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Abstract

We study some divisibility properties of Dedekind numbers. We show that the

ninth Dedekind number is congruent to 6 modulo 210.

1 Introduction

We define Dn to be the set of all monotone Boolean functions of n variables. The cardinality
of this set, dn, is known as the n-th Dedekind number. Values of dn are described by the
OEIS (On-Line Encyclopedia of Integer Sequences) sequence A000372 (see Table 1).

n dn rn
0 2 2
1 3 3
2 6 5
3 20 10
4 168 30
5 7,581 210
6 7,828,354 16,353
7 2,414,682,040,998 490,013,148
8 56,130,437,228,687,557,907,788 1,392,195,548,889,993,358

Table 1: Known values of dn (A000372) and rn (A003182).
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In 1990, Wiedemann calculated d8 [11]. His result was confirmed in 2001 by Fidytek,
Mostowski, Somla, and Szepietowski [4]. The impulse for writing our paper came from
the letter from Wiedemann to Sloane [12] informing about the computation of the eighth
Dedekind number, specifically this fragment: “Unfortunately, I don’t see how to test it...”.
Wiedemann only knew that d8 is even. Despite its obvious importance, there is a lack of
studies on the divisibility of Dedekind numbers. As far as we know, the only paper concerning
this question is Yamamoto’s paper [13], where he shows that if n is even, then dn is also
even; he also states (without proof) that d9 is even and d11 is odd.

Our research aims to fill this lack by proposing new methods to determine the divisibility
of Dedekind numbers. As an application of these methods, we compute remainders of d9
divided by one-digit prime numbers, which (we hope) will help to verify the value d9 after
its first computation.

Our main result is the following system of congruences:

d9 ≡ 0 (mod 2),

d9 ≡ 0 (mod 3),

d9 ≡ 1 (mod 5),

d9 ≡ 6 (mod 7).

By the Chinese remainder theorem, we have

d9 ≡ 6 (mod 210).

Recently, after the preprint of this paper was published on ArXiv, two independent
research teams [5, 7] reported the same value:

d9 = 286386577668298411128469151667598498812366,

which confirms our results.

2 Preliminaries

Let B denote the set {0, 1} and Bn the set of n-element sequences of B. A Boolean function
with n variables is any function from Bn into B. There are 2n elements in Bn and 22n

Boolean functions with n variables. There is the order relation in B (namely: 0 ≤ 0, 0 ≤ 1,
1 ≤ 1) and the following partial order in Bn. For any two elements, x = (x1, . . . , xn),
y = (y1, . . . , yn) in Bn,

x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ n.

A function h : Bn → B is monotone if

x ≤ y =⇒ h(x) ≤ h(y).
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Let Dn denote the set of monotone functions with n variables and let dn denote |Dn|. We
have the partial order in Dn defined by:

g ≤ h if and only if g(x) ≤ h(x) for all x ∈ Bn.

We shall represent the elements of Dn as strings of bits of length 2n. Two elements of D0

will be represented as 0 and 1. Any element g ∈ D1 can be represented as the concatenation
g(0) ∗ g(1), where g(0), g(1) ∈ D0 and g(0) ≤ g(1). Hence D1 = {00, 01, 11}. Each element
of g ∈ D2 is the concatenation (string) of four bits: g(00) ∗ g(10) ∗ g(01) ∗ g(11) which can
be represented as a concatenation g0 ∗ g1, where g0, g1 ∈ D1 and g0 ≤ g1. Hence D2 =
{0000, 0001, 0011, 0101, 0111, 1111}. Similarly, any element of g ∈ Dn can be represented as
a concatenation g0 ∗ g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1. Therefore, we can treat functions
in Dn as sequences of bits and as integers. We let � denote the total order in Dn induced
by the total order in integers.

For a set Y ⊆ Dn, by Y 2 we denote the Cartesian power Y 2 = Y × Y , that is the set of
all ordered pairs (x, y) with x, y ∈ Y . Similarly for more than two factors, we write Y k for
the set of ordered k-tuples of elements of Y . We let ⊤ denote the maximal element in Dn,
that is, ⊤ = (1 . . . 1); and ⊥ denote the minimal element in Dn, that is, ⊥ = (0 . . . 0). For
two elements x, y ∈ Dn, we let x|y denote the bitwise or; and x&y denote the bitwise and.
Furthermore, we let re(x, y) denote |{z ∈ Dn : x ≤ z ≤ y}|. Note that re(x,⊤) = |{z ∈ Dn :
x ≤ z}| and re(⊥, y) = |{z ∈ Dn : z ≤ y}|.

2.1 Posets

A poset (partially ordered set) (S,≤) consists of a set S together with a binary relation
(partial order) ≤ which is reflexive, transitive, and antisymmetric. Given two posets (S,≤)
and (T,≤) a function f : S → T is monotone, if x ≤ y implies f(x) ≤ f(y). By T S we
denote the poset of all monotone functions from S to T with the partial order defined by

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ S.

In this paper we use the following well-known lemma; see [3, 10]:

Lemma 1. The poset Dn+k is isomorphic to the poset DBk

n —the poset of monotone functions
from Bk to Dn.

3 Divisibility of Dedekind numbers by 2

In 1952, Yamamoto [13] proved that if n is even, then dn is also even; he also stated (without
proof) that d9 is even and d11 is odd. In order to prove that d9 is even, we will leverage the
duality property of Boolean functions. For each x ∈ Dn, we have dual xd which is obtained
by reversing and negating all bits. For example, 1111d = 0000 and 0001d = 0111. An element
x ∈ Dn is self-dual if x = xd. For example, 0101 and 0011 are self-duals in D2. If x is not
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self-dual, and y = xd 6= x, then yd = x. Thus, non-self-duals form pairs of the form (x, xd),
where x 6= xd. Let kn denote the number of these pairs and let λn denote the number of
self-dual functions in Dn. We have that dn = 2kn + λn. Hence λn ≡ dn (mod 2). Values of
λn are described by the OEIS sequence A001206; see Table 2. The last known term of this
sequence, λ9, was calculated in 2013 by Brouwer et al. [2].

n λn

0 0
1 1
2 2
3 4
4 12
5 81
6 2,646
7 1,422,564
8 229,809,982,112
9 423,295,099,074,735,261,880

Table 2: Known values of λn (A001206).

Corollary 2. We have d9 ≡ λ9 ≡ 0 (mod 2).

One can directly check that dn ≡ λn (mod 2) for n ≤ 8.

4 Divisibility of Dedekind numbers by 3

By Lemma 1, the poset Dn+3 is isomorphic to the poset DB3

n —the set of monotone functions
from B3 = {000, 001, 010, 100, 110, 101, 011, 111} to Dn. Now consider the group S3—the
permutations on {1, 2, 3}. The group S3 is isomorphic to the automorphism group Aut(B3)
of the Boolean lattice B3. The automorphism group Aut(B3) acts in a natural way on DB3

n

by
α(f) = f ◦ α−1

for all α ∈ Aut(B3) and all f ∈ DB3

n . Let O(f) = {α(f) ∈ DB3

n : α ∈ Aut(B3)} denote the
orbit of f under this action and by γ(f) = |O(f)| its cardinality. The orbits form a partition
of Dn+3 = DB3

n . Each of these orbits has one, three, or six elements. Moreover, an orbit O(f)
has one element if and only if f(001) = f(010) = f(100) and f(011) = f(101) = f(110).
Such a function f can be identified with a monotone function from the path P4 to Dn. Hence,

dn+3 ≡ |DP4

n | (mod 3).

It is well known, see [1, 10], that the number of monotone functions from the path
P4 = (a < b < c < d) to a poset S is equal to the sum of the elements of the third power
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of M(S)—the incidence matrix of S. For example, for the poset D1 = {00 < 01 < 11}, we
have

M(D1) =





1 1 1
0 1 1
0 0 1





and

M(D1)
3 =





1 3 6
0 1 3
0 0 1



 .

The sum of the elements of (M(D1)
3) is equal to 15, which is equal to |DP4

1 |—the number
of monotone functions from P4 to D1.

Furthermore, consider D2 = {0000, 0001, 0011, 0101, 0111, 1111} and its incidence matrix:

M(D2) =

















1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

















.

Now consider the third power of the incidence matrix of D2:

M(D2)
3 =

















1 3 6 6 14 20
0 1 3 3 9 14
0 0 1 0 3 6
0 0 0 1 3 6
0 0 0 0 1 3
0 0 0 0 0 1

















.

The sum of the elements of (M(D2)
3) is equal to 105, which is equal to |DP4

2 |—the number
of monotone functions from P4 to D2. In a similar we can compute |DP4

n | for n = 3, 4, 5.
Unfortunately, this method cannot be easily applied for n = 6, because M(D6) is too large.
However, Pawelski [8] proposed another method: |DP4

(n+m)| = |DP4×Bm

n | = |(DP4

n )B
m

| (also see

[10]). Using the same program as used in [8] to compute |DP4

5 | we can calculate |DP4

6 | and
the result (see Table 3) is divisible by 3.

Corollary 3. As |DP4

6 | = 868329572680304346696 is divisible by 3, the quantity d9 is also
divisible by 3.

One can directly check that dn+3 ≡ |DP4

n | (mod 3) for n ≤ 5.
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n |DP4

n | |DP4

n | mod 3
0 5 2
1 15 0
2 105 0
3 3,490 1
4 2,068,224 0
5 262,808,891,710 1
6 868,329,572,680,304,346,696 0

Table 3: Known values of |DP4

n |. Note that dn+3 ≡ |DP4

n | (mod 3).

5 Main lemma

In the sequel we shall use another definition of a group acting on DBk

n . In order to do this
it is convenient to identify the lattice Dn = BBn

with the isomorphic up-set lattice Un of
Bn. An isomorphism is given by h : Dn → Un, where h(x) = x−1(1) for all x ∈ Dn. For
β ∈ Aut(Bn) and x ∈ Dn, we have

h(β(x)) = β(h(x)).

Let P and Q be two posets and let PQ be the poset of monotone functions from Q to P .
Now, we can define an action of Aut(P ) on PQ by setting

β(f) = β ◦ f

for all β ∈ Aut(P ) and f ∈ PQ. We let

O(f) = {β(f) : β ∈ Aut(P )}

denote the orbit of f under this action. Additionally, for p ∈ P , we write

[p] = {β(p) : β ∈ Aut(P )}

for the orbit of p under the natural action of Aut(P ) on P .
We use ∼ to denote an equivalence relation on Dn. Namely, two functions p, r ∈ Dn

are equivalent, p ∼ r, if there is an automorphism α ∈ Aut(Dn) such that p = α(r). For
a function p ∈ Dn its equivalence class is the set [p] = {r ∈ Dn : r ∼ p}. We let γ(f)
denote |[f ]|. For m > 1, let En,m = {p ∈ Dn : γ(f) ≡ 0 (mod m)} and Ec

n,m = Dn − En,m.
For the class [p], we define its canonical representative as the one element in [p] chosen to
represent the class. One of the possible approaches is to choose its minimal (according to
the total order �) element [11]. Sometimes we shall identify the class [p] with its canonical
representative and treat [p] as an element in Dn. We let Rn denote the set of equivalence
classes and rn the number of equivalence classes; that is, rn = |Rn|. Values of rn are described
by A003182 OEIS sequence; see Table 1.
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Lemma 4. For every q ∈ Q and every f ∈ PQ, the integer |[f(q)]| divides |O(f)|.

Proof. For every p ∈ [f(q)] we define

G(p) := {g ∈ O(f) : g(q) = p}.

The sets G(p), p ∈ [f(q)] form a partition of O(f) and the sets G(p) have the same cardinality.
Indeed, for every β ∈ Aut(P ),

g ∈ G(f(q)) ⇐⇒ β(g) ∈ G(β(f(q))).

Lemma 5. For arbitrary subset W ⊆ Q, the cardinality of PQ is congruent modulo m to
the cardinality of

{f ∈ PQ : f(W ) ⊆ Ec
n,m}.

Proof. For each automorphism α ∈ Aut(P ) and for each p ∈ P , we have [p] = [α(p)]. Hence,

p ∈ Ec
n,m ⇐⇒ α(p) ∈ Ec

n,m

and for every function f ∈ PQ, we have

f(W ) ⊆ Ec
n,m ⇐⇒ α ◦ f(W ) ⊂ Ec

n,m

Orbits O(f) form a partition of PQ. If f ∼ g (or in other words if f ∈ O(g)), then there
exists automorphism α ∈ Aut(P ), such that g = α ◦ f and

f(W ) ⊆ Ec
n,m ⇐⇒ g(W ) ⊆ Ec

n,m.

So we have two kinds of orbits:

• orbits O(f), where g(W ) ⊆ Ec
n,m for all g ∈ O(f),

• orbits O(f), where g(W ) 6⊆ Ec
n,m for all g ∈ O(f).

Moreover, if f(W ) 6⊆ Ec
n,m, then there exists w ∈ W such that f(w) ∈ En,m, hence, m

divides |[f(w)]| and by Lemma 4, m divides |O(f)|.

6 Counting functions from B2 to Dn

By Lemma 1, the poset Dn+2 is isomorphic to the poset DB2

n —the poset of monotone
functions from B2 = {00, 01, 10, 11} to Dn. Consider the function G that, for every pair
(x, y) ∈ D2

n, takes the value

G(x, y) = re(x|y,⊤) · re(⊥, x&y).
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Observe that G(x, y) is equal to the number of functions f ∈ DB2

n with f(01) = x and
f(10) = y. Function G is well-known, as it is discussed in [3, 4, 11].

For A ⊆ Dn ×Dn let G(A) denote
∑

(x,y)∈A G(x, y). By Lemma 1, we have

dn+2 = G(Dn ×Dn) =
∑

x∈Dn

∑

y∈Dn

G(x, y).

Consider the set W2 = {01, 10}. By Lemma 5, we have

dn+2 ≡ G(Dn ×Dn) ≡ G(Ec
n,m × Ec

n,m) (mod m).

Observe that, for every automorphism π ∈ Aut(Bn) and every x, y ∈ Dn, we have
G(x, y) = G(π(x), π(y)).

Lemma 6. Let Y be a subset Y ⊆ Dn and suppose that π(Y ) = Y for every automorphism
π ∈ Aut(Bn; and let x and y be two equivalent, x ∼ y, elements in Dn. Then

1. G({x} × Y ) = G({y} × Y ).

2. G([x] × Y ) = γ(x) ·G({x} × Y ).

Proof. Notice that condition π(Y ) = Y implies that π is a bijection on Y , or in other words,
π permutes the elements of Y .

For (1), observe that

G({x} × Y ) =
∑

s∈Y

G(x, s) =
∑

s∈Y

G(π(x), π(s))

=
∑

t∈π(Y )

G(π(x), t) =
∑

t∈Y

G(π(x), t) = G({π(x)} × Y ).

We use the fact that π(Y ) = Y .

Observe that for every automorphism π ∈ Aut(bn), we have and π(Ec
n,m) = Ec

n,m. Hence,
by Lemma 6, we get

Theorem 7.

dn+2 ≡
∑

x∈Rn∩Ec
n,m

∑

y∈Ec
n,m

γ(x) ·G(x, y) (mod m).

Here we identify each class [x] ∈ Rn with its canonical representative.

Example 8. Consider the poset D2 = {0000, 0001, 0011, 0101, 0111, 1111}. There are five
equivalence classes: namely, R2 = {{0000}, {0001}, {0011, 0101}, {0111}, {1111}}. Two el-
ements: 0101 and 0011 are equivalent. For m = 2, we have E2,2 = {0011, 0101} and
Ec

2,2 = {0000, 0001, 0111, 1111}. Table 4 presents values of G(x, y) for x, y ∈ D2. Let
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Y = [0011] = {0011, 0101}. For every permutation π ∈ S2, we have π(Y ) = Y . Fur-
thermore, G({0011} × Y ) = G({0101} × Y ) = 9 + 4 = 13; and G([0011] × Y ) = 2 · 13 = 26,
which is divisible by 2.

Similarly, for Z = [0001] = {0001}, we have that π(Z) = Z for every permutation π ∈ S2.
Furthermore, G({0011} × Z) = G({0101} × Z) = 6; and G([0011] × Z) = 2 · 6 = 12, which
is divisible by 2. By summing up all values in Table 4 we obtain G(D2 ×D2) = 168 = d4.

x

y
0000 0001 0011 0101 0111 1111

0000 6 5 3 3 2 1
0001 5 10 6 6 4 2
0011 3 6 9 4 6 3
0101 3 6 4 9 6 3
0111 2 4 6 6 10 5
1111 1 2 3 3 5 6

Table 4: Values of G(x, y) for x, y ∈ D2.

Example 9 (Continuation of Example 8). By summing the relevant values listed in Table
4, we obtain G(Ec

2,2×Ec
2,2) = 6+5+2+1+5+10+4+2+2+4+10+5+1+2+5+6 = 70.

By Theorem 7, we have d4 ≡ 70 (mod 2). Indeed, d4 = 168, which is even.

7 Counting functions from B3 to Dn

In the next two sections, we show that similar techniques can be also applied to functions
in DB3

n and DB4

n . Consider the function H which for every triple (x, y, z) ∈ D3
n returns the

value
H(x, y, z) = re(⊥, x&y&z) ·

∑

s≥x|y|z

re(x|y, s) · re(x|z, s) · re(y|z, s).

Observe that H(x, y, z) is equal to the number of monotone functions f ∈ DB3

n with f(001) =
x, f(010) = y and f(100) = z. Thus, we have

dn+3 = H(D3
n) =

∑

x∈Dn

∑

y∈Dn

∑

z∈Dn

H(x, y, z).

Function H is discussed in [3]. Consider the set W3 = {001, 010, 100}. By Lemma 5, we
have

dn+3 ≡ G(Dn ×Dn ×Dn) ≡ G(Ec
n,m × Ec

n,m × Ec
n,m) (mod m).

Observe that for every automorphism π ∈ Aut(Bn) and every x, y, z ∈ Dn, we have
H(x, y, z) = H(π(x), π(y), π(z)).
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Lemma 10. Let Y and Z be subsets Y, Z ⊆ Dn and suppose that π(Y ) = Y and π(Z) = Z

for every automorphism π ∈ Aut(Bn); and let x and y be two equivalent, x ∼ y, elements in
Dn. Then

1. H({x} × Y × Z) = H({y} × Y × Z).

2. H([x] × Y × Z) = γ(x) ·H({x} × Y × Z).

Proof. (1) H({x} × Y × Z) =
∑

s∈Y

∑

t∈Z H(x, s, t) =
∑

s∈Y

∑

t∈Z H(π(x), π(s), π(t)) =
∑

u∈π(Y )

∑

v∈π(Z)H(π(x), u, v) =
∑

u∈Y

∑

v∈Z H(π(x), u, v) = H({π(x)} × Y × Z). We use
the fact that π is a bijection on Y × Z and permutes the elements of Y × Z.

As an immediate corollary, we have the following:

Theorem 11.

dn+3 ≡
∑

x∈Rn∩Ec
n,m

∑

y∈Ec
n,m

∑

z∈Ec
n,m

γ(x) ·H(x, y, z) (mod m).

Here, again, we identify each class [x] ∈ Rn with its canonical representative.

Example 12. Consider D4. There are 168 elements in D4 and 30 equivalence classes in R4.
The distribution of these equivalence classes based on their γ value is presented in Table 5.
For instance, there are six equivalence classes [x] with γ(x) = 1, two equivalence classes with
γ(x) = 3, and so forth. For m = 2, the set Ec

4,2 contains only twelve elements and R4 ∩Ec
4,2

contains eight elements. Similarly, for m = 3, the set Ec
4,3 contains 42 elements and R4∩Ec

4,3

consists of 15 elements.

Example 13. We employed a Java implementation of the Theorem 11. For n = 4 and
m = 2, 3, 4, 6, 12 we have

d7 ≡ 2320978352 (mod 2), and therefore d7 mod 2 = 0,
d7 ≡ 74128573428 (mod 3), and therefore d7 mod 3 = 0,
d7 ≡ 128268820802 (mod 4), and therefore d7 mod 4 = 2,
d7 ≡ 89637133284 (mod 6), and therefore d7 mod 6 = 0,
d7 ≡ 566167187562 (mod 12), and therefore d7 mod 12 = 6.

One can check these values directly by dividing d7 by 2, 3, 4, 6, and 12.

8 Counting functions from B4 to Dn

By Lemma 1, the poset Dn+4 is isomorphic to the poset DB4

n —the set of monotone functions
from B4 to Dn. Consider the function F (also discussed in [3, 4]), which for every six
elements a, b, c, d, e, f ∈ Dn, counts how many functions g ∈ DB4

n satisfy the following
equations: g(0011) = a, g(0101) = b, g(1001) = c, g(0110) = d, g(1010) = e, g(1100) = f .
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k |{f ∈ R4 : γ(f) = k}|
1 6
3 2
4 9
6 6
12 7

Table 5: Number of f ∈ R4 with γ(f) = k.

For A ⊆ (Dn)6 let F (A) denote
∑

(a,b,c,d,e,f)∈A F (a, b, c, d, e, f). By Lemma 1, we have

dn+4 = F (D6
n) =

∑

a∈Dn

∑

b∈Dn

∑

c∈Dn

∑

d∈Dn

∑

e∈Dn

∑

f∈Dn

F (a, b, c, d, e, f).

Consider the set W4 = {0011, 0101, 1001, 0110, 1010, 1100}. By Lemma 5, we have

dn+4 ≡ F (D6
n) ≡ F ((Ec

n,m)6) (mod m)

Observe that for every automorphism π ∈ Aut(Bn) and every a, b, c, d, e, f ∈ Dn, we have
F (a, b, c, d, e, f) = F (π(a), π(b), π(c), π(d), π(e), π(f)). Consider Cartesian product Y =
Y1 × Y2 × Y3 × Y4 × Y5 and let π(y1, . . . , y5) = (π(y1), . . . , π(y5)). Observe that, if π(Yi) = Yi

for every i, then π(Y ) = Y and π permutes the elements of Y .

Lemma 14. Let Y be a subset Y ⊆ D5
n and suppose that π(Y ) = Y for every automorphism

π ∈ Aut(Bn); and let x and y be two equivalent, x ∼ y, elements in Dn. Then

1. F ({x} × Y ) = F ({y} × Y ).

2. F ([x] × Y ) = γ(x) · F ({x} × Y ).

Proof. (1) F ({x} × Y ) =
∑

s∈Y F (x, s) =
∑

s∈Y F (π(x), π(s)) =
∑

u∈π(Y ) F (π(x), u) =
∑

u∈Y F (π(x), u) = F ({π(x)}×Y ). We use the fact that π is a bijection on Y and permutes
the elements of Y .

As a corollary we get the following result.

Theorem 15.

dn+4 ≡
∑

a∈Rn∩Ec
n,m

∑

b∈Ec
n,m

∑

c∈Ec
n,m

∑

d∈Ec
n,m

∑

e∈Ec
n,m

∑

f∈Ec
n,m

γ(a) · F (a, b, c, d, e, f) (mod m).

Example 16. We utilized a Java implementation of the Theorem 15. For n = 4 and
m = 2, 3, 4, 6, 12 we get

d8 ≡ 53336702474849828, and therefore d8 mod 2 = 0;
d8 ≡ 3019662424037271148 (mod 3), and therefore d8 mod 3 = 1;
d8 ≡ 25754060568741983624 (mod 4), and therefore d8 mod 4 = 0;
d8 ≡ 14729824485525634108 (mod 6), and therefore d8 mod 6 = 4;
d8 ≡ 15054599294580333880 (mod 12), and therefore d8 mod 12 = 4.

One can check these values directly by dividing d8 by 2, 3, 4, 6, and 12.
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9 Application

To compute remainders of d9 divided by 5 and 7, we chose the algorithm described in Section
6. Our implementation lists all 490,013,148 elements of R7 and calculates γ(x) and re(⊥, x)
for each element x ∈ R7. This feat was previously accomplished only by Van Hirtum in 2021
[6]. It is worth noting that the number of elements x in Rn with γ(x) = n! for n > 1 can be
found in the OEIS sequence A220879 (see Table 6). Using the available precalculated sets,
we can efficiently determine the 7th term of the sequence, which was not recorded in the
OEIS before.

n A220879(n)
1 0
2 1
3 0
4 0
5 7
6 7281
7 468822749

Table 6: Inequivalent monotone Boolean functions of n variables with no symmetries.

Our program’s most critical part, the Boolean function canonization procedure, is based
on Van Hirtum’s fast approach [6, Section 5.2.9] and implemented in Rust. Our program is
running on a 32-thread machine with Xeon cores.

After the preprocessed data has been loaded into the main memory, the test was per-
formed and the value of d8 was recomputed in just 16 seconds. However, using this method
to check the divisibility of d9 for any value of m is significantly more challenging.

In order to determine which remainders can be computed by our methods, we can use
the information in Table 7. Note that

|Ec
7,m| =

∑

x∈R7

γ(x) mod m 6=0

γ(x).

The four smallest Ec
7,m are Ec

7,7 with 9999 elements, Ec
7,3 with 108873 elements, Ec

7,21 with
118863 elements, and Ec

7,5 with 154863 elements. Since d9 is already known to be divisible
by 3, the next step is to compute the remainders of d9 divided by 5 and 7.

9.1 Remainder of d9 divided by 5
∑

x∈R7∩Ec
7,5

∑

y∈Ec
7,5

γ(x) ·G(x, y) = 1404812111893131438640857806,

12

https://oeis.org/A220879
https://oeis.org/A220879


k |{f ∈ R7 : γ(f) = k}|
1 9
7 27
21 75
30 5
35 117
42 99
70 90
84 9
105 1206
120 4
140 702
210 3255
252 114
315 2742
360 18
420 26739
504 237
630 47242
720 4
840 75024
1260 1024050
1680 3128
2520 20005503
5040 468822749

Table 7: Number of f ∈ R7 with the given γ(f).

therefore, by Theorem 7, we have d9 mod 5 = 1. We calculated this number in approximately
7 hours. Moreover, using Theorem 15 we have d9 ≡ 157853570524864492086 (mod 5), which
confirms that d9 mod 5 = 1.

9.2 Remainder of d9 divided by 7
∑

x∈R7∩Ec
7,7

∑

y∈Ec
7,7

γ(x) ·G(x, y) = 29989517764506682537562623,

therefore, by Theorem 7, we have d9 mod 7 = 6. We calculated this number in approximately
half an hour.
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