

Journal of Integer Sequences, Vol. 26 (2023), Article 23.7.7

Divisibility Properties of Dedekind Numbers

Bartłomiej Pawelski and Andrzej Szepietowski Institute of Informatics University of Gdańsk Poland bartlomiej.pawelski@ug.edu.pl andrzej.szepietowski@ug.edu.pl

Abstract

We study some divisibility properties of Dedekind numbers. We show that the ninth Dedekind number is congruent to 6 modulo 210.

1 Introduction

We define D_n to be the set of all monotone Boolean functions of n variables. The cardinality of this set, d_n , is known as the *n*-th Dedekind number. Values of d_n are described by the OEIS (On-Line Encyclopedia of Integer Sequences) sequence A000372 (see Table 1).

n	d_n	r_n
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7,581	210
6	7,828,354	16,353
7	2,414,682,040,998	490,013,148
8	56, 130, 437, 228, 687, 557, 907, 788	1,392,195,548,889,993,358

Table 1: Known values of d_n (A000372) and r_n (A003182).

In 1990, Wiedemann calculated d_8 [11]. His result was confirmed in 2001 by Fidytek, Mostowski, Somla, and Szepietowski [4]. The impulse for writing our paper came from the letter from Wiedemann to Sloane [12] informing about the computation of the eighth Dedekind number, specifically this fragment: "Unfortunately, I don't see how to test it...". Wiedemann only knew that d_8 is even. Despite its obvious importance, there is a lack of studies on the divisibility of Dedekind numbers. As far as we know, the only paper concerning this question is Yamamoto's paper [13], where he shows that if n is even, then d_n is also even; he also states (without proof) that d_9 is even and d_{11} is odd.

Our research aims to fill this lack by proposing new methods to determine the divisibility of Dedekind numbers. As an application of these methods, we compute remainders of d_9 divided by one-digit prime numbers, which (we hope) will help to verify the value d_9 after its first computation.

Our main result is the following system of congruences:

$$d_9 \equiv 0 \pmod{2},$$

$$d_9 \equiv 0 \pmod{3},$$

$$d_9 \equiv 1 \pmod{5},$$

$$d_9 \equiv 6 \pmod{7}.$$

By the Chinese remainder theorem, we have

$$d_9 \equiv 6 \pmod{210}.$$

Recently, after the preprint of this paper was published on ArXiv, two independent research teams [5, 7] reported the same value:

 $d_9 = 286386577668298411128469151667598498812366,$

which confirms our results.

2 Preliminaries

Let *B* denote the set $\{0, 1\}$ and B^n the set of *n*-element sequences of *B*. A Boolean function with *n* variables is any function from B^n into *B*. There are 2^n elements in B^n and 2^{2^n} Boolean functions with *n* variables. There is the order relation in *B* (namely: $0 \le 0, 0 \le 1$, $1 \le 1$) and the following partial order in B^n . For any two elements, $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$ in B^n ,

 $x \leq y$ if and only if $x_i \leq y_i$ for all $1 \leq i \leq n$.

A function $h: B^n \to B$ is monotone if

$$x \le y \Longrightarrow h(x) \le h(y)$$

Let D_n denote the set of monotone functions with n variables and let d_n denote $|D_n|$. We have the partial order in D_n defined by:

$$g \leq h$$
 if and only if $g(x) \leq h(x)$ for all $x \in B^n$.

We shall represent the elements of D_n as strings of bits of length 2^n . Two elements of D_0 will be represented as 0 and 1. Any element $g \in D_1$ can be represented as the concatenation g(0) * g(1), where $g(0), g(1) \in D_0$ and $g(0) \leq g(1)$. Hence $D_1 = \{00, 01, 11\}$. Each element of $g \in D_2$ is the concatenation (string) of four bits: g(00) * g(10) * g(01) * g(11) which can be represented as a concatenation $g_0 * g_1$, where $g_0, g_1 \in D_1$ and $g_0 \leq g_1$. Hence $D_2 =$ $\{0000, 0001, 0011, 0101, 0111, 1111\}$. Similarly, any element of $g \in D_n$ can be represented as a concatenation $g_0 * g_1$, where $g_0, g_1 \in D_{n-1}$ and $g_0 \leq g_1$. Therefore, we can treat functions in D_n as sequences of bits and as integers. We let \leq denote the total order in D_n induced by the total order in integers.

For a set $Y \subseteq D_n$, by Y^2 we denote the Cartesian power $Y^2 = Y \times Y$, that is the set of all ordered pairs (x, y) with $x, y \in Y$. Similarly for more than two factors, we write Y^k for the set of ordered k-tuples of elements of Y. We let \top denote the maximal element in D_n , that is, $\top = (1 \dots 1)$; and \bot denote the minimal element in D_n , that is, $\bot = (0 \dots 0)$. For two elements $x, y \in D_n$, we let x|y denote the bitwise or; and x & y denote the bitwise and. Furthermore, we let $\operatorname{re}(x, y)$ denote $|\{z \in D_n : x \leq z \leq y\}|$. Note that $\operatorname{re}(x, \top) = |\{z \in D_n : x \leq z\}|$ and $\operatorname{re}(\bot, y) = |\{z \in D_n : z \leq y\}|$.

2.1 Posets

A poset (partially ordered set) (S, \leq) consists of a set S together with a binary relation (partial order) \leq which is reflexive, transitive, and antisymmetric. Given two posets (S, \leq) and (T, \leq) a function $f: S \to T$ is monotone, if $x \leq y$ implies $f(x) \leq f(y)$. By T^S we denote the poset of all monotone functions from S to T with the partial order defined by

 $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in S$.

In this paper we use the following well-known lemma; see [3, 10]:

Lemma 1. The poset D_{n+k} is isomorphic to the poset $D_n^{B^k}$ —the poset of monotone functions from B^k to D_n .

3 Divisibility of Dedekind numbers by 2

In 1952, Yamamoto [13] proved that if n is even, then d_n is also even; he also stated (without proof) that d_9 is even and d_{11} is odd. In order to prove that d_9 is even, we will leverage the duality property of Boolean functions. For each $x \in D_n$, we have dual x^d which is obtained by reversing and negating all bits. For example, $1111^d = 0000$ and $0001^d = 0111$. An element $x \in D_n$ is self-dual if $x = x^d$. For example, 0101 and 0011 are self-duals in D_2 . If x is not

self-dual, and $y = x^d \neq x$, then $y^d = x$. Thus, non-self-duals form pairs of the form (x, x^d) , where $x \neq x^d$. Let k_n denote the number of these pairs and let λ_n denote the number of self-dual functions in D_n . We have that $d_n = 2k_n + \lambda_n$. Hence $\lambda_n \equiv d_n \pmod{2}$. Values of λ_n are described by the OEIS sequence A001206; see Table 2. The last known term of this sequence, λ_9 , was calculated in 2013 by Brouwer et al. [2].

n	λ_n
0	0
1	1
2	2
3	4
4	12
5	81
6	2,646
7	1,422,564
8	229,809,982,112
9	423,295,099,074,735,261,880

Table 2: Known values of λ_n (A001206).

Corollary 2. We have $d_9 \equiv \lambda_9 \equiv 0 \pmod{2}$.

One can directly check that $d_n \equiv \lambda_n \pmod{2}$ for $n \leq 8$.

4 Divisibility of Dedekind numbers by 3

By Lemma 1, the poset D_{n+3} is isomorphic to the poset $D_n^{B^3}$ —the set of monotone functions from $B^3 = \{000, 001, 010, 100, 110, 101, 011, 111\}$ to D_n . Now consider the group S_3 —the permutations on $\{1, 2, 3\}$. The group S_3 is isomorphic to the automorphism group $\operatorname{Aut}(B^3)$ of the Boolean lattice B^3 . The automorphism group $\operatorname{Aut}(B^3)$ acts in a natural way on $D_n^{B^3}$ by

$$\alpha(f) = f \circ \alpha^{-1}$$

for all $\alpha \in \operatorname{Aut}(B^3)$ and all $f \in D_n^{B^3}$. Let $\mathcal{O}(f) = \{\alpha(f) \in D_n^{B^3} : \alpha \in \operatorname{Aut}(B^3)\}$ denote the orbit of f under this action and by $\gamma(f) = |\mathcal{O}(f)|$ its cardinality. The orbits form a partition of $D_{n+3} = D_n^{B^3}$. Each of these orbits has one, three, or six elements. Moreover, an orbit $\mathcal{O}(f)$ has one element if and only if f(001) = f(010) = f(100) and f(011) = f(101) = f(110). Such a function f can be identified with a monotone function from the path P_4 to D_n . Hence,

$$d_{n+3} \equiv |D_n^{P_4}| \pmod{3}.$$

It is well known, see [1, 10], that the number of monotone functions from the path $P_4 = (a < b < c < d)$ to a poset S is equal to the sum of the elements of the third power

of M(S)—the incidence matrix of S. For example, for the poset $D_1 = \{00 < 01 < 11\}$, we have

$$M(D_1) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

and

$$M(D_1)^3 = \left(\begin{array}{rrrr} 1 & 3 & 6\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{array}\right)$$

The sum of the elements of $(M(D_1)^3)$ is equal to 15, which is equal to $|D_1^{P_4}|$ —the number of monotone functions from P_4 to D_1 .

Furthermore, consider $D_2 = \{0000, 0001, 0011, 0101, 0111, 1111\}$ and its incidence matrix:

$$M(D_2) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Now consider the third power of the incidence matrix of D_2 :

$$M(D_2)^3 = \begin{pmatrix} 1 & 3 & 6 & 6 & 14 & 20\\ 0 & 1 & 3 & 3 & 9 & 14\\ \hline 0 & 0 & 1 & 0 & 3 & 6\\ 0 & 0 & 0 & 1 & 3 & 6\\ \hline 0 & 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The sum of the elements of $(M(D_2)^3)$ is equal to 105, which is equal to $|D_2^{P_4}|$ —the number of monotone functions from P_4 to D_2 . In a similar we can compute $|D_n^{P_4}|$ for n = 3, 4, 5. Unfortunately, this method cannot be easily applied for n = 6, because $M(D_6)$ is too large. However, Pawelski [8] proposed another method: $|D_{(n+m)}^{P_4}| = |D_n^{P_4 \times B^m}| = |(D_n^{P_4})^{B^m}|$ (also see [10]). Using the same program as used in [8] to compute $|D_5^{P_4}|$ we can calculate $|D_6^{P_4}|$ and the result (see Table 3) is divisible by 3.

Corollary 3. As $|D_6^{P_4}| = 868329572680304346696$ is divisible by 3, the quantity d_9 is also divisible by 3.

One can directly check that $d_{n+3} \equiv |D_n^{P_4}| \pmod{3}$ for $n \leq 5$.

n	$ D_{n}^{P_{4}} $	$ D_n^{P_4} \mod 3$
0	5	2
1	15	0
2	105	0
3	3,490	1
4	2,068,224	0
5	262,808,891,710	1
6	868,329,572,680,304,346,696	0

Table 3: Known values of $|D_n^{P_4}|$. Note that $d_{n+3} \equiv |D_n^{P_4}| \pmod{3}$.

5 Main lemma

In the sequel we shall use another definition of a group acting on $D_n^{B^k}$. In order to do this it is convenient to identify the lattice $D_n = B^{B^n}$ with the isomorphic up-set lattice \mathcal{U}_n of B^n . An isomorphism is given by $h: D_n \to \mathcal{U}_n$, where $h(x) = x^{-1}(1)$ for all $x \in D_n$. For $\beta \in \operatorname{Aut}(B^n)$ and $x \in D_n$, we have

$$h(\beta(x)) = \beta(h(x)).$$

Let P and Q be two posets and let P^Q be the poset of monotone functions from Q to P. Now, we can define an action of $\operatorname{Aut}(P)$ on P^Q by setting

$$\beta(f) = \beta \circ f$$

for all $\beta \in \operatorname{Aut}(P)$ and $f \in P^Q$. We let

$$\mathcal{O}(f) = \{\beta(f) : \beta \in \operatorname{Aut}(P)\}$$

denote the orbit of f under this action. Additionally, for $p \in P$, we write

$$[p] = \{\beta(p) : \beta \in \operatorname{Aut}(P)\}\$$

for the orbit of p under the natural action of Aut(P) on P.

We use \sim to denote an equivalence relation on D_n . Namely, two functions $p, r \in D_n$ are equivalent, $p \sim r$, if there is an automorphism $\alpha \in \operatorname{Aut}(D_n)$ such that $p = \alpha(r)$. For a function $p \in D_n$ its equivalence class is the set $[p] = \{r \in D_n : r \sim p\}$. We let $\gamma(f)$ denote |[f]|. For m > 1, let $E_{n,m} = \{p \in D_n : \gamma(f) \equiv 0 \pmod{m}\}$ and $E_{n,m}^c = D_n - E_{n,m}$. For the class [p], we define its canonical representative as the one element in [p] chosen to represent the class. One of the possible approaches is to choose its minimal (according to the total order \preceq) element [11]. Sometimes we shall identify the class [p] with its canonical representative and treat [p] as an element in D_n . We let R_n denote the set of equivalence classes and r_n the number of equivalence classes; that is, $r_n = |R_n|$. Values of r_n are described by <u>A003182</u> OEIS sequence; see Table 1. **Lemma 4.** For every $q \in Q$ and every $f \in P^Q$, the integer |[f(q)]| divides $|\mathcal{O}(f)|$.

Proof. For every $p \in [f(q)]$ we define

$$\mathcal{G}(p) := \{ g \in \mathcal{O}(f) : g(q) = p \}.$$

The sets $\mathcal{G}(p), p \in [f(q)]$ form a partition of $\mathcal{O}(f)$ and the sets $\mathcal{G}(p)$ have the same cardinality. Indeed, for every $\beta \in \operatorname{Aut}(P)$,

$$g \in \mathcal{G}(f(q)) \iff \beta(g) \in \mathcal{G}(\beta(f(q))).$$

Lemma 5. For arbitrary subset $W \subseteq Q$, the cardinality of P^Q is congruent modulo m to the cardinality of

$$\{f \in P^Q : f(W) \subseteq E_{n,m}^c\}$$

Proof. For each automorphism $\alpha \in \operatorname{Aut}(P)$ and for each $p \in P$, we have $[p] = [\alpha(p)]$. Hence,

$$p \in E_{n,m}^c \quad \Longleftrightarrow \quad \alpha(p) \in E_{n,m}^c$$

and for every function $f \in P^Q$, we have

$$f(W) \subseteq E_{n,m}^c \quad \iff \alpha \circ f(W) \subset E_{n,m}^c$$

Orbits $\mathcal{O}(f)$ form a partition of P^Q . If $f \sim g$ (or in other words if $f \in \mathcal{O}(g)$), then there exists automorphism $\alpha \in \operatorname{Aut}(P)$, such that $g = \alpha \circ f$ and

$$f(W) \subseteq E_{n,m}^c \quad \Longleftrightarrow \quad g(W) \subseteq E_{n,m}^c.$$

So we have two kinds of orbits:

- orbits $\mathcal{O}(f)$, where $g(W) \subseteq E_{n,m}^c$ for all $g \in \mathcal{O}(f)$,
- orbits $\mathcal{O}(f)$, where $g(W) \not\subseteq E_{n,m}^c$ for all $g \in \mathcal{O}(f)$.

Moreover, if $f(W) \not\subseteq E_{n,m}^c$, then there exists $w \in W$ such that $f(w) \in E_{n,m}$, hence, m divides |[f(w)]| and by Lemma 4, m divides $|\mathcal{O}(f)|$.

6 Counting functions from B^2 to D_n

By Lemma 1, the poset D_{n+2} is isomorphic to the poset $D_n^{B^2}$ —the poset of monotone functions from $B^2 = \{00, 01, 10, 11\}$ to D_n . Consider the function G that, for every pair $(x, y) \in D_n^2$, takes the value

$$G(x, y) = \operatorname{re}(x|y, \top) \cdot \operatorname{re}(\bot, x\& y).$$

Observe that G(x, y) is equal to the number of functions $f \in D_n^{B^2}$ with f(01) = x and f(10) = y. Function G is well-known, as it is discussed in [3, 4, 11].

For $A \subseteq D_n \times D_n$ let G(A) denote $\sum_{(x,y)\in A} G(x,y)$. By Lemma 1, we have

$$d_{n+2} = G(D_n \times D_n) = \sum_{x \in D_n} \sum_{y \in D_n} G(x, y).$$

Consider the set $W_2 = \{01, 10\}$. By Lemma 5, we have

$$d_{n+2} \equiv G(D_n \times D_n) \equiv G(E_{n,m}^c \times E_{n,m}^c) \pmod{m}.$$

Observe that, for every automorphism $\pi \in \operatorname{Aut}(B^n)$ and every $x, y \in D_n$, we have $G(x, y) = G(\pi(x), \pi(y))$.

Lemma 6. Let Y be a subset $Y \subseteq D_n$ and suppose that $\pi(Y) = Y$ for every automorphism $\pi \in \operatorname{Aut}(B^n; and let x and y be two equivalent, <math>x \sim y$, elements in D_n . Then

1.
$$G(\{x\} \times Y) = G(\{y\} \times Y).$$

2.
$$G([x] \times Y) = \gamma(x) \cdot G(\{x\} \times Y).$$

Proof. Notice that condition $\pi(Y) = Y$ implies that π is a bijection on Y, or in other words, π permutes the elements of Y.

For (1), observe that

$$G(\{x\} \times Y) = \sum_{s \in Y} G(x, s) = \sum_{s \in Y} G(\pi(x), \pi(s))$$

=
$$\sum_{t \in \pi(Y)} G(\pi(x), t) = \sum_{t \in Y} G(\pi(x), t) = G(\{\pi(x)\} \times Y).$$

We use the fact that $\pi(Y) = Y$.

Observe that for every automorphism $\pi \in \operatorname{Aut}(b^n)$, we have and $\pi(E_{n,m}^c) = E_{n,m}^c$. Hence, by Lemma 6, we get

Theorem 7.

$$d_{n+2} \equiv \sum_{x \in R_n \cap E_{n,m}^c} \sum_{y \in E_{n,m}^c} \gamma(x) \cdot G(x,y) \pmod{m}.$$

Here we identify each class $[x] \in R_n$ with its canonical representative.

Example 8. Consider the poset $D_2 = \{0000, 0001, 0011, 0101, 0111, 1111\}$. There are five equivalence classes: namely, $R_2 = \{\{0000\}, \{0001\}, \{0011, 0101\}, \{0111\}, \{1111\}\}$. Two elements: 0101 and 0011 are equivalent. For m = 2, we have $E_{2,2} = \{0011, 0101\}$ and $E_{2,2}^c = \{0000, 0001, 0111, 1111\}$. Table 4 presents values of G(x, y) for $x, y \in D_2$. Let

 $Y = [0011] = \{0011, 0101\}$. For every permutation $\pi \in S_2$, we have $\pi(Y) = Y$. Furthermore, $G(\{0011\} \times Y) = G(\{0101\} \times Y) = 9 + 4 = 13$; and $G([0011] \times Y) = 2 \cdot 13 = 26$, which is divisible by 2.

Similarly, for $Z = [0001] = \{0001\}$, we have that $\pi(Z) = Z$ for every permutation $\pi \in S_2$. Furthermore, $G(\{0011\} \times Z) = G(\{0101\} \times Z) = 6$; and $G([0011] \times Z) = 2 \cdot 6 = 12$, which is divisible by 2. By summing up all values in Table 4 we obtain $G(D_2 \times D_2) = 168 = d_4$.

$\begin{array}{ c c } y \\ x \end{array}$	0000	0001	0011	0101	0111	1111
0000	6	5	3	3	2	1
0001	5	10	6	6	4	2
0011	3	6	9	4	6	3
0101	3	6	4	9	6	3
0111	2	4	6	6	10	5
1111	1	2	3	3	5	6

Table 4: Values of G(x, y) for $x, y \in D_2$.

Example 9 (Continuation of Example 8). By summing the relevant values listed in Table 4, we obtain $G(E_{2,2}^c \times E_{2,2}^c) = 6 + 5 + 2 + 1 + 5 + 10 + 4 + 2 + 2 + 4 + 10 + 5 + 1 + 2 + 5 + 6 = 70$. By Theorem 7, we have $d_4 \equiv 70 \pmod{2}$. Indeed, $d_4 = 168$, which is even.

7 Counting functions from B^3 to D_n

In the next two sections, we show that similar techniques can be also applied to functions in $D_n^{B^3}$ and $D_n^{B^4}$. Consider the function H which for every triple $(x, y, z) \in D_n^3$ returns the value

$$H(x, y, z) = \operatorname{re}(\bot, x \& y \& z) \cdot \sum_{s \ge x|y|z} \operatorname{re}(x|y, s) \cdot \operatorname{re}(x|z, s) \cdot \operatorname{re}(y|z, s).$$

Observe that H(x, y, z) is equal to the number of monotone functions $f \in D_n^{B^3}$ with f(001) = x, f(010) = y and f(100) = z. Thus, we have

$$d_{n+3} = H(D_n^3) = \sum_{x \in D_n} \sum_{y \in D_n} \sum_{z \in D_n} H(x, y, z).$$

Function H is discussed in [3]. Consider the set $W_3 = \{001, 010, 100\}$. By Lemma 5, we have

$$d_{n+3} \equiv G(D_n \times D_n \times D_n) \equiv G(E_{n,m}^c \times E_{n,m}^c \times E_{n,m}^c) \pmod{m}.$$

Observe that for every automorphism $\pi \in \operatorname{Aut}(B^n)$ and every $x, y, z \in D_n$, we have $H(x, y, z) = H(\pi(x), \pi(y), \pi(z))$.

Lemma 10. Let Y and Z be subsets $Y, Z \subseteq D_n$ and suppose that $\pi(Y) = Y$ and $\pi(Z) = Z$ for every automorphism $\pi \in Aut(B^n)$; and let x and y be two equivalent, $x \sim y$, elements in D_n . Then

1. $H({x} \times Y \times Z) = H({y} \times Y \times Z).$

2.
$$H([x] \times Y \times Z) = \gamma(x) \cdot H(\{x\} \times Y \times Z).$$

Proof. (1) $H(\{x\} \times Y \times Z) = \sum_{s \in Y} \sum_{t \in Z} H(x, s, t) = \sum_{s \in Y} \sum_{t \in Z} H(\pi(x), \pi(s), \pi(t)) = \sum_{u \in \pi(Y)} \sum_{v \in \pi(Z)} H(\pi(x), u, v) = \sum_{u \in Y} \sum_{v \in Z} H(\pi(x), u, v) = H(\{\pi(x)\} \times Y \times Z).$ We use the fact that π is a bijection on $Y \times Z$ and permutes the elements of $Y \times Z$.

As an immediate corollary, we have the following:

Theorem 11.

$$d_{n+3} \equiv \sum_{x \in R_n \cap E_{n,m}^c} \sum_{y \in E_{n,m}^c} \sum_{z \in E_{n,m}^c} \gamma(x) \cdot H(x, y, z) \pmod{m}$$

Here, again, we identify each class $[x] \in R_n$ with its canonical representative.

Example 12. Consider D_4 . There are 168 elements in D_4 and 30 equivalence classes in R_4 . The distribution of these equivalence classes based on their γ value is presented in Table 5. For instance, there are six equivalence classes [x] with $\gamma(x) = 1$, two equivalence classes with $\gamma(x) = 3$, and so forth. For m = 2, the set $E_{4,2}^c$ contains only twelve elements and $R_4 \cap E_{4,3}^c$ contains eight elements. Similarly, for m = 3, the set $E_{4,3}^c$ contains 42 elements and $R_4 \cap E_{4,3}^c$ consists of 15 elements.

Example 13. We employed a Java implementation of the Theorem 11. For n = 4 and m = 2, 3, 4, 6, 12 we have

 $d_7 \equiv 2320978352 \pmod{2}$, and therefore $d_7 \mod 2 = 0$,

 $d_7 \equiv 74128573428 \pmod{3}$, and therefore $d_7 \mod 3 = 0$,

 $d_7 \equiv 128268820802 \pmod{4}$, and therefore $d_7 \mod 4 = 2$,

 $d_7 \equiv 89637133284 \pmod{6}$, and therefore $d_7 \mod 6 = 0$,

 $d_7 \equiv 566167187562 \pmod{12}$, and therefore $d_7 \mod 12 = 6$.

One can check these values directly by dividing d_7 by 2, 3, 4, 6, and 12.

8 Counting functions from B^4 to D_n

By Lemma 1, the poset D_{n+4} is isomorphic to the poset $D_n^{B^4}$ —the set of monotone functions from B^4 to D_n . Consider the function F (also discussed in [3, 4]), which for every six elements $a, b, c, d, e, f \in D_n$, counts how many functions $g \in D_n^{B^4}$ satisfy the following equations: g(0011) = a, g(0101) = b, g(1001) = c, g(0110) = d, g(1010) = e, g(1100) = f.

k	$ \{f \in R_4 : \gamma(f) = k\} $
1	6
3	2
4	9
6	6
12	7

Table 5: Number of $f \in R_4$ with $\gamma(f) = k$.

For $A \subseteq (D_n)^6$ let F(A) denote $\sum_{(a,b,c,d,e,f)\in A} F(a,b,c,d,e,f)$. By Lemma 1, we have

$$d_{n+4} = F(D_n^6) = \sum_{a \in D_n} \sum_{b \in D_n} \sum_{c \in D_n} \sum_{d \in D_n} \sum_{e \in D_n} \sum_{f \in D_n} F(a, b, c, d, e, f).$$

Consider the set $W_4 = \{0011, 0101, 1001, 0110, 1010, 1100\}$. By Lemma 5, we have

$$d_{n+4} \equiv F(D_n^6) \equiv F((E_{n,m}^c)^6) \pmod{m}$$

Observe that for every automorphism $\pi \in \operatorname{Aut}(B^n)$ and every $a, b, c, d, e, f \in D_n$, we have $F(a, b, c, d, e, f) = F(\pi(a), \pi(b), \pi(c), \pi(d), \pi(e), \pi(f))$. Consider Cartesian product $Y = Y_1 \times Y_2 \times Y_3 \times Y_4 \times Y_5$ and let $\pi(y_1, \ldots, y_5) = (\pi(y_1), \ldots, \pi(y_5))$. Observe that, if $\pi(Y_i) = Y_i$ for every i, then $\pi(Y) = Y$ and π permutes the elements of Y.

Lemma 14. Let Y be a subset $Y \subseteq D_n^5$ and suppose that $\pi(Y) = Y$ for every automorphism $\pi \in \operatorname{Aut}(B^n)$; and let x and y be two equivalent, $x \sim y$, elements in D_n . Then

1. $F({x} \times Y) = F({y} \times Y).$

2.
$$F([x] \times Y) = \gamma(x) \cdot F(\{x\} \times Y).$$

Proof. (1) $F({x} \times Y) = \sum_{s \in Y} F(x,s) = \sum_{s \in Y} F(\pi(x),\pi(s)) = \sum_{u \in \pi(Y)} F(\pi(x),u) = \sum_{u \in Y} F(\pi(x),u) = F({\pi(x)} \times Y)$. We use the fact that π is a bijection on Y and permutes the elements of Y.

As a corollary we get the following result.

Theorem 15.

$$d_{n+4} \equiv \sum_{a \in R_n \cap E_{n,m}^c} \sum_{b \in E_{n,m}^c} \sum_{c \in E_{n,m}^c} \sum_{d \in E_{n,m}^c} \sum_{e \in E_{n,m}^c} \sum_{f \in E_{n,m}^c} \gamma(a) \cdot F(a, b, c, d, e, f) \pmod{m}.$$

Example 16. We utilized a Java implementation of the Theorem 15. For n = 4 and m = 2, 3, 4, 6, 12 we get

 $d_8 \equiv 53336702474849828$, and therefore $d_8 \mod 2 = 0$;

 $d_8 \equiv 3019662424037271148 \pmod{3}$, and therefore $d_8 \mod 3 = 1$;

 $d_8 \equiv 25754060568741983624 \pmod{4}$, and therefore $d_8 \mod 4 = 0$;

 $d_8 \equiv 14729824485525634108 \pmod{6}$, and therefore $d_8 \mod 6 = 4$;

 $d_8 \equiv 15054599294580333880 \pmod{12}$, and therefore $d_8 \mod 12 = 4$.

One can check these values directly by dividing d_8 by 2, 3, 4, 6, and 12.

9 Application

To compute remainders of d_9 divided by 5 and 7, we chose the algorithm described in Section 6. Our implementation lists all 490,013,148 elements of R_7 and calculates $\gamma(x)$ and $\operatorname{re}(\bot, x)$ for each element $x \in R_7$. This feat was previously accomplished only by Van Hirtum in 2021 [6]. It is worth noting that the number of elements x in R_n with $\gamma(x) = n!$ for n > 1 can be found in the OEIS sequence <u>A220879</u> (see Table 6). Using the available precalculated sets, we can efficiently determine the 7th term of the sequence, which was not recorded in the OEIS before.

n	$\underline{A220879}(n)$
1	0
2	1
3	0
4	0
5	7
6	7281
7	468822749

Table 6: Inequivalent monotone Boolean functions of n variables with no symmetries.

Our program's most critical part, the Boolean function canonization procedure, is based on Van Hirtum's fast approach [6, Section 5.2.9] and implemented in Rust. Our program is running on a 32-thread machine with Xeon cores.

After the preprocessed data has been loaded into the main memory, the test was performed and the value of d_8 was recomputed in just 16 seconds. However, using this method to check the divisibility of d_9 for any value of m is significantly more challenging.

In order to determine which remainders can be computed by our methods, we can use the information in Table 7. Note that

$$|E_{7,m}^c| = \sum_{\substack{x \in R_7\\\gamma(x) \bmod m \neq 0}} \gamma(x)$$

The four smallest $E_{7,m}^c$ are $E_{7,7}^c$ with 9999 elements, $E_{7,3}^c$ with 108873 elements, $E_{7,21}^c$ with 118863 elements, and $E_{7,5}^c$ with 154863 elements. Since d_9 is already known to be divisible by 3, the next step is to compute the remainders of d_9 divided by 5 and 7.

9.1 Remainder of d_9 divided by 5

$$\sum_{x \in R_7 \cap E_{7,5}^c} \sum_{y \in E_{7,5}^c} \gamma(x) \cdot G(x,y) = 1404812111893131438640857806,$$

k	$ \{f \in R_7 : \gamma(f) = k\} $
1	9
7	27
21	75
30	5
35	117
42	99
70	90
84	9
105	1206
120	4
140	702
210	3255
252	114
315	2742
360	18
420	26739
504	237
630	47242
720	4
840	75024
1260	1024050
1680	3128
2520	20005503
5040	468822749

Table 7: Number of $f \in R_7$ with the given $\gamma(f)$.

therefore, by Theorem 7, we have $d_9 \mod 5 = 1$. We calculated this number in approximately 7 hours. Moreover, using Theorem 15 we have $d_9 \equiv 157853570524864492086 \pmod{5}$, which confirms that $d_9 \mod 5 = 1$.

9.2 Remainder of d_9 divided by 7

$$\sum_{x \in R_7 \cap E_{7,7}^c} \sum_{y \in E_{7,7}^c} \gamma(x) \cdot G(x,y) = 29989517764506682537562623,$$

therefore, by Theorem 7, we have $d_9 \mod 7 = 6$. We calculated this number in approximately half an hour.

10 Acknowledgments

We would like to thank the anonymous referee for his useful suggestions and references.

References

- [1] M. Aigner. Combinatorial Theory. Springer, 1979.
- [2] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek. Counting families of mutually intersecting sets. *Electron. J. Comb.* 20 (2013).
- [3] F. a Campo. Relations between powers of Dedekind numbers and exponential sums related to them. J. Integer Sequences 21 (2018), Article 18.4.4.
- [4] R. Fidytek, A. W. Mostowski, R. Somla, and A. Szepietowski. Algorithms counting monotone Boolean functions. *Inform. Process. Lett.* **79** (2001), 203–209.
- C. Jäkel. A computation of the ninth Dedekind number, arxiv preprint arXiv:2304.00895 [math.CO], 2023.
 Available at https://arxiv.org/abs/2304.00895.
- [6] L. Van Hirtum. A path to compute the 9th Dedekind number using FPGA supercomputing (2021). Master's thesis, available at https://hirtum.com/thesis.pdf.
- [7] L. Van Hirtum, P. De Causmaecker, J. Goemaere, T. Kenter, H. Riebler, M. Lass, and C. Plessl. A computation of D(9) using FPGA supercomputing, preprint, 2023. Available at https://arxiv.org/abs/2304.03039.
- [8] B. Pawelski. On the number of inequivalent monotone Boolean functions of 8 variables. J. Integer Sequences 25 (2022), Article 25.7.7.
- [9] N. J. A. Sloane. The On-line Encyclopedia of Integer Sequences. Available at https://oeis.org.
- [10] A. Szepietowski. Fixes of permutations acting on monotone Boolean functions. J. Integer Sequences 25 (2022), Article 25.9.6.
- [11] D. Wiedemann. A computation of the eighth Dedekind number. Order 8 (1991), 5–6.
- [12] D. Wiedemann. Letter to N. J. A. Sloane (1990). Available at https://oeis.org/ A000372/a000372.pdf.
- [13] K. Yamamoto. Note on the order of free distributive lattices. Sci. Rep. Kanazawa Univ. 2 (1953), 5–6.

2020 Mathematics Subject Classification: Primary 06E30.

Keywords: Dedekind number, monotone Boolean function, ninth Dedekind number, congruence modulo, Chinese remainder theorem.

(Concerned with sequences $\underline{A000372}$, $\underline{A001206}$, $\underline{A003182}$ and $\underline{A220879}$.)

Received March 15 2023; revised versions received March 16 2023; May 17 2023; June 13 2023; June 14 2023. Published in *Journal of Integer Sequences*, August 16 2023.

Return to Journal of Integer Sequences home page.