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Abstract

We study the injectivity and noninjectivity of the function fg, where f is a polyno-

mial in a simple form and g is a popular arithmetic function such as the Euler totient

function or the sum of divisors function. We also show the connection between our

results and Mersenne primes, amicable pairs, and other integer sequences.

1 Introduction

For each n ∈ N, let ϕ(n) be the number of positive integers that are at most n and relatively
prime to n, and let σ(n) be the sum of positive divisors of n. The functions ϕ and σ are
connected with some popular topics such as Lehmer’s problem, Carmichael’s conjecture,
perfect numbers, Mersenne primes, amicable pairs, and aliquot sequences. For example, it is
easy to see that if n is a prime, then ϕ(n) = n−1. Lehmer asked whether ϕ(n) | n−1 implies
that n is a prime, but this question is still open. In addition, Carmichael’s long-standing
open conjecture on the range of ϕ states that if ϕ(x) = n, then there exists y ∈ N distinct
from x such that ϕ(y) = n too. Moreover, whether or not there are infinitely many n ∈ N
with σ(n) = 2n and whether or not there exists an odd integer n with σ(n) = 2n have been
open for a long time.

Many mathematicians including Ford [2, 3], Ford, Luca, and Pomerance [4], Ford and
Pollack [5], and Pomerance [7] have contributed to the progress of this area of research. In
particular, Ford [3] solved Sierpiński’s conjecture and partially solved Carmichael’s problem
stated above. That is, Ford showed that for each integer k ≥ 2, there exists a positive integer
n for which the equation ϕ(x) = n has exactly k solutions. Furthermore, Ford, Luca, and
Pomerance [4] completely answered Erdős’ question on the ranges of ϕ and σ by showing
that ϕ(x) = σ(y) has infinitely many solutions in x, y ∈ N. We refer the reader to the
sequences A000010 and A007617 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[9] for more information on the range of ϕ, the sequences A000396 and A000668 for perfect
numbers and Mersenne primes, and the sequences A063990, A063900, A001065, A008888,
and A098007 for amicable pairs and aliquot sequences.

It is well known that the function ϕ is not injective but the function f0 defined by
f0(n) = nϕ(n) is injective. Not every function has this property: both σ and the function
A(n) = nσ(n) are not injective. Nevertheless, we show in Examples 7 and 8 and Theorem 12
that A is injective on squarefree integers and both A and σ are related to Mersenne primes
and amicable pairs. Generally speaking, both injectivity and noninjectivity are interesting;
if an arithmetic function f is injective, we can conclude that the equation f(x) = n has at
most one solution; if f is not injective, then we may like to count the number of solutions
to f(x) = n, and study the relation between f and each solution.

In this article, we study the injectivity and noninjectivity of the product of polynomials
and arithmetic functions. We will replace nϕ(n) and nσ(n) by g(n)h(n) where g(n) is
a polynomial and h(n) is an arithmetic function. For simplicity, we focus our attention
to polynomials in a simple form such as g(n) = na or g(n) = n + c where a, c are any
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positive integers, while h(n) is a popular arithmetic function such as ϕ(n), σ(n), d(n), s(n),
ω(n), Ω(n), Sb(n), ψ(n), and Js(n), where d(n) is the number of positive divisors of n,
s(n) = σ(n) − n is the sum of proper divisors of n, ω(n) is the number of distinct prime
divisors of n, Ω(n) is the number of prime divisors of n counted with multiplicity, Sb(n) is
the sum of digits of n when n is written in base b, ψ(n) is the Dedekind function, and Js(n)
is Jordan’s totient function. The functions ψ and Js are defined by

ψ(n) = n
∏

p|n

(1 + 1
p
) and Js(n) = ns

∏

p|n

(1− 1
ps
),

where s is a positive integer. For more information about injectivity or noninjectivity of
arithmetic functions, see for example in Guy’s book [6, Section B], Pongsriiam’s recent
article [8], and the online database OEIS [9].

We organize this article as follows. In Section 2, we prove some results on injectivity of
the function gh where g is a polynomial in a simple form and h = ϕ, ψ, and Js. In Section 3,
we show the noninjectivity of gh and a connection to other problems when h = σ, s, d, ω,Ω,
and Sb. In Section 4, we study the injectivity of gh where g and h are restricted to squarefree
integers. In fact, in Sections 1–4, the function g is of the form g(n) = na, but in Section 5,
we set g(n) = n + c where c is a positive integer. We obtain in Section 5 that the function
n 7→ (n + c)ϕ(n) is not injective for infinitely many c ∈ N. We also provide some related
results in Section 6. Finally, we give a list of open questions in Section 7.

2 Results on injectivity

In this section, we show that the product of ϕ, ψ, and Js with a polynomial in a simple form
are injective. Recall that an arithmetic function f is said to be multiplicative if f(1) = 1
and f(mn) = f(m)f(n) for all m,n ∈ N with (m,n) = 1. It is well known that ϕ, σ, d,
ψ, and Js are multiplicative. The following formulas are also well known and may be used
throughout this article:

ϕ(n) = n
∏

p|n

(1− 1
p
), ψ(n) = n

∏

p|n

(1 + 1
p
), Js(n) = ns

∏

p|n

(1− 1
ps
),

d(n) =
∏

pα||n

(α + 1), σ(n) =
∏

pα||n

(1 + p+ p2 + · · ·+ pα) =
∏

pα||n

(

pα+1 − 1

p− 1

)

.

We begin our study with ϕ. Although it is well known that the function n 7→ nϕ(n) is
injective, we can extend it to the following form.

Theorem 1. For each a, b ∈ N, the arithmetic function F defined by F (n) = naϕ(n)b for

all n ∈ N is an injective function. In particular, the function f0 is injective.

Proof. To show that F is injective, let m,n ∈ N and F (m) = F (n). If m = 1, then
naϕ(n)b = F (n) = F (1) = 1, which implies n = 1. Similarly, if n = 1, then m = 1.
Therefore m = 1 if and only if n = 1. So we assume that m,n ≥ 2. Let
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m = pm1

1 pm2

2 · · · pmk

k and n = qn1

1 q
n2

2 · · · qnℓ

ℓ ,

where p1 < p2 < · · · < pk, q1 < q2 < · · · < qℓ are primes and mi, nj are positive integers for
all i, j. By the well known formula for ϕ and the fact that F (m) = F (n), we obtain

k
∏

i=1

p
ami+b(mi−1)
i

k
∏

i=1

(pi − 1)b =
ℓ
∏

i=1

q
ani+b(ni−1)
i

ℓ
∏

i=1

(qi − 1)b. (1)

For convenience, we write LHS and RHS to denote the left-hand side and the right-hand
side of (1), respectively. Suppose that pk ≥ qℓ. Since the exponent of pk in LHS is at least
2mi − 1 ≥ 1, we see that pk divides LHS. So pk divides RHS too. Since pk does not divide
qi−1 and qj for any i = 1, 2, . . . , ℓ and j = 1, 2, . . . , ℓ−1, we see that pk divides qℓ. So pk = qℓ.
Similarly, if pk ≤ qℓ, then we start with the fact that qℓ divides RHS, and so qℓ divides LHS
too, which leads to qℓ = pk. In any case pk = qℓ. Furthermore, by the unique factorization,
the exponent of pk and qℓ are the same. Therefore amk + b(mk − 1) = anℓ + b(nℓ − 1), which
implies mk = nℓ. Thus (1) reduces to

k−1
∏

i=1

p
ami+b(mi−1)
i

k−1
∏

i=1

(pi − 1)b =
ℓ−1
∏

i=1

q
ani+b(ni−1)
i

ℓ−1
∏

i=1

(qi − 1)b. (2)

We observe that (2) is obtained from (1) by the change of k to k − 1 and ℓ to ℓ − 1. So
we can use the same argument to conclude that pk−1 = qℓ−1 and mk−1 = nℓ−1. Doing this
process repeatedly, it will eventually stop. If k < ℓ, then it leads to the equation 1 = R
where R is divisible by q1, which is a contradiction. Similarly, the inequality k > ℓ is not
possible. Therefore k = ℓ. So when the process stops, we obtain k = ℓ, pi = qi, and mi = ni

for all i. Therefore m = n, as required.

Since ψ(n) and ϕ(n) are similar, we expect that the function n 7→ nψ(n) should also be
injective. Nevertheless, there is a little problem with the primes 2 and 3. So we first prove
the following lemma.

Lemma 2. For each a, b ∈ N, let F be the arithmetic function defined by F (n) = naψ(n)b

for all n ∈ N. Let m ∈ N and r, s ∈ N ∪ {0}. If F (m) = F (2r3s), then m = 2r3s.

Proof. If r = s = 0, then F (m) = F (1) = 1, which implies m = 1 = 2r3s. So assume that
r 6= 0 or s 6= 0. By the definition of F and the formula for ψ, we observe that each x, y ∈ N,
we have

F (2x) = 2xa+xb−b3b, F (3y) = 22b3ya+yb−b, and F (2x3y) = 2xa+xb+b3ya+yb. (3)

Therefore if p is a prime factor of m, then p also divides F (m) = F (2r3s), and so p ≤ 3.
Thus m = 2u3v for some nonnegative integers u and v.

Case 1: r = 0. Then s 6= 0 and F (m) = F (2r3s) = F (3s) = 22b3sa+sb−b. Suppose, by way
of contradiction, that v = 0. Then 2ua+ub−b3b = 22b3sa+sb−b, which implies that ua+ ub = 3b
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and sa + sb = 2b. Since sa + sb = 2b, we have s = 1 and a = b. Then 2ub = ua + ub = 3b
which is not possible. Thus v 6= 0. If u 6= 0, then we have that 2ua+ub+b3va+vb = 22b3sa+sb−b,
which implies b = ua+ub > b, a contradiction. So u = 0 and 22b3va+vb−b = 22b3sa+sb−b. This
implies that v = s and m = 3s = 2r3s.

Case 2: s = 0. Then r 6= 0. By using an argument similar to Case 1, one can show that
m = 2r = 2r3s.

Case 3: r 6= 0 and s 6= 0. Then F (m) = 2ra+rb+b3sa+sb. By considering (3) and
the exponents of 2 and 3 in F (m), we see that u 6= 0 and v 6= 0. This implies that
2ua+ub+b3va+vb = 2ra+rb+b3sa+sb. Then u = r, v = s, and so m = 2r3s. This completes the
proof.

Theorem 3. For each a, b ∈ N, the arithmetic function F defined by F (n) = naψ(n)b for

all n ∈ N is an injective function.

Proof. To show that F is injective, let m,n ∈ N and F (m) = F (n). It is easy to see that
m = 1 if and only if n = 1. So we assume that m,n ≥ 2. Let

m = pm1

1 pm2

2 · · · pmk

k and n = qn1

1 q
n2

2 · · · qnℓ

ℓ ,

where p1 < p2 < · · · < pk, q1 < q2 < · · · < qℓ are primes and mi, nj are positive integers for
all i, j. Since F (m) = F (n), we obtain

k
∏

i=1

p
ami+b(mi−1)
i

k
∏

i=1

(pi + 1)b =
ℓ
∏

i=1

q
ani+b(ni−1)
i

ℓ
∏

i=1

(qi + 1)b. (4)

For simplicity, we write LHS and RHS to denote the left-hand side and the right-hand side
of (4), respectively. If pk ≤ 3, then Lemma 2 implies that m = n. So assume that pk > 3.
Suppose that pk ≥ qℓ. Since the exponent of pk in LHS is at least 2mk − 1 ≥ 1, we see that
pk divides LHS. So pk divides RHS too. Since pk > 3, we see that pk does not divide qi + 1
and qj for any i = 1, 2, . . . , ℓ and j = 1, 2, . . . , ℓ − 1. Then pk divides qℓ, and so pk = qℓ.
Similarly, if pk ≤ qℓ, then we start with the fact that qℓ divides RHS, and so qℓ divides LHS
too, which leads to qℓ = pk. In any case pk = qℓ. Furthermore, by the unique factorization,
the exponent of pk and qℓ are the same. Therefore amk + b(mk − 1) = anℓ + b(nℓ − 1), which
implies mk = nℓ. Thus (4) reduces to

k−1
∏

i=1

p
ami+b(mi−1)
i

k−1
∏

i=1

(pi + 1)b =
ℓ−1
∏

i=1

q
ani+b(ni−1)
i

ℓ−1
∏

i=1

(qi + 1)b. (5)

We observe that (5) is obtained from (4) by the change of k to k − 1 and ℓ to ℓ − 1. If
pk−1 ≤ 3, then we apply Lemma 2 to obtain m = n. If pk−1 > 3, then we repeat the above
process and reduce (5) by the change of k− 1 to k− 2 and ℓ− 1 to ℓ− 2. By repeating this
process, we eventually obtain m = n. This completes the proof.
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Similar result also holds when the function ϕ is replaced by J2 as shown below.

Lemma 4. For each a, b ∈ N, let F be the arithmetic function defined by F (n) = naJ2(n)
b

for all n ∈ N. Let m ∈ N and r, s ∈ N ∪ {0}. If F (m) = F (2r3s), then m = 2r3s.

Proof. Since this lemma can be proved in the same way as Lemma 2, we skip some details.
If r = s = 0, then m = 2r3s. So assume that r 6= 0 or s 6= 0. If p is a prime factor of m, then
p also divides F (m) = F (2r3s), and so p ≤ 3. Thus m = 2u3v for some nonnegative integers
u and v.

First, assume that r = 0. Then s 6= 0 and F (m) = 23b3sa+2sb−2b. If v = 0, then
2ua+2ub−2b3b = F (m) = 23b3sa+2sb−2b, which implies that ua + 2ub = 5b and sa + 2sb = 3b.
Since sa+2sb = 3b, we have that s = 1 and a = b. Then 3ub = ua+2ub = 5b, a contradiction.
Thus v 6= 0. From this point, we can still consider the exponents of 2 and 3 like the proof of
Lemma 2 to obtain m = n. For the cases s = 0 or (r 6= 0 and s 6= 0), we can also compare
the exponents of 2 and 3 to obtain the desired result. So the proof is completed.

Next, we show that for certain a, b ∈ N, the function n 7→ naJs(n)
b is injective. When

s = 2, we can use any positive integers a, b as follows.

Theorem 5. For each a, b ∈ N, the arithmetic function F defined by F (n) = naJ2(n)
b for

all n ∈ N is injective.

Proof. Since the proof of this theorem follows the same argument as in Theorem 3, we skip
some details. Let m,n ∈ N and F (m) = F (n). It is easy to see that m = 1 if and only if
n = 1. So we assume that m,n ≥ 2. Let

m = pm1

1 pm2

2 · · · pmk

k and n = qn1

1 q
n2

2 · · · qnℓ

ℓ ,

where p1 < p2 < · · · < pk, q1 < q2 < · · · < qℓ are primes and mi, nj are positive integers for
all i, j. Then

k
∏

i=1

p
ami+2b(mi−1)
i

k
∏

i=1

(p2i − 1)b =
ℓ
∏

i=1

q
ani+2b(ni−1)
i

ℓ
∏

i=1

(q2i − 1)b. (6)

For convenience, we write LHS and RHS to denote the left-hand side and the right-hand side
of (6), respectively. If pk ≤ 3, then Lemma 4 implies that m = n. So assume that pk > 3.
Suppose that pk ≥ qℓ. Since the exponent of pk in LHS is at least 3mi − 2 ≥ 1, we see that
pk divides LHS. So pk divides RHS too. Since pk does not divide qi − 1, qi + 1, and qj for
any i = 1, 2, . . . , ℓ and j = 1, 2, . . . , ℓ− 1, we see that pk divides qℓ. So pk = qℓ. Similarly, if
pk ≤ qℓ, then this leads to pk = qℓ and mk = nℓ. Thus (6) reduces to

k−1
∏

i=1

p
ami+2b(mi−1)
i

k−1
∏

i=1

(p2i − 1)b =
ℓ−1
∏

i=1

q
ani+2b(ni−1)
i

ℓ−1
∏

i=1

(q2i − 1)b. (7)

We observe that (7) is obtained from (6) by the change of k to k − 1 and ℓ to ℓ− 1. So
we can repeat this process like the proof of Theorem 3 to obtain m = n, as required.
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When s ≥ 3, it seems that the function n 7→ naJs(n)
b is injective for any a, b ∈ N, but

we do not have a proof. In the following theorem, we need to restrict ourselves to the case
a ≥ sb, but we hope to solve the case a < sb in the future. Please see also our comments
and the list of other problems in Section 7.

Theorem 6. For each a, b, s ∈ N, if a ≥ sb, then the arithmetic function F defined by

F (n) = naJs(n)
b for all n ∈ N is injective.

Proof. For each n ∈ N, let Pn be the set of all prime factors of n. Let a, b, s ∈ N and a ≥ sb.
We remark that we do not need to use the inequality a ≥ sb until the calculation in (10). To
show that F is injective, let m,n ∈ N and F (m) = F (n). It is easy to see that m = 1 if and
only if n = 1. So we assume that m,n ≥ 2. We will first show that Pm = Pn. So suppose,
by way of contradiction, that Pm 6= Pn.

Case 1: Pm ⊆ Pn and Pn * Pm. Let

m = pm1

1 pm2

2 · · · pmk

k and n = pn1

1 p
n2

2 · · · pnk

k q
nk+1

1 q
nk+2

2 · · · q
nk+ℓ

ℓ ,

where p1 < p2 < · · · < pk and q1 < q2 < · · · < qℓ are primes, k, ℓ ≥ 1, pi 6= qj, and mi, nj

are positive integers for all i, j. After dividing both sides of the equation F (m) = F (n) by
k
∏

i=1

(psi − 1)b, we obtain

k
∏

i=1

p
ami+sb(mi−1)
i =

k
∏

i=1

p
ani+sb(ni−1)
i

ℓ
∏

i=1

q
ank+i+sb(nk+i−1)
i

ℓ
∏

i=1

(qsi − 1)b. (8)

Then q1 divides the right-hand side of (8) but does not divide the left-hand side. So this
case leads to a contradiction.

Case 2: Pn ⊆ Pm and Pm * Pn. Similar to Case 1, this leads to a contradiction.

Case 3: Pm * Pn and Pn * Pm. Let

m = pm1

1 pm2

2 · · · pmk

k

(

t
∏

i=1

wui

i

)

and n = qn1

1 q
n2

2 · · · qnℓ

ℓ

(

t
∏

i=1

wvi
i

)

,

where p1 < p2 < · · · < pk, q1 < q2 < · · · < qℓ, and w1 < w2 < · · · < wt are primes, pi, qj , wx

are distinct for all i, j, x, and mi, nj , ux, vy are positive integers for all i, j, x, y. In addition,
if Pm ∩ Pn = ∅, then we take t = 0 and define the empty product to be 1 as usual; if
Pm ∩ Pn 6= ∅, then t ≥ 1. By the fact that F (m) = F (n), we obtain

t
∏

i=1

w
aui+sb(ui−1)
i

k
∏

i=1

p
ami+sb(mi−1)
i

k
∏

i=1

(psi − 1)b =
t

∏

i=1

w
avi+sb(vi−1)
i

ℓ
∏

i=1

q
ani+sb(ni−1)
i

ℓ
∏

i=1

(qsi − 1)b.

(9)
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Let L1 =
∏k

i=1 p
ami+sb(mi−1)
i , L2 =

∏k

i=1(p
s
i − 1)b, R1 =

∏ℓ

i=1 q
ani+sb(ni−1)
i , and

R2 =
∏ℓ

i=1(q
s
i − 1)b. Since pi, qj, and wx are all distinct, (9) implies that L1|R2 and R1|L2.

Recall that a ≥ sb. Then

L1 ≤ R2 <

ℓ
∏

i=1

qsbi ≤ R1 ≤ L2 <

k
∏

i=1

psbi ≤ L1, (10)

which is a contradiction.
Therefore we can conclude that Pm = Pn. Let

m = pm1

1 pm2

2 · · · pmk

k and n = pn1

1 p
n2

2 · · · pnk

k ,

where p1 < p2 < · · · < pk are primes and mi, nj are positive integers for all i, j. By the fact
that F (m) = F (n), we obtain

k
∏

i=1

p
ami+sb(mi−1)
i =

k
∏

i=1

p
ani+sb(ni−1)
i .

By the unique factorization, we obtain mi = ni for all i, and so m = n, as required.

3 Noninjectivity and a connection with other concepts

Not every arithmetic function has the property like ϕ, ψ, and Js. In this section, we give
various examples to show that if we replace ϕ by other arithmetic functions f , the function
n 7→ nf(n) may not be injective. We also give some connections to other problems such
as the existence or nonexistence of infinitely many Mersenne primes, amicable pairs, and
primitive solutions to certain equations.

Example 7. Let A(n) = nσ(n) for all n ∈ N. A straightforward calculation shows that
A(12) = A(14) = 24 · 3 · 7, and so A is not injective. In fact, we can generate infinitely many
x, y ∈ N such that A(x) = A(y) using the equality A(12) = A(14). Let x = 12d and y = 14d
where (d, 42) = 1. It is easy to see that A is multiplicative and (d, 14) = (d, 12) = 1, and
so A(x) = A(12d) = A(12)A(d) = A(14)A(d) = A(14d) = A(y). Since there are infinitely
many d ∈ N with (d, 42) = 1, we obtain infinitely many x, y ∈ N such that A(x) = A(y)
too. From this, it is easy to see that if we can find another pair of integers x0, y0 such
that A(x0) = A(y0), then we can generate infinitely many such pairs by following the above
method.

Moser [6, p. 102] asked whether there is an infinite number of primitive solutions to
the equation A(x) = A(y), that is, the integers x, y ≥ 1 such that A(x) = A(y) and
A(x/d) 6= A(y/d) for any common divisor d > 1 of x and y. A conditional answer is known:
if 2p− 1 and 2q − 1 are distinct Mersenne primes, then x = 2p−1(2q − 1) and y = 2q−1(2p− 1)
is a primitive solution to A(x) = A(y). To see this, recall that if 2n − 1 is a prime, then n
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is a prime too. Therefore we have p, q, 2p − 1, 2q − 1 are primes. Without loss of generality,
assume that p > q. Then

A(x) = 2p−1(2q − 1)σ(2p−1)σ(2q − 1)

= 2p−1(2q − 1)(2p − 1)(2q)

= 2p+q−1(2p − 1)(2q − 1).

By a similar calculation, we see that A(y) = A(x). Since 2p − 1 and 2q − 1 are distinct odd
primes, the greatest common divisor of x and y is 2q−1. So if d > 1, d | x, and d | y, then
d = 2ℓ for some ℓ = 1, 2, . . . , q − 1. By a similar calculation, we obtain

A
(x

d

)

= 2p+q−ℓ−1(2p−ℓ − 1)(2q − 1) and A
(y

d

)

= 2p+q−ℓ−1(2q−ℓ − 1)(2p − 1).

From this, we see that 2p − 1 divides A(y
d
) but does not divide A(x

d
). So A(x

d
) 6= A(y

d
). This

shows that x, y is indeed a primitive solution to the equation A(x) = A(y). Nevertheless,
since we do not know whether or not there are infinitely many Mersenne primes, this is
only a conditional solution to Moser’s problem. Without restricting to primitive solutions,
Erdős [1] showed that the number of m,n ∈ N satisfying m < n < x and mσ(m) = nσ(n)
is asymptotic to cx as x → ∞, where c is a positive constant. For more information on the
equation A(x) = A(y), we refer the reader to Guy’s book [6, Section B11]. The sequence
(A(n))n≥1 is registered in the OEIS as the sequence A064987. Moreover, the sequence of
n ∈ N such that A(x) = n has more than one solution is A337873 in the OEIS. Some such
integers n and distinct x1, x2 such that A(x1) = A(x2) = n are shown in Table 2. We remark
that n and x2 in our table are not listed in an increasing order, but the integer x1 is listed
in an increasing order. The reader can also find more related information in the sequence
A212490 and our comments in Section 7.

Example 8. Let s(n) = σ(n) − n be the sum of proper positive divisors of n and let
B(n) = ns(n) for all n ∈ N. It is not difficult to check that s(6) = 6 and s(9) = 4, and so
B(6) = B(9). So B is not injective. In general, if x, y ∈ N, s(x) = y, and s(y) = x, then
we have B(x) = B(y). For example, since s(220) = 284 and s(284) = 220, we have that
B(220) = 220 · 284 = B(284). A pair (x, y) satisfying s(x) = y and s(y) = x is called an
amicable pair, and mathematicians have found millions such pairs. It is not known whether
there are infinitely many amicable pairs, but it is believed that there are. If this is true, then
B(x) = B(y) for an infinite number of x, y. For more information on amicable pairs and
related concept, we refer the reader to Guy’s book [6, Sections B4–B8] and the sequences
A063990, A002025, and A002046 in the OEIS [9]. We remark that A063990 gives the list of
amicable numbers in an increasing order, but the adjacent numbers are not necessarily the
amicable pairs (x, y). The sequences A002025 and A002046 give the list of x and y in the
amicable pairs, respectively. The sequence that gives amicable pairs in an increasing order
is A259180 in the OEIS. Moreover, the sequence of n ∈ N such that B(x) = n has more than
one solution is also registered in the OEIS as the sequence A212327. Some values of such n
and distinct x1, x2 ∈ N such that B(x1) = B(x2) = n are shown in Table 1.
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Example 9. Let D(n) = nd(n) for all n ∈ N, where d(n) is the number of positive divisors
of n. Let x = 18a and y = 27a where a ∈ N and (a, 6) = 1. Since D(18) = 108 = D(27)
and D is multiplicative, we obtain D(x) = D(18)D(a) = D(27)D(a) = D(y). So it may be
more interesting to consider only the primitive solutions to the equation D(x) = D(y) where
the primitive solutions are defined in a similar way as in Example 7. We leave this problem
to the interested reader. The sequence (D(n))n≥1 is A038040 in the OEIS. The sequence of
n ∈ N such that D(x) = n has more than one solution is the sequence A338382 in the OEIS.
Some values of such integers n, and x1, x2 such that D(x1) = D(x2) = n are shown in Table
3.

Example 10. Let W1(n) = nω(n) and W2(n) = nΩ(n) for all n ∈ N. Let x = 30 · 5k and
y = 45 ·5k where k ∈ N. Then W1(x) = 30 ·5k ·3 = 45 ·5k ·2 = W1(y). So W1 is not injective.
In general, if W1(m) = W1(n) and (m,n) > 1, then we can generate infinitely many x, y ∈ N
such that W1(x) = W1(y), namely, x = m · pk and y = n · pk where k is any positive integer
and p is any prime divisor of (m,n). For W2, we observe that if p is any odd prime, then
W2(16p) = (16p)(5) = (20p)(4) = W2(20p). So W2 is not injective and there are infinitely
many m,n ∈ N such that W2(m) = W2(n). Some values of n ∈ N such that W1(x) = n or
W2(y) = n have more than one solution are shown in Table 4 and Table 5, respectively.

Example 11. For each positive integer b ≥ 2, let Sb(n) be the sum of digits of n when n is
written in base b, and let Hb(n) = nSb(n) for all n ∈ N. If b = 2, then it is easy to see that
H2(22) = 66 = H2(33). For b > 2, we have

Hb(b
3+1) = 2(b3+1) = (b2+(b− 2)b+2)(b+1) = Hb(b

2+(b− 2)b+2) = Hb(2(b
2− b+1)),

and b3+1 6= 2(b2− b+1). So Hb is not injective for any b ≥ 2. In general, if Hb(m) = Hb(n),
then there are infinitely many x, y ∈ N satisfying the equation Hb(x) = Hb(y), namely,
x = btm and y = btn where t is an arbitrary positive integer. Some values of n ∈ N such
that H10(x) = n has more than one solution are shown in Table 6.

4 Restricted injectivity

Since the functions defined in Example 7 to Example 11 are not injective on N, it is natural
to consider the injectivity of these functions on other infinite proper subsets of N. In 1959,
Erdős [1] observed that although the function n 7→ nσ(n) is not injective on N, it is injective
on the set of squarefree integers. In fact, Erdős’ observation is a special case of the next
theorem.

Theorem 12. For each a, b ∈ N, let F be defined by F (n) = naσ(n)b for all n ∈ N. Then F is

injective on squarefree integers. That is, if m,n ∈ N are squarefree and maσ(m)b = naσ(n)b,
then m = n. In particular, the function A in Example 7 is injective on squarefree integers.

Proof. If m and n are squarefree, then maσ(m)b = maψ(m)b and naσ(n)b = naψ(n)b. So
the assumption that maσ(m)b = naσ(n)b implies maψ(m)b = naψ(n)b, and so m = n by
Theorem 3.
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We remark that the integer a in Theorem 12 cannot be zero since σ is not injective on
squarefree integers. For instance, we have σ(6) = σ(11) and 6, 11 are squarefree. However,
if we replace σ by d in Theorem 12, the resulting function is also injective on squarefree
integers.

Theorem 13. For each a, b ∈ N, let F be defined by F (n) = nad(n)b for all n ∈ N. Then

F is injective on squarefree integers. In particular, the function D, defined in Example 9, is

injective on the set of squarefree integers.

Proof. Let m,n ∈ N be squarefree and F (m) = F (n). It is easy to see that m = 1 if and

only if n = 1, so we assume that m,n > 1. Let m =
k
∏

i=1

pi and n =
ℓ
∏

i=1

qi, where p1, p2, . . . , pk

and q1, q2, . . . , qℓ are distinct primes. Then we have

2kb
k
∏

i=1

pai = 2ℓb
ℓ
∏

i=1

qai . (11)

We denote the left-hand side and the right-hand side of (11) by LHS and RHS, respectively.
If k ≥ ℓ + 1, then after dividing both sides of (11) by 2ℓb, LHS has at least k distinct
prime factors while RHS has ℓ ≤ k − 1 distinct prime factors, a contradiction. Similarly,
the inequality ℓ > k leads to a contradiction. So k = ℓ, and (11) reduces to m = n, as
required.

Not every arithmetic function has the property like σ and d in Theorems 12 and 13. This
is shown in the following examples.

Example 14. Let B, W1, W2, and Hb be the functions defined in Example 8, 10, and 11.
We show that these functions are not injective on the set of squarefree integers. For the
function B, we have 1955 and 2093 are squarefree, but

B(1955) = 1955s(1955) = 1955 · 637 = 2093 · 595 = 2093s(2093) = B(2093).

For W1 and W2, let p1, p2, . . . , p9 be distinct primes and (2, pi) = (5, pi) = (11, pi) = 1 for
all 1 ≤ i ≤ 9. Let

a = 11
9
∏

i=1

pi and b = 10
9
∏

i=1

pi.

Then W1(a) = W1(b) = W2(a) = W2(b). Therefore W1 and W2 are not injective on the set
of squarefree integers.

It is shown in Example 11 that H2 is not injective on the set of squarefree integers.
Moreover, we have

H3(51) = 255 = H3(85), H4(26) = 130 = H4(65), H5(21) = 105 = H5(35),
H6(26) = 156 = H6(39), H7(55) = 385 = H7(77), H8(26) = 130 = H8(65),

H9(15) = 105 = H9(21), and H10(15) = 90 = H10(30).
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So Hb is not injective on squarefree integers for 2 ≤ b ≤ 10. One can use a computer to
verify that Hb is not injective for other values of b too. We believe that Hb is not injective
for any b ≥ 11 but we do not have a proof.

Some products of a polynomial and two arithmetic functions are also injective on the set
of squarefree integers. This can be proved by applying our theorems as follows.

Corollary 15. For each a, b ∈ N, the functions F1 and F2 defined by

F1(n) = naσ(n)bϕ(n)b and F2(n) = naσ(n)bψ(n)b for all n ∈ N

are injective on the set of squarefree integers.

Proof. Let n ∈ N be squarefree. We observe that σ(n) = ψ(n) and it is easy to see that
ψ(n)ϕ(n) = J2(n). So F1(n) = naJ2(n)

b and F2(n) = naψ(n)2b. Therefore F1 and F2 are
injective on the set of squarefree integers by Theorems 5 and 3, respectively.

We remark that F1 and F2 are not injective on N. For example, when a = b = 1, we have
F1(56) = F1(60) and F2(12) = F2(14).

5 Other results on noninjectivity

In this section, we study the product of a different simple polynomial and ϕ. So for each
nonnegative integer c, let fc be the arithmetic function given by

fc(n) = (n+ c)ϕ(n) for all n ∈ N.

Although f0 is injective, we believe that fc is not injective for any c ≥ 1, and we will provide
some supporting evidence. If c is fixed and is given explicitly, we can always use a computer
to search for distinct positive integers a, b such that fc(a) = fc(b). For each c = 1, 2, 3,
Tables 7, 8 and 9 show distinct positive integers x1, x2 ≤ 2000 such that fc(x1) = fc(x2).
Therefore we immediately see that f1, f2, f3 are not injective. However, this only gives us a
small number of c for which fc is not injective.

In what follows, we will develop a tool and use it together with Table 7 to generate an
infinite number of c such that fc is not injective, and then use the results that we obtain to
show that fc is not injective for any positive integer c ≤ 1000, and that there are at least 98
percent of c ≤ N such that fc is not injective when N is any large positive integer. To do
so, we define for each c, n ∈ N, the product

α(c, n) =
∏

p|c and p∤n

(

1−
1

p

)

where the product is taken over all primes p that are a factor of c and do not divide n. As
usual, the empty product is defined to be 1. So if c = 1 or every prime divisor of c is a
divisor of n, then α(c, n) = 1.

The following lemmas are simple but they are the key to the construction of an infinite
number of c ∈ N such that fc is not injective.
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Lemma 16. Let c and n be positive integers. Then the following statements hold.

(i) ϕ(cn) = cϕ(n)α(c, n).

(ii) ϕ(cn) = cϕ(n) if and only if c = 1 or every prime divisor of c is a divisor of n.

Proof. For (i), we apply the well known formula to obtain

ϕ(cn)

ϕ(n)
=
cn

∏

p|cn(1−
1
p
)

n
∏

p|n(1−
1
p
)

= cα(c, n),

which implies (i). Then (ii) follows immediately from (i).

Lemma 17. The value of the finite product of the form
∏

p

(1− 1
p
)ap uniquely determines the

set of primes in the product. More precisely, if p1 < p2 < · · · < pm and q1 < q2 < · · · < qk
are primes, a1, a2, . . . , am, b1, b2, . . . , bk are positive integers, and

m
∏

i=1

(

1−
1

pi

)ai

=
k
∏

i=1

(

1−
1

qi

)bi

, (12)

then m = k, pi = qi, and ai = bi for every i = 1, 2, . . . ,m.

Proof. The idea of proof is the same as that of Theorem 1. The equality (12) leads to

k
∏

i=1

qbii

m
∏

i=1

(pi − 1)ai =
m
∏

i=1

paii

k
∏

i=1

(qi − 1)bi . (13)

Let LHS and RHS denote the left-hand side and the right-hand side of (13). If qk ≥ pm,
then we start with LHS, which is divisible by qk, and so qk | RHS, which implies qk = pm.
Similarly, if pm ≥ qk, then we start with pm | RHS, which eventually leads to pm = qk.
By the unique factorization, the exponents of pm and qk are also equal, that is, am = bk.
Therefore (13) reduces to an equation that is similar to (13) but k becomes k − 1 and m
becomes m − 1. So we can repeat this process like the proof of Theorem 1 to obtain the
desired result.

Lemma 18. Let a, b, c be positive integers and ϕ(a) = ϕ(b). Then the following statements

are equivalent.

(i) ϕ(ca) = ϕ(cb).

(ii) α(c, a) = α(c, b).

(iii) {p ∈ N : p is prime, p | c, and p ∤ a}={p ∈ N : p is prime, p | c, and p ∤ b}.

(iv) {p ∈ N : p is prime, p | c, and p | a}={p ∈ N : p is prime, p | c, and p | b}.
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Proof. By Lemma 16, we see that (i) and (ii) are equivalent. Lemma 17 implies that (ii) and
(iii) are equivalent. Clearly, the sets in (iv) are the complement of the corresponding sets
in (iii) with respect to the set of prime divisors of c. So (iii) and (iv) are equivalent. This
completes the proof.

Lemma 19. Let a, b, c, d be positive integers. Then the following statements hold.

(i) If d | c and f c
d
(a) = f c

d
(b), then fc(da) = fc(db) if and only if α(d, a) = α(d, b).

(ii) If f1(a) = f1(b), then fc(ca) = fc(cb) if and only if α(c, a) = α(c, b).

(iii) If f1(a) = f1(b) and (c, ab) = 1, then fc(ca) = fc(cb).

Proof. For (i), suppose that d | c and f c
d
(a) = f c

d
(b). By Lemma 16, we obtain

fc(da) = (da+ c)ϕ(da) = d2
(

a+
c

d

)

ϕ(a)α(d, a) = d2f c
d
(a)α(d, a).

Similarly, we have fc(db) = d2f c
d
(b)α(d, b). From this, we immediately obtain (i). Then (ii)

follows from (i) by the substitution d = c. In addition, if (c, ab) = 1, then α(c, a) = α(c, b),
and so (iii) follows from (ii). This completes the proof.

We are now ready to show that there are infinitely many c ∈ N such that fc is not
injective.

Theorem 20. Let c be a positive integer. Then the following statements hold.

(i) If (c, 130) = 1, then fc is not injective.

(ii) If the set of prime divisors of c is a subset of {2, 5, 13}, then fc is not injective.

(iii) If c = pk where p is a prime and k is a positive integer, then fc is not injective.

Proof. For (i), let (c, 130) = 1. Let a = 13 and b = 20. From Table 1, we know that
f1(a) = f1(b) = 168. Since (c, ab) = 1, we obtain by Lemma 19 that fc(ca) = fc(cb). So fc
is not injective, and so (i) is proved.

For (ii), let c = 2c15c213c3 where c1, c2, c3 are nonnegative integers. Let a = 649 and
b = 753. We know from Table 1 that f1(a) = f1(b) = 377000 and (c, ab) = 1. By Lemma 19,
we obtain fc(ca) = fc(cb), and so fc is not injective.

For (iii), let c = pk where p is a prime and k is a positive integer. If p /∈ {2, 5, 13}, then
the result follows from (i). If p ∈ {2, 5, 13}, then the result can be obtained from (ii). So the
proof is complete.

By a similar method, we can generate more c ∈ N such that fc is not injective. We give
one more similar theorem and then use it to show that fc is not injective for any positive
integers c ≤ 1000. We remark that the integers 2, 157, 443, 17, 47, . . . , 331 appearing in the
statement of the next theorem are prime numbers.
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Theorem 21. Let c be a positive integer. Then the following statements hold.

(i) If (c, 2) = (c, 157) = (c, 443) = 1, then fc is not injective.

(ii) If (c, 2) = (c, 17) = (c, 47) = 1, then fc is not injective.

(iii) If (c, 13) = (c, 71) = (c, 881) = 1, then fc is not injective.

(iv) If (c, 2) = (c, 23) = 1, then fc is not injective.

(v) If (c, 5) = (c, 61) = (c, 271) = 1, then fc is not injective.

(vi) If (c, 3) = (c, 13) = (c, 31) = 1, then fc is not injective.

(vii) If (c, 5) = (c, 37) = (c, 41) = (c, 331) = 1, then fc is not injective.

Proof. The proof of this theorem is similar to that of Theorem 20. We only need to
choose an appropriate choice of a, b ∈ N. For (i), we choose a = 443 and b = 628
to obtain from Table 7 and Lemma 19 that f1(a) = f1(b) = 196248, (c, ab) = 1, and
fc(ca) = fc(cb). In the same way, for (ii), (iii), (iv), (v), (vi), and (vii), we choose
(a, b) = (47, 68), (881, 923), (23, 32), (271, 305), (31, 39), and (1517, 1655), respectively, to
obtain that fc(ca) = fc(cb). This completes the proof.

Corollary 22. For each positive integer c ≤ 1000, the function fc is not injective.

Proof. Let 1 ≤ c ≤ 1000 be a positive integer. If c is odd and is divisible by neither 157 nor
443, then the result follows from Theorem 21(i). Suppose c is odd and is divisible by 157 or
443. Since c ≤ 1000, the possible values of c are c = 157, 157 · 3, 157 · 5, 443. If c 6= 157 · 5,
then (c, 130) = 1 and the result follows from Theorem 20(i). If c = 157 ·5, we apply Theorem
21(ii) to obtain the desired result.

Therefore it remains to consider the case that c is even. Let c = 2kd where k ≥ 1 and d
is odd. If (d, 13) = (d, 71) = d(881) = 1, then the result follows from Theorem 21(iii). So
we only need to consider the case that 13 | d, 71 | d, or 881 | d. Since c ≤ 1000, we see that
d ≤ 500. So 881 | d is not possible.

Case 1: 71 | d. Then d = 71, 71 · 3, 71 · 5, 71 · 7. If d 6= 71 · 5, then the result can be obtained
from Theorem 21(v). If d = 71 · 5, then we apply Theorem 21(vi) to obtain the desired
result.

Case 2: 13 | d. Then d = 13, 13 · 3, 13 · 5, . . . , 13 · 37. If d 6= 13 · 5, 13 · 15, 13 · 25, 13 · 35,
then we use Theorem 21(v); if d = 13 · 5, 13 · 25, then we apply Theorem 20(ii) to obtain the
desired result. So it remains to consider the case d = 13 · 15 or d = 13 · 35.

Suppose d = 13 ·35. Then we use Table 8 to solve it as follows. Let a = 173 and b = 213.
Then f2(a) = f2(b). Since d = 13 · 35, we have c = 2k · 5 · 7 · 13. Since c ≤ 1000, we have

k = 1 and c = 2 · 5 · 7 · 13. Then
( c

2
, a
)

=
( c

2
, b
)

= 1 and

fc

( c

2
a
)

=
( c

2
a+ c

)

ϕ
( c

2
a
)

=
c

2
(a+ 2)ϕ

( c

2

)

ϕ(a) =
c

2
ϕ
( c

2

)

f2(a).
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Similarly, we have fc

( c

2
b
)

=
c

2
ϕ
( c

2

)

f2(b), and so fc

( c

2
a
)

= fc

( c

2
b
)

. This shows that fc

is not injective.
Finally, let d = 13 · 15. Then c = 2k · 3 · 5 · 13 where k = 1, 2. We first consider the case

k = 1. Let a = 391 = 17·23 and b = 526 = 2·263. From Table 8, we know that f2(a) = f2(b).

In addition, we have
( c

2
, a
)

=
( c

2
, b
)

= 1, and by the same calculation as above, we obtain

fc

( c

2
a
)

= fc

( c

2
b
)

, as desired. Next, let k = 2. Let a = 301 = 7 · 43 and b = 339 = 3 · 113.

By Table 9, we have f3(a) = f3(b). In addition, the equality
( c

3
, a
)

=
( c

3
, b
)

= 1 also holds.

Therefore
fc

( c

3
a
)

=
c

3
ϕ
( c

3

)

f3(a) =
c

3
ϕ
( c

3

)

f3(b) = fc

( c

3
b
)

.

Hence fc is not injective, as required. This completes the proof.

Finally, we show that there are at least 98 percent of positive integers c ≤ N such that
fc is not injective for every large positive integer N .

Theorem 23. For each N ∈ N, let A = A(N) be the set of all positive integers c ≤ N such

that fc is not injective. Then

|A(N)| ≥ (0.981728)N +O(1).

Proof. For each d ∈ N, let Ad = Ad(N) be the set of all positive integers c ≤ N such that
(c, d) = 1. Let

B1 = A5 ∩ A61 ∩ A271, B2 = A13 ∩ A71 ∩ A881, B3 = A5 ∩ A37 ∩ A41 ∩ A331.

Therefore B1, B2, and B3 are the set of positive integers c ≤ N satisfying conditions (v), (iii),
and (vii) in Theorem 21, respectively. Therefore B1∪B2∪B3 ⊆ A. By the inclusion-exclusion
principle, we obtain

|A| ≥ |B1|+ |B2|+ |B3| − |B1 ∩ B2| − |B1 ∩ B3| − |B2 ∩B3|+ |B1 ∩ B2 ∩ B3|. (14)

Let N be a large positive integer. Each block of integers

[1, d], (d, 2d] , (2d, 3d] , . . . , ((k − 1)d, kd] ,

where k = ⌊N/d⌋, contains exactly ϕ(d) integers c such that (c, d) = 1. Therefore

Ad =
∑

c≤N
(c,d)=1

1 = ϕ(d)

⌊

N

d

⌋

+ rd,

where 0 ≤ rd < d. Thus

Ad ≥
ϕ(d)

d
N +Od(1), (15)
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where the implied constant depends at most on d but not on N .
We also observe that Ad1 ∩ Ad2 = Ad1d2 . Therefore B1 = Ax, B2 = Ay, B3 = Az, and

B1 ∩B2 ∩B3 = Axyz, where x = 5 · 61 · 271, y = 13 · 71 · 881, and z = 5 · 37 · 41 · 331. By (14)
and (15), we obtain

|A| ≥

(

ϕ(x)

x
+
ϕ(y)

y
+
ϕ(z)

z
−
ϕ(xy)

xy
−
ϕ(xz)

xz
−
ϕ(yz)

yz
+
ϕ(xyz)

xyz

)

N +O(1), (16)

where the implied constant depends at most on x, y, z but not on N . We have

ϕ(x)

x
=

∏

p|x

(

1−
1

p

)

=

(

1−
1

5

)(

1−
1

61

)(

1−
1

271

)

≥ 0.783981,

ϕ(y)

y
=

∏

p|y

(

1−
1

p

)

=

(

1−
1

13

)(

1−
1

71

)(

1−
1

881

)

≥ 0.909042.

Similarly, we also have

ϕ(z)

z
≥ 0.757099,

ϕ(xy)

xy
≤ 0.712673,

ϕ(xz)

xz
≤ 0.741940,

ϕ(yz)

yz
≤ 0.688236, and

ϕ(xyz)

xyz
≥ 0.674455.

Applying these estimates in (16), we obtain the desired result. This completes the proof.

6 Notes on some related results

We also obtain a result that looks interesting and seem to be related to the Euler function.
We record it here for a possibility of future reference. We observe that

1

2
= 1−

1

2
,

1

3
=

1

2

(

1−
1

3

)

=

(

1−
1

2

)(

1−
1

3

)

,

1

4
=

(

1

2

)2

=

(

1−
1

2

)2

,
1

5
=

1

4

(

1−
1

5

)

=

(

1−
1

2

)2 (

1−
1

5

)

, and so on.

In general, we have the following result.

Theorem 24. For each integer n ≥ 2, there exists a unique set of primes p1 > p2 > · · · > pk
and positive integers a1, a2, . . . , ak such that

1

n
=

k
∏

i=1

(

1−
1

pi

)ai

. (17)
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Proof. We call the product in the form of the right-hand side of (17) a good form, and we
observe that if 1/a and 1/b are written in a good form, then 1/ab = (1/a)(1/b) can also be
written in a good form. We use this observation and a strong induction on n to prove this
theorem. It is easy to check that the result holds when n = 2. So assume that n ≥ 3 and
the result holds for 2, 3, . . . , n− 1. If n is a prime, then we write

1

n
=

(

1−
1

n

)(

1

n− 1

)

,

and then write 1/(n − 1), by the induction hypothesis, in a good form to obtain a good
form for 1/n. So assume that n is a composite. Then we write n = qn1

1 q
n2

2 · · · qnk

k where
q1, q2, . . . qk are distinct primes and n1, n2, . . . , nk are positive integers. Then 2 ≤ qi ≤ n− 1
for every 1 ≤ i ≤ k. By the induction hypothesis, the number 1/qi can be written in a good
form, and so 1/qni

i = (1/qi)
ni can also be written in a good form for every i. This gives a

good form for 1/n, as required.

Remark 25. Let a(1) = 0, and for n ≥ 2, let a(n) be the number of factors counted with
multiplicity in writing 1/n in the form of (17). Then it is easy to see that a(p) = 1+a(p−1)
for every prime p and a(mn) = a(m) + a(n) for every m,n ∈ N. In fact, the sequence
(a(n))n≥1 is the same as A064097 in the OEIS. So, perhaps, Theorem 24 is known, but as
far as we are aware, it is not widely known. We did not know about this before Ruankong
sent us the statement of Theorem 24 sometime ago. He did not give a proof and did not
publish the result either, but he allowed us to include it in this paper. So our idea and proof
may be different from what he had in mind.

7 Open questions

In this section, we propose some problems related to our results. We do not claim that these
problems are difficult or interesting. They are not important and may even be trivial.
However, we would merely like to record them for ourselves and to share them among
interested readers. We do not plan to solve them soon and we do not mind if the readers
solve them.

Question 26. We show that the function n 7→ (n+c)ϕ(n) is not injective for positive integers
c ≤ 1000, and also for more than 98 percent of positive integers c ≤ N when N is large. Can
one show that the function is not injective for any c ∈ N?

Question 27. By Ford’s result [3], we know that if k ≥ 2 is a fixed positive integer, there
exists m ∈ N such that the equation ϕ(x) = m has exactly k solutions. Since n 7→ nϕ(n)
is injective, the equation xϕ(x) = m has at most one solution. What are the answers if
we replace ϕ(n) by σ(n) or other arithmetic functions. For example, if m ∈ N is given,
how many solutions in x ∈ N to the equations xσ(x) = m, xψ(x) = m, and xd(x) = m?
Makowski [6, p. 102] observed that if M1 = 2p1 − 1,M2 = 2p2 − 1, . . . ,Mk = 2pk − 1 are
distinct Mersenne primes,
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M =
k
∏

i=1

Mi, and ni =
M

Mi

for each i = 1, 2, . . . , k,

then niσ(ni) is a constant. This shows that if k is less than or equal to the number of
Mersenne primes, then there exists m ∈ N such that the equation xσ(x) = m has at least k
solutions in x ∈ N. What are the answers if we replace σ(x) by other arithmetic functions?

Question 28. For each k ≥ 2, does there exist m ∈ N for which the equation xσ(x) = m
has exactly k solutions? For example, xσ(x) = 6, xσ(x) = 336, and xσ(x) = 333312 have
exactly one, two, and three solutions, respectively, namely, x = 2 for the first equation,
x = 12, 14 for the second equation, and x = 336, 372, 434 for the third equation, respectively.
The smallest m such that xσ(x) = m has exactly n solutions is the sequence A212490 in
the OEIS. It should be observed that 6 | 336 and 336 | 333312. If an is the nth term of the
sequence A212490, is it true that an+1 is always divisible by an?

Question 29. Let B be the function defined in Example 8 by B(x) = xs(x). Recall that if
(x, y) is an amicable pair, then B(x) = B(y). Nevertheless, if B(x) = B(y), then (x, y) may
or may not be an amicable pair. For instance, we know from Table 1 that B(6) = B(9) = 36,
B(320) = B(340) = 141440, and B(1280) = B(1504) = 2286080, but they are not amicable
pairs. Are there infinitely many x, y ∈ N such that B(x) = B(y)? Are there infinitely many
such x, y ∈ N that are not an amicable pair?

Question 30. We show in Examples 11 and 14 that the function Hb, which is defined by
Hb(n) = nSb(n), is not injective on N for any b ≥ 2 and is not injective on squarefree
integers for 2 ≤ b ≤ 10. Can one show that Hb is not injective on squarefree integers for any
b ≥ 11?

Question 31. We show that the function n 7→ naJs(n)
b is injective if s = 2 or a ≥ sb. Is the

function n 7→ naJs(n)
b injective if s ≥ 3 and a < sb?

Question 32. It is not difficult to show that an analogue of Lemma 17 where 1− 1
p
is replaced

by 1+ 1
p
also holds. That is, the product

∏

p

(

1 + 1
p

)ap

uniquely determines the primes p and

the exponents ap in the product. However, it is not clear how an analogue of Theorem 24
should look like. Can one determine the set of all rational numbers q that can be written as

q =
∏

p

(

1 +
1

p

)ap

for some primes p and positive integers ap?

Question 33. Other questions stated in Guy’s book [6] are the following:

(i) Among all m,n ∈ N such that mσ(m) = nσ(n), is m/n bounded?

(ii) Are there relatively prime positive integers m and n satisfying mσ(n) = nσ(m)?
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Question 34. Let (a(n))n≥1 be the sequence A064097 in the OEIS. This sequence is related
to Theorem 24 and is also mentioned in Remark 25. Some conjectures regarding a(n) stated
in the OEIS are as follows.

(i) (Cloitre) log n < a(n) < (5/2) log n for n ≥ 2, and there exists a positive constant c
such that

∑

1≤k≤n

a(k) ∼ cn log n.

(ii) (Wilson) ⌊log 2n⌋ < a(n) < (5/2) log n for n ≥ 2.
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9 Tables

B(x1) = B(x2) x1 x2
36 6 9

62480 220 284
141440 320 340
1432640 1184 1210
2286080 1280 1504
1245335 1955 2093
6680960 2080 2288
7660880 2620 2924
27931280 5020 5564
39685376 6232 6368

Table 1: Distinct integers x1, x2 ∈ (1, 10000] such that B(x1) = B(x2) where B is defined
in Example 8 by B(x) = xs(x) for all x ∈ N. The values of x1 are increasing, but x2 and
B(x1) = B(x2) are not listed in an increasing order.

20

https://oeis.org/A064097
https://oeis.org/A064097


A(x1) = A(x2) x1 x2
336 12 14
5952 48 62
10080 60 70
27776 112 124
44352 132 154
61152 156 182
60480 160 189
97536 192 254
102816 204 238
127680 228 266
178560 240 310
185472 276 322
260400 300 350
196560 315 351
333312 336 372
333312 336 434
292320 348 406
333312 372 434
472416 444 518
455168 448 508
578592 492 574
635712 516 602
785664 528 682
833280 560 620
758016 564 658
1083264 624 806
1179360 630 702
961632 636 742
1330560 660 770
1189440 708 826
1270752 732 854
1530816 804 938
1717632 852 994

A(x1) = A(x2) x1 x2
1834560 780 910
1821312 816 1054
1815072 876 1022
2261760 912 1178
2123520 948 1106
2926080 960 1270
2342592 996 1162
3249792 1008 1116
3084480 1020 1190
2691360 1068 1246
3285504 1104 1426
3830400 1140 1330
3194016 1164 1358
4612800 1200 1550
3461472 1212 1414
3666432 1232 1364
3599232 1236 1442
5503680 1260 1404
3882816 1284 1498
4028640 1308 1526
5462016 1344 1524
5462016 1344 1778
4328352 1356 1582
5564160 1380 1610
5178240 1392 1798
5407248 1452 1694
5055232 1456 1612
6552000 1500 1750
5462016 1524 1778
5810112 1572 1834
6352416 1644 1918
6538560 1668 1946
9999360 1680 1860

Table 2: Distinct integers x1, x2 ∈ (1, 2000] such that A(x1) = A(x2) where A is defined
in Example 7 by A(x) = xσ(x) for all x ∈ N. The values of x1 are increasing, but x2 and
A(x1) = A(x2) are not listed in an increasing order.
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D(x1) = D(x2) x1 x2
108 18 27
192 24 32
448 56 64
1080 90 135
1920 120 160
1512 126 189
2688 168 192
2688 168 224
2688 192 224
2376 198 297
2808 234 351
4224 264 352
4480 280 320
3672 306 459
4992 312 416
4104 342 513
8640 360 432
6000 400 500
6528 408 544
4968 414 621
8100 450 675
7296 456 608
12096 504 576
6264 522 783
12960 540 648
8832 552 736
6696 558 837
14400 600 800
9856 616 704
15120 630 945
7992 666 999
11136 696 928
11648 728 832
8856 738 1107

D(x1) = D(x2) x1 x2
11904 744 992
9288 774 1161
26880 840 960
26880 840 1120
10152 846 1269
15876 882 1323
14208 888 1184
15232 952 1088
11448 954 1431
26880 960 1120
15744 984 1312
23760 990 1485
16512 1032 1376
12744 1062 1593
17024 1064 1216
13176 1098 1647
18048 1128 1504
28080 1170 1755
28224 1176 1568
36000 1200 1500
14472 1206 1809
20352 1272 1696
15336 1278 1917
20608 1288 1472
32400 1296 1350
15768 1314 1971
42240 1320 1760
33600 1400 1600
22656 1416 1888
20412 1458 1701
23424 1464 1952
48384 1512 1728
25984 1624 1856
27776 1736 1984

Table 3: Distinct integers x1, x2 ∈ (1, 2000] such that D(x1) = D(x2) where D is defined
in Example 9 by D(x) = xd(x) for all x ∈ N. The values of x1 are increasing, but x2 and
D(x1) = D(x2) are not listed in an increasing order.
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W1(x1) = W1(x2) x1 x2
90 30 45
126 42 63
198 66 99
234 78 117
270 90 135
306 102 153
342 114 171
378 126 189
414 138 207
450 150 225
522 174 261
558 186 279
594 198 297
840 210 280
666 222 333
702 234 351
738 246 369
774 258 387
810 270 405
846 282 423
882 294 441
918 306 459
954 318 477
1320 330 440
1026 342 513
1062 354 531
1098 366 549

W1(x1) = W1(x2) x1 x2
1134 378 567
1560 390 520
1206 402 603
1242 414 621
1680 420 560
1278 426 639
1314 438 657
1350 450 675
1848 462 616
1422 474 711
1494 498 747
2040 510 680
1566 522 783
1602 534 801
2184 546 728
1674 558 837
2280 570 760
1746 582 873
1782 594 891
1818 606 909
1854 618 927
1926 642 963
1962 654 981
2640 660 880
1998 666 999
2760 690 920
2856 714 952

Table 4: Distinct integers x1, x2 ∈ (1, 1000] such that W1(x1) = W1(x2) where W1 is defined
in Example 10 by W1(x) = xω(x) for all x ∈ N. The values of x1 are increasing, but x2 and
W1(x1) = W1(x2) are not listed in an increasing order.
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W2(x1) = W2(x2) x1 x2
160 32 40
240 48 60
360 72 90
400 80 100
540 108 135
560 112 140
600 120 150
840 168 210
880 176 220
900 180 225
1344 192 224
1000 200 250
1040 208 260
1260 252 315
1320 264 330
1360 272 340
1400 280 350
2016 288 336
1500 300 375
1520 304 380
1560 312 390
1840 368 460
1960 392 490
1980 396 495
2040 408 510
2100 420 525
3024 432 504
2200 440 550
2280 456 570

W2(x1) = W2(x2) x1 x2
2320 464 580
2340 468 585
3360 480 560
2480 496 620
2500 500 625
4608 512 576
2600 520 650
2760 552 690
2940 588 735
2960 592 740
3060 612 765
3080 616 770
4536 648 756
3280 656 820
3300 660 825
4704 672 784
3400 680 850
3420 684 855
3440 688 860
3480 696 870
3500 700 875
5040 720 840
3640 728 910
3720 744 930
3760 752 940
3800 760 950
6912 768 864
3900 780 975

Table 5: Distinct integers x1, x2 ∈ (1, 1000] such that W2(x1) = W2(x2) where W2 is defined
in Example 10 by W2(x) = xΩ(x) for all x ∈ N. The values of x1 are increasing, but x2 and
W2(x1) = W2(x2) are not listed in an increasing order.
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H10(x1) = H10(x2) x1 x2
36 6 12
90 15 30
160 32 40
280 28 35
306 51 102
684 57 114
360 60 120
640 64 80
792 66 132
900 75 150
900 75 300
1105 85 221
1204 86 301
1408 88 128
1440 96 240
520 104 130
630 105 210
1360 136 170
900 150 300
1872 156 312
1980 165 330
2520 168 420
1720 172 215
2992 187 272
2080 208 260
2440 244 305

H10(x1) = H10(x2) x1 x2
3060 255 510
4140 276 345
2800 280 350
4576 286 416
1600 320 400
4732 338 364
5220 348 435
3520 352 440
5760 384 480
6160 385 560
4240 424 530
6370 455 490
6840 456 570
7744 484 704
7380 492 615
7920 528 660
8460 564 705
8008 572 616
11305 595 665
11920 596 745
6400 640 800
13360 668 835
10080 672 840
11160 744 930
14212 748 836
15520 776 970

Table 6: Distinct integers x1, x2 ∈ (1, 1000] such that H10(x1) = H10(x2) where H10 is defined
in Example 11 by H10(x) = xS10(x) for all x ∈ N. The values of x1 are increasing, but x2
and H10(x1) = H10(x2) are not listed in an increasing order.
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f1(x1) = f1(x2) x1 x2 Factorization of x1 Factorization of x2
168 13 20 13 22 · 5
528 23 32 23 25

960 31 39 31 3 · 13
1368 37 56 37 23 · 7
2208 47 68 47 22 · 17
5040 71 104 71 23 · 13
18720 155 194 5 · 31 2 · 97
73440 271 305 271 5 · 61
78880 289 492 172 22 · 3 · 41
144072 413 666 7 · 59 2 · 32 · 37
196248 443 628 443 22 · 157
131328 455 512 5 · 7 · 13 29

212520 461 804 461 22 · 3 · 67
199080 473 710 11 · 43 2 · 5 · 71
210528 515 730 5 · 103 2 · 5 · 73
253440 527 575 17 · 31 52 · 23
256320 533 800 13 · 41 25 · 52

226800 539 674 72 · 11 2 · 337
218120 573 664 3 · 191 23 · 83
361200 601 902 601 2 · 11 · 41
320544 635 741 5 · 127 3 · 13 · 19
377000 649 753 11 · 59 3 · 251
776160 881 923 881 13 · 71
863040 929 1239 929 3 · 7 · 59
820800 949 1025 13 · 73 52 · 41
1585080 1259 1784 1259 23 · 223
708048 1340 1638 22 · 5 · 67 2 · 32 · 7 · 13
2185920 1517 1655 37 · 41 5 · 331

Table 7: Distinct integers x1, x2 ∈ (1, 2000] such that f1(x1) = f1(x2) where f1 is the function
defined in Section 5 by f1(x) = (x + 1)ϕ(x) for all x ∈ N. The values of x1 are increasing,
but x2 and f1(x1) = f1(x2) are not listed in an increasing order.
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f2(x1) = f2(x2) x1 x2 Factorization of x1 Factorization of x2
1920 62 78 2 · 31 2 · 3 · 13
30100 173 213 173 3 · 71
37440 193 310 193 2 · 5 · 31
78480 325 434 52 · 13 2 · 7 · 31
89040 369 422 32 · 41 2 · 211
138336 391 526 17 · 23 2 · 263
126480 525 618 3 · 52 · 7 2 · 3 · 103
146880 542 610 2 · 271 2 · 5 · 61
254016 565 754 5 · 113 2 · 13 · 29
363456 629 1260 17 · 37 22 · 32 · 5 · 7
219120 662 828 2 · 331 22 · 32 · 23
288144 665 826 5 · 7 · 19 2 · 7 · 59
453600 673 1078 673 2 · 72 · 11
294528 765 942 32 · 5 · 17 2 · 3 · 157
290880 806 1008 2 · 13 · 31 24 · 32 · 7
320256 832 1110 26 · 13 2 · 3 · 5 · 37
469440 976 1302 24 · 61 2 · 3 · 7 · 31
506880 1054 1150 2 · 17 · 31 2 · 52 · 23
761376 1131 1234 3 · 13 · 29 2 · 617
796320 1262 1420 2 · 631 22 · 5 · 71
641088 1270 1482 2 · 5 · 127 2 · 3 · 13 · 19
754000 1298 1506 2 · 11 · 59 2 · 3 · 251
907200 1348 1510 22 · 337 2 · 5 · 151
1552320 1762 1846 2 · 881 2 · 13 · 71

Table 8: Distinct integers x1, x2 ∈ (1, 2000] such that f2(x1) = f2(x2) where f2 is the function
defined in Section 5 by f2(x) = (x + 2)ϕ(x) for all x ∈ N. The values of x1 are increasing,
but x2 and f2(x1) = f2(x2) are not listed in an increasing order.
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f3(x1) = f3(x2) x1 x2 Factorization of x1 Factorization of x2
60 7 12 7 22 · 3
560 25 32 52 25

540 27 42 33 2 · 3 · 7
1008 39 60 3 · 13 22 · 3 · 5
3168 69 96 3 · 23 25 · 3
7056 95 144 5 · 19 24 · 32

6120 99 150 32 · 11 2 · 3 · 52

8208 111 168 3 · 37 23 · 3 · 7
13248 141 204 3 · 47 22 · 3 · 17
21360 175 264 52 · 7 23 · 3 · 11
30240 213 312 3 · 71 23 · 3 · 13
54000 247 297 13 · 19 33 · 11
76608 301 339 7 · 43 3 · 113
112320 465 582 3 · 5 · 31 2 · 3 · 97
186912 469 646 7 · 67 2 · 17 · 19
324896 569 920 569 23 · 5 · 23
376992 613 1068 613 22 · 3 · 89
378000 753 872 3 · 251 23 · 109
396144 783 1176 33 · 29 23 · 3 · 72

580320 803 933 11 · 73 3 · 311
440640 813 915 3 · 271 3 · 5 · 61
879840 937 1830 937 2 · 3 · 5 · 61
808128 973 1101 7 · 139 3 · 367
822400 1025 1282 52 · 41 2 · 641
1254960 1159 1491 19 · 61 3 · 7 · 71
1177488 1329 1884 3 · 443 22 · 3 · 157
787968 1365 1536 3 · 5 · 7 · 13 29 · 3
1520640 1581 1725 3 · 17 · 31 3 · 52 · 23
2537472 1649 1885 17 · 97 5 · 13 · 29

Table 9: Distinct integers x1, x2 ∈ (1, 2000] such that f3(x1) = f3(x2) where f3 is the function
defined in Section 5 by f3(x) = (x + 3)ϕ(x) for all x ∈ N. The values of x1 are increasing,
but x2 and f3(x1) = f3(x2) are not listed in an increasing order.
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