Divisibility Properties of Dedekind Numbers

Bartłomiej Pawelski and Andrzej Szepietowski Institute of Informatics
University of Gdańsk
Poland
bartlomiej.pawelski@ug.edu.pl
andrzej.szepietowski@ug.edu.pl

Abstract

We study some divisibility properties of Dedekind numbers. We show that the ninth Dedekind number is congruent to 6 modulo 210.

1 Introduction

We define D_{n} to be the set of all monotone Boolean functions of n variables. The cardinality of this set, d_{n}, is known as the n-th Dedekind number. Values of d_{n} are described by the OEIS (On-Line Encyclopedia of Integer Sequences) sequence A000372 (see Table 1).

n	d_{n}	r_{n}
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7,581	210
6	$7,828,354$	16,353
7	$2,414,682,040,998$	$490,013,148$
8	$56,130,437,228,687,557,907,788$	$1,392,195,548,889,993,358$

Table 1: Known values of $d_{n}(\underline{\mathrm{~A} 000372})$ and $r_{n}(\underline{\mathrm{~A} 003182})$.

In 1990, Wiedemann calculated d_{8} [11]. His result was confirmed in 2001 by Fidytek, Mostowski, Somla, and Szepietowski [4]. The impulse for writing our paper came from the letter from Wiedemann to Sloane [12] informing about the computation of the eighth Dedekind number, specifically this fragment: "Unfortunately, I don't see how to test it...". Wiedemann only knew that d_{8} is even. Despite its obvious importance, there is a lack of studies on the divisibility of Dedekind numbers. As far as we know, the only paper concerning this question is Yamamoto's paper [13], where he shows that if n is even, then d_{n} is also even; he also states (without proof) that d_{9} is even and d_{11} is odd.

Our research aims to fill this lack by proposing new methods to determine the divisibility of Dedekind numbers. As an application of these methods, we compute remainders of d_{9} divided by one-digit prime numbers, which (we hope) will help to verify the value d_{9} after its first computation.

Our main result is the following system of congruences:

$$
\begin{aligned}
d_{9} & \equiv 0(\bmod 2), \\
d_{9} & \equiv 0(\bmod 3), \\
d_{9} & \equiv 1(\bmod 5), \\
d_{9} & \equiv 6(\bmod 7) .
\end{aligned}
$$

By the Chinese remainder theorem, we have

$$
d_{9} \equiv 6(\bmod 210)
$$

Recently, after the preprint of this paper was published on ArXiv, two independent research teams $[5,7]$ reported the same value:

$$
d_{9}=286386577668298411128469151667598498812366
$$

which confirms our results.

2 Preliminaries

Let B denote the set $\{0,1\}$ and B^{n} the set of n-element sequences of B. A Boolean function with n variables is any function from B^{n} into B. There are 2^{n} elements in B^{n} and $2^{2^{n}}$ Boolean functions with n variables. There is the order relation in B (namely: $0 \leq 0,0 \leq 1$, $1 \leq 1)$ and the following partial order in B^{n}. For any two elements, $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right)$ in B^{n},

$$
x \leq y \quad \text { if and only if } \quad x_{i} \leq y_{i} \quad \text { for all } 1 \leq i \leq n .
$$

A function $h: B^{n} \rightarrow B$ is monotone if

$$
x \leq y \Longrightarrow h(x) \leq h(y)
$$

Let D_{n} denote the set of monotone functions with n variables and let d_{n} denote $\left|D_{n}\right|$. We have the partial order in D_{n} defined by:

$$
g \leq h \quad \text { if and only if } g(x) \leq h(x) \text { for all } x \in B^{n} .
$$

We shall represent the elements of D_{n} as strings of bits of length 2^{n}. Two elements of D_{0} will be represented as 0 and 1 . Any element $g \in D_{1}$ can be represented as the concatenation $g(0) * g(1)$, where $g(0), g(1) \in D_{0}$ and $g(0) \leq g(1)$. Hence $D_{1}=\{00,01,11\}$. Each element of $g \in D_{2}$ is the concatenation (string) of four bits: $g(00) * g(10) * g(01) * g(11)$ which can be represented as a concatenation $g_{0} * g_{1}$, where $g_{0}, g_{1} \in D_{1}$ and $g_{0} \leq g_{1}$. Hence $D_{2}=$ $\{0000,0001,0011,0101,0111,1111\}$. Similarly, any element of $g \in D_{n}$ can be represented as a concatenation $g_{0} * g_{1}$, where $g_{0}, g_{1} \in D_{n-1}$ and $g_{0} \leq g_{1}$. Therefore, we can treat functions in D_{n} as sequences of bits and as integers. We let \preceq denote the total order in D_{n} induced by the total order in integers.

For a set $Y \subseteq D_{n}$, by Y^{2} we denote the Cartesian power $Y^{2}=Y \times Y$, that is the set of all ordered pairs (x, y) with $x, y \in Y$. Similarly for more than two factors, we write Y^{k} for the set of ordered k-tuples of elements of Y. We let \top denote the maximal element in D_{n}, that is, $T=(1 \ldots 1)$; and \perp denote the minimal element in D_{n}, that is, $\perp=(0 \ldots 0)$. For two elements $x, y \in D_{n}$, we let $x \mid y$ denote the bitwise or; and $x \& y$ denote the bitwise and. Furthermore, we let re (x, y) denote $\left|\left\{z \in D_{n}: x \leq z \leq y\right\}\right|$. Note that re $(x, \top)=\mid\left\{z \in D_{n}\right.$: $x \leq z\} \mid$ and $\operatorname{re}(\perp, y)=\left|\left\{z \in D_{n}: z \leq y\right\}\right|$.

2.1 Posets

A poset (partially ordered set) (S, \leq) consists of a set S together with a binary relation (partial order) \leq which is reflexive, transitive, and antisymmetric. Given two posets (S, \leq) and (T, \leq) a function $f: S \rightarrow T$ is monotone, if $x \leq y$ implies $f(x) \leq f(y)$. By T^{S} we denote the poset of all monotone functions from S to T with the partial order defined by

$$
f \leq g \quad \text { if and only if } \quad f(x) \leq g(x) \text { for all } x \in S
$$

In this paper we use the following well-known lemma; see [3, 10]:
Lemma 1. The poset D_{n+k} is isomorphic to the poset $D_{n}^{B^{k}}$-the poset of monotone functions from B^{k} to D_{n}.

3 Divisibility of Dedekind numbers by 2

In 1952, Yamamoto [13] proved that if n is even, then d_{n} is also even; he also stated (without proof) that d_{9} is even and d_{11} is odd. In order to prove that d_{9} is even, we will leverage the duality property of Boolean functions. For each $x \in D_{n}$, we have dual x^{d} which is obtained by reversing and negating all bits. For example, $1111^{d}=0000$ and $0001^{d}=0111$. An element $x \in D_{n}$ is self-dual if $x=x^{d}$. For example, 0101 and 0011 are self-duals in D_{2}. If x is not
self-dual, and $y=x^{d} \neq x$, then $y^{d}=x$. Thus, non-self-duals form pairs of the form $\left(x, x^{d}\right)$, where $x \neq x^{d}$. Let k_{n} denote the number of these pairs and let λ_{n} denote the number of self-dual functions in D_{n}. We have that $d_{n}=2 k_{n}+\lambda_{n}$. Hence $\lambda_{n} \equiv d_{n}(\bmod 2)$. Values of λ_{n} are described by the OEIS sequence A001206; see Table 2. The last known term of this sequence, λ_{9}, was calculated in 2013 by Brouwer et al. [2].

n	λ_{n}
0	0
1	1
2	2
3	4
4	12
5	81
6	2,646
7	$1,422,564$
8	$229,809,982,112$
9	$423,295,099,074,735,261,880$

Table 2: Known values of λ_{n} (A001206).

Corollary 2. We have $d_{9} \equiv \lambda_{9} \equiv 0(\bmod 2)$.
One can directly check that $d_{n} \equiv \lambda_{n}(\bmod 2)$ for $n \leq 8$.

4 Divisibility of Dedekind numbers by 3

By Lemma 1, the poset D_{n+3} is isomorphic to the poset $D_{n}^{B^{3}}$ - the set of monotone functions from $B^{3}=\{000,001,010,100,110,101,011,111\}$ to D_{n}. Now consider the group S_{3} - the permutations on $\{1,2,3\}$. The group S_{3} is isomorphic to the automorphism group $\operatorname{Aut}\left(B^{3}\right)$ of the Boolean lattice B^{3}. The automorphism group $\operatorname{Aut}\left(B^{3}\right)$ acts in a natural way on $D_{n}^{B^{3}}$ by

$$
\alpha(f)=f \circ \alpha^{-1}
$$

for all $\alpha \in \operatorname{Aut}\left(B^{3}\right)$ and all $f \in D_{n}^{B^{3}}$. Let $\mathcal{O}(f)=\left\{\alpha(f) \in D_{n}^{B^{3}}: \alpha \in \operatorname{Aut}\left(B^{3}\right)\right\}$ denote the orbit of f under this action and by $\gamma(f)=|\mathcal{O}(f)|$ its cardinality. The orbits form a partition of $D_{n+3}=D_{n}^{B^{3}}$. Each of these orbits has one, three, or six elements. Moreover, an orbit $\mathcal{O}(f)$ has one element if and only if $f(001)=f(010)=f(100)$ and $f(011)=f(101)=f(110)$. Such a function f can be identified with a monotone function from the path P_{4} to D_{n}. Hence,

$$
d_{n+3} \equiv\left|D_{n}^{P_{4}}\right| \quad(\bmod 3)
$$

It is well known, see [1, 10], that the number of monotone functions from the path $P_{4}=(a<b<c<d)$ to a poset S is equal to the sum of the elements of the third power
of $M(S)$ —the incidence matrix of S. For example, for the poset $D_{1}=\{00<01<11\}$, we have

$$
M\left(D_{1}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
M\left(D_{1}\right)^{3}=\left(\begin{array}{lll}
1 & 3 & 6 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

The sum of the elements of $\left(M\left(D_{1}\right)^{3}\right)$ is equal to 15 , which is equal to $\left|D_{1}^{P_{4}}\right|$ - the number of monotone functions from P_{4} to D_{1}.

Furthermore, consider $D_{2}=\{0000,0001,0011,0101,0111,1111\}$ and its incidence matrix:

$$
M\left(D_{2}\right)=\left(\begin{array}{cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Now consider the third power of the incidence matrix of D_{2} :

$$
M\left(D_{2}\right)^{3}=\left(\begin{array}{cc|cc|cc}
1 & 3 & 6 & 6 & 14 & 20 \\
0 & 1 & 3 & 3 & 9 & 14 \\
\hline 0 & 0 & 1 & 0 & 3 & 6 \\
0 & 0 & 0 & 1 & 3 & 6 \\
\hline 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The sum of the elements of $\left(M\left(D_{2}\right)^{3}\right)$ is equal to 105 , which is equal to $\left|D_{2}^{P_{4}}\right|$ - the number of monotone functions from P_{4} to D_{2}. In a similar we can compute $\left|D_{n}^{P_{4}}\right|$ for $n=3,4,5$. Unfortunately, this method cannot be easily applied for $n=6$, because $M\left(D_{6}\right)$ is too large. However, Pawelski [8] proposed another method: $\left|D_{(n+m)}^{P_{4}}\right|=\left|D_{n}^{P_{4} \times B^{m}}\right|=\left|\left(D_{n}^{P_{4}}\right)^{B^{m}}\right|$ (also see [10]). Using the same program as used in [8] to compute $\left|D_{5}^{P_{4}}\right|$ we can calculate $\left|D_{6}^{P_{4}}\right|$ and the result (see Table 3) is divisible by 3 .

Corollary 3. As $\left|D_{6}^{P_{4}}\right|=868329572680304346696$ is divisible by 3, the quantity d_{9} is also divisible by 3.

One can directly check that $d_{n+3} \equiv\left|D_{n}^{P_{4}}\right|(\bmod 3)$ for $n \leq 5$.

n	$\left\|D_{n}^{P_{4}}\right\|$	$\left\|D_{n}^{P_{4}}\right\| \bmod 3$
0	5	2
1	15	0
2	105	0
3	3,490	1
4	$2,068,224$	0
5	$262,808,891,710$	1
6	$868,329,572,680,304,346,696$	0

Table 3: Known values of $\left|D_{n}^{P_{4}}\right|$. Note that $d_{n+3} \equiv\left|D_{n}^{P_{4}}\right|(\bmod 3)$.

5 Main lemma

In the sequel we shall use another definition of a group acting on $D_{n}^{B^{k}}$. In order to do this it is convenient to identify the lattice $D_{n}=B^{B^{n}}$ with the isomorphic up-set lattice \mathcal{U}_{n} of B^{n}. An isomorphism is given by $h: D_{n} \rightarrow \mathcal{U}_{n}$, where $h(x)=x^{-1}(1)$ for all $x \in D_{n}$. For $\beta \in \operatorname{Aut}\left(B^{n}\right)$ and $x \in D_{n}$, we have

$$
h(\beta(x))=\beta(h(x)) .
$$

Let P and Q be two posets and let P^{Q} be the poset of monotone functions from Q to P. Now, we can define an action of $\operatorname{Aut}(P)$ on P^{Q} by setting

$$
\beta(f)=\beta \circ f
$$

for all $\beta \in \operatorname{Aut}(P)$ and $f \in P^{Q}$. We let

$$
\mathcal{O}(f)=\{\beta(f): \beta \in \operatorname{Aut}(P)\}
$$

denote the orbit of f under this action. Additionally, for $p \in P$, we write

$$
[p]=\{\beta(p): \beta \in \operatorname{Aut}(P)\}
$$

for the orbit of p under the natural action of $\operatorname{Aut}(P)$ on P.
We use \sim to denote an equivalence relation on D_{n}. Namely, two functions $p, r \in D_{n}$ are equivalent, $p \sim r$, if there is an automorphism $\alpha \in \operatorname{Aut}\left(D_{n}\right)$ such that $p=\alpha(r)$. For a function $p \in D_{n}$ its equivalence class is the set $[p]=\left\{r \in D_{n}: r \sim p\right\}$. We let $\gamma(f)$ denote $|[f]|$. For $m>1$, let $E_{n, m}=\left\{p \in D_{n}: \gamma(f) \equiv 0(\bmod m)\right\}$ and $E_{n, m}^{c}=D_{n}-E_{n, m}$. For the class $[p]$, we define its canonical representative as the one element in $[p]$ chosen to represent the class. One of the possible approaches is to choose its minimal (according to the total order \preceq) element [11]. Sometimes we shall identify the class [p] with its canonical representative and treat $[p]$ as an element in D_{n}. We let R_{n} denote the set of equivalence classes and r_{n} the number of equivalence classes; that is, $r_{n}=\left|R_{n}\right|$. Values of r_{n} are described by A003182 OEIS sequence; see Table 1.

Lemma 4. For every $q \in Q$ and every $f \in P^{Q}$, the integer $|[f(q)]|$ divides $|\mathcal{O}(f)|$.
Proof. For every $p \in[f(q)]$ we define

$$
\mathcal{G}(p):=\{g \in \mathcal{O}(f): g(q)=p\} .
$$

The sets $\mathcal{G}(p), p \in[f(q)]$ form a partition of $\mathcal{O}(f)$ and the sets $\mathcal{G}(p)$ have the same cardinality. Indeed, for every $\beta \in \operatorname{Aut}(P)$,

$$
g \in \mathcal{G}(f(q)) \quad \Longleftrightarrow \quad \beta(g) \in \mathcal{G}(\beta(f(q)))
$$

Lemma 5. For arbitrary subset $W \subseteq Q$, the cardinality of P^{Q} is congruent modulo m to the cardinality of

$$
\left\{f \in P^{Q}: f(W) \subseteq E_{n, m}^{c}\right\}
$$

Proof. For each automorphism $\alpha \in \operatorname{Aut}(P)$ and for each $p \in P$, we have $[p]=[\alpha(p)]$. Hence,

$$
p \in E_{n, m}^{c} \quad \Longleftrightarrow \quad \alpha(p) \in E_{n, m}^{c}
$$

and for every function $f \in P^{Q}$, we have

$$
f(W) \subseteq E_{n, m}^{c} \quad \Longleftrightarrow \alpha \circ f(W) \subset E_{n, m}^{c}
$$

Orbits $\mathcal{O}(f)$ form a partition of P^{Q}. If $f \sim g$ (or in other words if $f \in \mathcal{O}(g)$), then there exists automorphism $\alpha \in \operatorname{Aut}(P)$, such that $g=\alpha \circ f$ and

$$
f(W) \subseteq E_{n, m}^{c} \quad \Longleftrightarrow \quad g(W) \subseteq E_{n, m}^{c}
$$

So we have two kinds of orbits:

- orbits $\mathcal{O}(f)$, where $g(W) \subseteq E_{n, m}^{c}$ for all $g \in \mathcal{O}(f)$,
- orbits $\mathcal{O}(f)$, where $g(W) \nsubseteq E_{n, m}^{c}$ for all $g \in \mathcal{O}(f)$.

Moreover, if $f(W) \nsubseteq E_{n, m}^{c}$, then there exists $w \in W$ such that $f(w) \in E_{n, m}$, hence, m divides $|[f(w)]|$ and by Lemma 4, m divides $|\mathcal{O}(f)|$.

6 Counting functions from B^{2} to D_{n}

By Lemma 1, the poset D_{n+2} is isomorphic to the poset $D_{n}^{B^{2}}$ - the poset of monotone functions from $B^{2}=\{00,01,10,11\}$ to D_{n}. Consider the function G that, for every pair $(x, y) \in D_{n}^{2}$, takes the value

$$
G(x, y)=\operatorname{re}(x \mid y, \top) \cdot \operatorname{re}(\perp, x \& y)
$$

Observe that $G(x, y)$ is equal to the number of functions $f \in D_{n}^{B^{2}}$ with $f(01)=x$ and $f(10)=y$. Function G is well-known, as it is discussed in [3, 4, 11].

For $A \subseteq D_{n} \times D_{n}$ let $G(A)$ denote $\sum_{(x, y) \in A} G(x, y)$. By Lemma 1, we have

$$
d_{n+2}=G\left(D_{n} \times D_{n}\right)=\sum_{x \in D_{n}} \sum_{y \in D_{n}} G(x, y)
$$

Consider the set $W_{2}=\{01,10\}$. By Lemma 5, we have

$$
d_{n+2} \equiv G\left(D_{n} \times D_{n}\right) \equiv G\left(E_{n, m}^{c} \times E_{n, m}^{c}\right) \quad(\bmod m)
$$

Observe that, for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right)$ and every $x, y \in D_{n}$, we have $G(x, y)=G(\pi(x), \pi(y))$.

Lemma 6. Let Y be a subset $Y \subseteq D_{n}$ and suppose that $\pi(Y)=Y$ for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right.$; and let x and y be two equivalent, $x \sim y$, elements in D_{n}. Then

1. $G(\{x\} \times Y)=G(\{y\} \times Y)$.
2. $G([x] \times Y)=\gamma(x) \cdot G(\{x\} \times Y)$.

Proof. Notice that condition $\pi(Y)=Y$ implies that π is a bijection on Y, or in other words, π permutes the elements of Y.

For (1), observe that

$$
\begin{aligned}
G(\{x\} \times Y) & =\sum_{s \in Y} G(x, s)=\sum_{s \in Y} G(\pi(x), \pi(s)) \\
& =\sum_{t \in \pi(Y)} G(\pi(x), t)=\sum_{t \in Y} G(\pi(x), t)=G(\{\pi(x)\} \times Y)
\end{aligned}
$$

We use the fact that $\pi(Y)=Y$.
Observe that for every automorphism $\pi \in \operatorname{Aut}\left(b^{n}\right)$, we have and $\pi\left(E_{n, m}^{c}\right)=E_{n, m}^{c}$. Hence, by Lemma 6, we get

Theorem 7.

$$
d_{n+2} \equiv \sum_{x \in R_{n} \cap E_{n, m}^{c}} \sum_{y \in E_{n, m}^{c}} \gamma(x) \cdot G(x, y) \quad(\bmod m)
$$

Here we identify each class $[x] \in R_{n}$ with its canonical representative.
Example 8. Consider the poset $D_{2}=\{0000,0001,0011,0101,0111,1111\}$. There are five equivalence classes: namely, $R_{2}=\{\{0000\},\{0001\},\{0011,0101\},\{0111\},\{1111\}\}$. Two elements: 0101 and 0011 are equivalent. For $m=2$, we have $E_{2,2}=\{0011,0101\}$ and $E_{2,2}^{c}=\{0000,0001,0111,1111\}$. Table 4 presents values of $G(x, y)$ for $x, y \in D_{2}$. Let
$Y=[0011]=\{0011,0101\}$. For every permutation $\pi \in S_{2}$, we have $\pi(Y)=Y$. Furthermore, $G(\{0011\} \times Y)=G(\{0101\} \times Y)=9+4=13$; and $G([0011] \times Y)=2 \cdot 13=26$, which is divisible by 2 .

Similarly, for $Z=[0001]=\{0001\}$, we have that $\pi(Z)=Z$ for every permutation $\pi \in S_{2}$. Furthermore, $G(\{0011\} \times Z)=G(\{0101\} \times Z)=6$; and $G([0011] \times Z)=2 \cdot 6=12$, which is divisible by 2. By summing up all values in Table 4 we obtain $G\left(D_{2} \times D_{2}\right)=168=d_{4}$.

y	0000	0001	0011	0101	0111	1111
0000	6	5	3	3	2	1
0001	5	10	6	6	4	2
0011	3	6	9	4	6	3
0101	3	6	4	9	6	3
0111	2	4	6	6	10	5
1111	1	2	3	3	5	6

Table 4: Values of $G(x, y)$ for $x, y \in D_{2}$.

Example 9 (Continuation of Example 8). By summing the relevant values listed in Table 4, we obtain $G\left(E_{2,2}^{c} \times E_{2,2}^{c}\right)=6+5+2+1+5+10+4+2+2+4+10+5+1+2+5+6=70$. By Theorem 7 , we have $d_{4} \equiv 70(\bmod 2)$. Indeed, $d_{4}=168$, which is even.

7 Counting functions from B^{3} to D_{n}

In the next two sections, we show that similar techniques can be also applied to functions in $D_{n}^{B^{3}}$ and $D_{n}^{B^{4}}$. Consider the function H which for every triple $(x, y, z) \in D_{n}^{3}$ returns the value

$$
H(x, y, z)=\operatorname{re}(\perp, x \& y \& z) \cdot \sum_{s \geq x|y| z} \operatorname{re}(x \mid y, s) \cdot \operatorname{re}(x \mid z, s) \cdot \operatorname{re}(y \mid z, s)
$$

Observe that $H(x, y, z)$ is equal to the number of monotone functions $f \in D_{n}^{B^{3}}$ with $f(001)=$ $x, f(010)=y$ and $f(100)=z$. Thus, we have

$$
d_{n+3}=H\left(D_{n}^{3}\right)=\sum_{x \in D_{n}} \sum_{y \in D_{n}} \sum_{z \in D_{n}} H(x, y, z) .
$$

Function H is discussed in [3]. Consider the set $W_{3}=\{001,010,100\}$. By Lemma 5, we have

$$
d_{n+3} \equiv G\left(D_{n} \times D_{n} \times D_{n}\right) \equiv G\left(E_{n, m}^{c} \times E_{n, m}^{c} \times E_{n, m}^{c}\right) \quad(\bmod m)
$$

Observe that for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right)$ and every $x, y, z \in D_{n}$, we have $H(x, y, z)=H(\pi(x), \pi(y), \pi(z))$.

Lemma 10. Let Y and Z be subsets $Y, Z \subseteq D_{n}$ and suppose that $\pi(Y)=Y$ and $\pi(Z)=Z$ for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right)$; and let x and y be two equivalent, $x \sim y$, elements in D_{n}. Then

1. $H(\{x\} \times Y \times Z)=H(\{y\} \times Y \times Z)$.
2. $H([x] \times Y \times Z)=\gamma(x) \cdot H(\{x\} \times Y \times Z)$.

Proof. (1) $H(\{x\} \times Y \times Z)=\sum_{s \in Y} \sum_{t \in Z} H(x, s, t)=\sum_{s \in Y} \sum_{t \in Z} H(\pi(x), \pi(s), \pi(t))=$ $\sum_{u \in \pi(Y)} \sum_{v \in \pi(Z)} H(\pi(x), u, v)=\sum_{u \in Y} \sum_{v \in Z} H(\pi(x), u, v)=H(\{\pi(x)\} \times Y \times Z)$. We use the fact that π is a bijection on $Y \times Z$ and permutes the elements of $Y \times Z$.

As an immediate corollary, we have the following:
Theorem 11.

$$
d_{n+3} \equiv \sum_{x \in R_{n} \cap E_{n, m}^{c}} \sum_{y \in E_{n, m}^{c}} \sum_{z \in E_{n, m}^{c}} \gamma(x) \cdot H(x, y, z) \quad(\bmod m) .
$$

Here, again, we identify each class $[x] \in R_{n}$ with its canonical representative.
Example 12. Consider D_{4}. There are 168 elements in D_{4} and 30 equivalence classes in R_{4}. The distribution of these equivalence classes based on their γ value is presented in Table 5 . For instance, there are six equivalence classes $[x]$ with $\gamma(x)=1$, two equivalence classes with $\gamma(x)=3$, and so forth. For $m=2$, the set $E_{4,2}^{c}$ contains only twelve elements and $R_{4} \cap E_{4,2}^{c}$ contains eight elements. Similarly, for $m=3$, the set $E_{4,3}^{c}$ contains 42 elements and $R_{4} \cap E_{4,3}^{c}$ consists of 15 elements.

Example 13. We employed a Java implementation of the Theorem 11. For $n=4$ and $m=2,3,4,6,12$ we have
$d_{7} \equiv 2320978352(\bmod 2)$, and therefore $d_{7} \bmod 2=0$,
$d_{7} \equiv 74128573428(\bmod 3)$, and therefore $d_{7} \bmod 3=0$,
$d_{7} \equiv 128268820802(\bmod 4)$, and therefore $d_{7} \bmod 4=2$,
$d_{7} \equiv 89637133284(\bmod 6)$, and therefore $d_{7} \bmod 6=0$,
$d_{7} \equiv 566167187562(\bmod 12)$, and therefore $d_{7} \bmod 12=6$.
One can check these values directly by dividing d_{7} by $2,3,4,6$, and 12 .

8 Counting functions from B^{4} to D_{n}

By Lemma 1, the poset D_{n+4} is isomorphic to the poset $D_{n}^{B^{4}}$ - the set of monotone functions from B^{4} to D_{n}. Consider the function F (also discussed in [3, 4]), which for every six elements $a, b, c, d, e, f \in D_{n}$, counts how many functions $g \in D_{n}^{B^{4}}$ satisfy the following equations: $g(0011)=a, g(0101)=b, g(1001)=c, g(0110)=d, g(1010)=e, g(1100)=f$.

k	$\left\|\left\{f \in R_{4}: \gamma(f)=k\right\}\right\|$
1	6
3	2
4	9
6	6
12	7

Table 5: Number of $f \in R_{4}$ with $\gamma(f)=k$.
For $A \subseteq\left(D_{n}\right)^{6}$ let $F(A)$ denote $\sum_{(a, b, c, d, e, f) \in A} F(a, b, c, d, e, f)$. By Lemma 1, we have

$$
d_{n+4}=F\left(D_{n}^{6}\right)=\sum_{a \in D_{n}} \sum_{b \in D_{n}} \sum_{c \in D_{n}} \sum_{d \in D_{n}} \sum_{e \in D_{n}} \sum_{f \in D_{n}} F(a, b, c, d, e, f) .
$$

Consider the set $W_{4}=\{0011,0101,1001,0110,1010,1100\}$. By Lemma 5, we have

$$
d_{n+4} \equiv F\left(D_{n}^{6}\right) \equiv F\left(\left(E_{n, m}^{c}\right)^{6}\right) \quad(\bmod m)
$$

Observe that for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right)$ and every $a, b, c, d, e, f \in D_{n}$, we have $F(a, b, c, d, e, f)=F(\pi(a), \pi(b), \pi(c), \pi(d), \pi(e), \pi(f))$. Consider Cartesian product $Y=$ $Y_{1} \times Y_{2} \times Y_{3} \times Y_{4} \times Y_{5}$ and let $\pi\left(y_{1}, \ldots, y_{5}\right)=\left(\pi\left(y_{1}\right), \ldots, \pi\left(y_{5}\right)\right)$. Observe that, if $\pi\left(Y_{i}\right)=Y_{i}$ for every i, then $\pi(Y)=Y$ and π permutes the elements of Y.

Lemma 14. Let Y be a subset $Y \subseteq D_{n}^{5}$ and suppose that $\pi(Y)=Y$ for every automorphism $\pi \in \operatorname{Aut}\left(B^{n}\right)$; and let x and y be two equivalent, $x \sim y$, elements in D_{n}. Then

1. $F(\{x\} \times Y)=F(\{y\} \times Y)$.
2. $F([x] \times Y)=\gamma(x) \cdot F(\{x\} \times Y)$.

Proof. (1) $F(\{x\} \times Y)=\sum_{s \in Y} F(x, s)=\sum_{s \in Y} F(\pi(x), \pi(s))=\sum_{u \in \pi(Y)} F(\pi(x), u)=$ $\sum_{u \in Y} F(\pi(x), u)=F(\{\pi(x)\} \times Y)$. We use the fact that π is a bijection on Y and permutes the elements of Y.

As a corollary we get the following result.

Theorem 15.

$$
d_{n+4} \equiv \sum_{a \in R_{n} \cap E_{n, m}^{c}} \sum_{b \in E_{n, m}^{c}} \sum_{c \in E_{n, m}^{c}} \sum_{d \in E_{n, m}^{c}} \sum_{e \in E_{n, m}^{c}} \sum_{f \in E_{n, m}^{c}} \gamma(a) \cdot F(a, b, c, d, e, f) \quad(\bmod m) .
$$

Example 16. We utilized a Java implementation of the Theorem 15. For $n=4$ and $m=2,3,4,6,12$ we get
$d_{8} \equiv 53336702474849828$, and therefore $d_{8} \bmod 2=0 ;$
$d_{8} \equiv 3019662424037271148(\bmod 3)$, and therefore $d_{8} \bmod 3=1$;
$d_{8} \equiv 25754060568741983624(\bmod 4)$, and therefore $d_{8} \bmod 4=0$;
$d_{8} \equiv 14729824485525634108(\bmod 6)$, and therefore $d_{8} \bmod 6=4$;
$d_{8} \equiv 15054599294580333880(\bmod 12)$, and therefore $d_{8} \bmod 12=4$.
One can check these values directly by dividing d_{8} by $2,3,4,6$, and 12 .

9 Application

To compute remainders of d_{9} divided by 5 and 7 , we chose the algorithm described in Section 6. Our implementation lists all 490,013,148 elements of R_{7} and calculates $\gamma(x)$ and $\mathrm{re}(\perp, x)$ for each element $x \in R_{7}$. This feat was previously accomplished only by Van Hirtum in 2021 [6]. It is worth noting that the number of elements x in R_{n} with $\gamma(x)=n$! for $n>1$ can be found in the OEIS sequence A220879 (see Table 6). Using the available precalculated sets, we can efficiently determine the 7 th term of the sequence, which was not recorded in the OEIS before.

n	$\underline{\text { A220879 }}(n)$
1	0
2	1
3	0
4	0
5	7
6	7281
7	468822749

Table 6: Inequivalent monotone Boolean functions of n variables with no symmetries.

Our program's most critical part, the Boolean function canonization procedure, is based on Van Hirtum's fast approach [6, Section 5.2.9] and implemented in Rust. Our program is running on a 32 -thread machine with Xeon cores.

After the preprocessed data has been loaded into the main memory, the test was performed and the value of d_{8} was recomputed in just 16 seconds. However, using this method to check the divisibility of d_{9} for any value of m is significantly more challenging.

In order to determine which remainders can be computed by our methods, we can use the information in Table 7. Note that

$$
\left|E_{7, m}^{c}\right|=\sum_{\substack{x \in R_{7} \\ \gamma(x) \bmod m \neq 0}} \gamma(x) .
$$

The four smallest $E_{7, m}^{c}$ are $E_{7,7}^{c}$ with 9999 elements, $E_{7,3}^{c}$ with 108873 elements, $E_{7,21}^{c}$ with 118863 elements, and $E_{7,5}^{c}$ with 154863 elements. Since d_{9} is already known to be divisible by 3 , the next step is to compute the remainders of d_{9} divided by 5 and 7 .

9.1 Remainder of d_{9} divided by 5

$$
\sum_{x \in R_{7} \cap E_{7,5}^{c}} \sum_{y \in E_{7,5}^{c}} \gamma(x) \cdot G(x, y)=1404812111893131438640857806
$$

k	$\left\|\left\{f \in R_{7}: \gamma(f)=k\right\}\right\|$
1	9
7	27
21	75
30	5
35	117
42	99
70	90
84	9
105	1206
120	4
140	702
210	3255
252	114
315	2742
360	18
420	26739
504	237
630	47242
720	4
840	75024
1260	1024050
1680	3128
2520	20005503
5040	468822749

Table 7: Number of $f \in R_{7}$ with the given $\gamma(f)$.
therefore, by Theorem 7 , we have $d_{9} \bmod 5=1$. We calculated this number in approximately 7 hours. Moreover, using Theorem 15 we have $d_{9} \equiv 157853570524864492086(\bmod 5)$, which confirms that $d_{9} \bmod 5=1$.

9.2 Remainder of d_{9} divided by 7

$$
\sum_{x \in R_{7} \cap E_{7,7}^{c}} \sum_{y \in E_{7,7}^{c}} \gamma(x) \cdot G(x, y)=29989517764506682537562623
$$

therefore, by Theorem 7 , we have $d_{9} \bmod 7=6$. We calculated this number in approximately half an hour.

10 Acknowledgments

We would like to thank the anonymous referee for his useful suggestions and references.

References

[1] M. Aigner. Combinatorial Theory. Springer, 1979.
[2] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek. Counting families of mutually intersecting sets. Electron. J. Comb. 20 (2013).
[3] F. a Campo. Relations between powers of Dedekind numbers and exponential sums related to them. J. Integer Sequences 21 (2018), Article 18.4.4.
[4] R. Fidytek, A. W. Mostowski, R. Somla, and A. Szepietowski. Algorithms counting monotone Boolean functions. Inform. Process. Lett. 79 (2001), 203-209.
[5] C. Jäkel. A computation of the ninth Dedekind number, arxiv preprint arXiv:2304.00895 [math.CO], 2023.
Available at https://arxiv.org/abs/2304.00895.
[6] L. Van Hirtum. A path to compute the 9th Dedekind number using FPGA supercomputing (2021). Master's thesis, available at https://hirtum.com/thesis.pdf.
[7] L. Van Hirtum, P. De Causmaecker, J. Goemaere, T. Kenter, H. Riebler, M. Lass, and C. Plessl. A computation of $\mathrm{D}(9)$ using FPGA supercomputing, preprint, 2023. Available at https://arxiv.org/abs/2304.03039.
[8] B. Pawelski. On the number of inequivalent monotone Boolean functions of 8 variables. J. Integer Sequences 25 (2022), Article 25.7.7.
[9] N. J. A. Sloane. The On-line Encyclopedia of Integer Sequences. Available at https:// oeis.org.
[10] A. Szepietowski. Fixes of permutations acting on monotone Boolean functions. J. Integer Sequences 25 (2022), Article 25.9.6.
[11] D. Wiedemann. A computation of the eighth Dedekind number. Order 8 (1991), 5-6.
[12] D. Wiedemann. Letter to N. J. A. Sloane (1990). Available at https://oeis.org/ A000372/a000372.pdf.
[13] K. Yamamoto. Note on the order of free distributive lattices. Sci. Rep. Kanazawa Univ. 2 (1953), 5-6.

2020 Mathematics Subject Classification: Primary 06E30.
Keywords: Dedekind number, monotone Boolean function, ninth Dedekind number, congruence modulo, Chinese remainder theorem.
(Concerned with sequences $\underline{\text { A000372, }} \underline{\text { A001206, }} \underline{\text { A003182 }}$ and $\underline{\text { A220879.) }}$

Received March 15 2023; revised versions received March 16 2023; May 17 2023; June 13 2023; June 14 2023. Published in Journal of Integer Sequences, August 162023.

Return to Journal of Integer Sequences home page.

