≤ k−1

2

bi =
2

b− 1

(

b
k+1

2 − 1
)

<
2b

k+1

2

b− 1
≤ c

√
n.

Case 3: k is even and ni = b − 2 for all i < k
2
. By (A1), we can assume that nk−i = b − 1

for all i < k
2
. If n k

2

6= b− 1, then n+1+
∑

0≤i< k
2

bi is a b-adic antipalindrome, and therefore

m− n√
n

≤
1 +

∑

0≤i< k
2

bi

√
n

≤
1 + b

k
2 −1
b−1

b
k
2

<
1

b
k
2

+
1

b− 1
< c.

So we can assume that n k
2

= b− 1. Then n = bk+1 − 1− b
k
2 −1
b−1

which is in the form suitable

for the application of Lemma 22. Therefore

m = bk+1 +
b

k+2

2 − 1

b− 1
− 1,
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and so

m− n√
n

=
b

k+2

2 + b
k
2 − 2

(b− 1)
√
n

<
b

k+2

2 + b
k
2

(b− 1)
√

bk+1 − b
k
2

=

√
b+

√
b−1

(b− 1)
√

1− b−
k+2

2

≤
√
b+

√
b−1

(b− 1)
√
1− b−3

< c.

Case 4: k is even and ni 6= b − 2 for some i < k
2
. By (A1) and (A2), for all i < k

2
, we can

assume that ni ∈ {b− 2, b− 1} and that ni = b− 2 if and only if nk−i = b− 1.

Case 4.1: n k
2

6= b − 1. We will define y and z similar to those in Case 2. Let y0 = b − n0

and yi = b − 1 − ni for 0 < i < k
2
. In addition, let z0 = 0 and zi = max{0, 1 − nk−i} for

0 < i < k
2
. Then zi = 0 if and only if nk−i 6= 0, and zi = 1 if and only if nk−i = 0. Let

y =
∑

0≤i< k
2

yib
i and z =

∑

0≤i< k
2

zib
i.

Similar to Case 2, we obtain that n + y + z is a b-adic antipalindrome, and yi + zi ≤ 2 for
all i < k

2
. Therefore

m− n√
n

≤ y + z√
n

≤
2
(

b
k
2 −1
b−1

)

b
k
2

<
2

b− 1
< c.

Case 4.2: n k
2

= b − 1. Similar to Case 2, there exists i > k
2
such that ni 6= b − 1, and we

write k − j for the smallest integer larger than k
2
such that nk−j 6= b− 1 where j < k

2
. Then

ni = b−2 and nk−i = b−1 for all i ∈
(

j, k
2

)

. Let y0 = b−n0 and yi = b−1−ni for 0 < i < k
2
.

In addition, let z0 = zj = 0, zi = 1 for j < i < k
2
, and zi = max{0, 1 − nk−i} for 0 < i < j.

Then similar to Case 2, we obtain n + y + z is a b-adic antipalindrome and yi + zi ≤ 2 for
all i < k

2
. Therefore

m− n√
n

≤ y + z√
n

≤
2
(

b
k
2 −1
b−1

)

b
k
2

<
2

b− 1
< c.

From the calculation in all cases, we conclude that xn+1 − xn ≤ c
√
n for all n ≥ b. For the

limit supremum, we let n be defined as in (ii) of Lemma 22, where k ≥ 11, k is odd, and
j = ⌊k/3⌋. Then

m = f3(n) = bk + bk−j +
b

k+1

2 − bj+1

b− 1
+

bj − b

b− 1
.
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Therefore

m− n√
n

=
1√
n

(

2

b− 1

(

b
k+1

2 − bj+1
)

+
bj − b

b− 1
+ 1

)

=

2
b−1

(√
b− bj+1− k

2

)

+ 1
b−1

(

bj−
k
2 − b1−

k
2

)

+ b−
k
2

√

1 + b−j − b
1−k
2

b−1
+ bj+1−k

b−1
− b−k

,

which converges to c as k → ∞. This completes the proof.

3 Comments and questions

Let Pb be the set of all b-adic palindromes. In this paper, we determine all integers d such
that R(b; d) is infinite, where R(b; d) is defined in (5). Instead of the infinitude of R(b; d), it
is also interesting to consider an integer d satisfying R(b; d) 6= ∅. Recall that for each X ⊆ R,
we define the difference set D(X) as D(X) = {x− y | x, y ∈ X}. Then for each d ∈ N, the
set R(b; d) is not empty if and only if d ∈ D(Pb). So we propose the following questions.

Question 25. For each k ∈ N, does D(Pb) contain an arithmetic progression of length k?
Does D(Pb) have positive upper asymptotic density? That is, does

lim sup
N→∞

#(D(Pb) ∩ [−N,N ])

2N + 1
> 0 hold?

Does D(Pb) contain infinite arithmetic progressions?

Question 26. Let r(d) be the number of x, y ∈ Pb satisfying d = x−y. Is there an asymptotic
formula of

∑

|d|≤x, r(d)<∞ r(d)? For every d ∈ Z with r(d) < ∞, can we find some upper or

lower bounds for r(d)?

Let S be the set of all perfect squares. Let r be a positive integer, and let S = C1∪· · ·∪Cr.
It is unknown whether or not there exists an arithmetic progression of length 3 in Ci for some
i = 1, 2, . . . , r. We are interested in the gaps and other analogous results between squares
and palindromes. Thus we would like to consider the following question.

Question 27. For each positive integer r, if Pb = C1 ∪ · · · ∪ Cr, then does some Ci contain
an arithmetic progression of length 3? More generally, for every A ⊆ Pb with positive upper
relative density, that is

lim sup
N→∞

#(A ∩ [1, N ])

#(Pb ∩ [1, N ])
> 0,

must A contain an arithmetic progression of length 3?
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