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Abstract

For an integer k£ > 2, let Fﬁk) be the k-generalized Fibonacci sequence that starts
with 0,...,0,1,1 (k terms) and each term afterwards is the sum of k preceding terms. In
this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers.

More explicitly, we solve the Diophantine equation FT(Lk) = Le,, in positive integers
n, k,m with k > 2.

1 Introduction

The Fibonacci and Lucas sequence are two fascinating topics in integer sequences. The
Leonardo sequence (Ley,)m>o is an integer sequence that is related to the Fibonacci and
Lucas sequences. Leonardo numbers are discussed by Catarino and Borges [9]. It is the
sequence A001595 in the OEIS satisfying the recurrence relation

Le,, = Le,,_1 + Le,,_o+1 (1)
for m > 2 with the initial terms Ley = 1 and Le; = 1. The first few terms of (Le,,)n>0 are

1,1,3,5,9,15, 25,41, 67,109, 177, 287, 465, 753, 1219, 1973, . . ..
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In the recent past, many aspects of Leonardo sequence have been studied such as hybrid
Leonardo numbers [1], incomplete Leonardo numbers [10], Leonardo Pisano polynomials,
hybrinomials [14] and ¢-Leonardo hybrid numbers [16].

The Fibonacci sequence (F,),>o is the binary recurrence sequence given by

Fooo=F, .1+ F, forn>0

with the initial terms Fy = 0 and F; = 1.
Let £ > 2 be an integer. One of numerous generalizations of the Fibonacci sequence,
called the k-generalized Fibonacci sequence (Fqﬁk))@,(k,m is given by the recurrence

n n— —
=1

with the initial conditions FE"&_Z) = FEIEL_:,’) = ... = ék) = 0 and Fl(k) = 1. Here, F,(Lk)
denotes the nth k-generalized Fibonacci number.

Note that for k£ = 2, we have F® = F,, the nth Fibonacci number. For k£ = 3, we have
F,SS) = T, the nth Tribonacci number. They are followed by the Tetranacci numbers for
k = 4, and so on.

A Leonardo number is called k-Fibonacci Leonardo number if it is a k-generalized Fi-
bonacci number. The aim of this paper is to determine all the k-Fibonacci Leonardo numbers.

Finding the intersection of two recurrent sequences of positive integers is a topic that
has been extensively studied in number theory. Currently, several researchers have been
interested in finding the intersection of the k-generalized Fibonacci sequence with other
number sequences. For instance, one can go through [4, 5, 6, 13, 17, 18].

Motivated by the above literature, we study the Diophantine equation

E® = Le,,. (3)
In particular, our main result is the following.

Theorem 1. All the solutions of the Diophantine equation (3) in positive integers with k > 2
are given by

(n, k,m) € {(1,k,0),(2,k,0), (1,k,1), (2, k1), (4,2,2), (5,2,3), (6,4,5)}.

Thus, the only k-Fibonacci Leonardo numbers are 1, 3, 5, and 15.

2 Auxiliary results

Our proof of Theorem 1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport [3] (and improved
by Dujella and Petho [12]). Here, we use a variant due to de Weger [19], but first, recall
some basic notation from algebraic number theory.

2



2.1 Linear forms in logarithms
Let v be an algebraic number of degree d with minimal primitive polynomial

d
F(X) = apX+a X+ dag=ag H(X — 79Dy e Z[X],

i=1

where the a; are relatively prime integers, ag > 0, and the %) are conjugates of 7. Then

i=1

h(v) = é (log agp + Z log(nnax{h(i)‘7 1})) (4)

is called the logarithmic height of ~.
With the established notation, Matveev (see [15] or [8, Theorem 9.4]) proved the following
result.

Theorem 2. Assume that ny,...,n; are positive real algebraic numbers in a real algebraic
number field K of degree D, by, ..., b; are rational integers, and

Mmoo =1,
18 not zero. Then
|A| > exp(—1.4-30"" - t* . D*(1 4+ log D)(1 + log B) Ay - - - 4;),

where
B > max{|bi], ..., b},

and
A; > max{Dh(n;),|logn;|,0.16}, for alli=1,... t.

2.2 The de Weger reduction algorithm

Here we present a variant of the reduction method of Baker and Davenport [3] (and improved
by Dujella and Petho [12]) due to de Weger [19].
Let ¥1,75,0 € R be given and let x1, x5 € Z be unknowns. Let

A =0+ x10 + 2205. (5)
Set X = max{|z1,|z2|}. Let Xo,Y be positive. Assume that
Al < coxp (—pY) (6)

and
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where ¢, p be positive constants. When ¢ = 0 in (5), we get

A= 171191 + 172192.

Put ¥ = —0;/095. We assume that z; and x5 are coprime. Let the continued fraction
expansion of ¥ be given by

lag, ai, as, .. .|,
and let the kth convergent of ¥ be py/qy for £k =0,1,2,.... We may assume without loss of

generality that [0 < |[¥s] and x; > 0. We have the following results.

Lemma 3. [19, Lemma 3.1] If (6) and (7) hold for xy, xo with X > 1 and 6 = 0, then
(—x9,21) = (P, qx) for an index k that satisfies

log(1 + Xv/5) :

k< -1+
log (_1+2\/S)

—Y,.

Lemma 4. [19, Lemma 3.2] Let

A= max agsq.
0<k<Yp

If (6) and (7) hold for x1, xo with X > 1 and § =0, then

1 A+2 1 1 A+2)X,
Y < —log <u> + —log X < —log <u> .
p | p p |02

When 6 # 0 in (5), put 9 = =01 /99 and ¢ = §/V5. Then we have

A
0—2:w—$119+$2.

Let p/q be a convergent of ¥ with ¢ > Xj. For a real number z, we let ||z|| = min{|z —n| :
n € Z} be the distance from x to the nearest integer. We have the following result.

Lemma 5. [19, Lemma 3.3] Suppose that

2Xy

lall >
q

Then the solutions of (6) and (7) satisfy

1 q*c )
Y <-1lo .
p e (|192!X0




2.3 Properties of the Leonardo sequence

The characteristic equation of (Le, )0 is #® — 22? — 1 = 0, which has roots a = %5 and

3 = =1 (see [2]). The Binet formula for Le,, is

Le,, =2 (M) —1= Al 10)4 : g(2ﬁm =b) for all m > 0. (8)

Lemma 6. The inequality
a™ < Le, < o™, (9)

holds for all positive integers m > 2.
Proof. This can be easily proved by the method of induction on m. O]

Lemma 7. [9, Lemma 2.1] For allm > 0, the m-th Leonardo number Le,, is an odd number.

2.4 Properties of the k-generalized Fibonacci sequence

In this subsection, we recall some facts and properties of the k-generalized Fibonacci sequence
which will be used later. The characteristic polynomial of the k-generalized Fibonacci se-
quence is

k k—1

Up(x)=a" =" —--—ax— 1.

The polynomial W (x) is irreducible over Q[z] and has just one root outside the unit circle.
It is real and positive, so it satisfies ¢(k) > 1. The other roots are strictly inside the unit
circle. Throughout this paper, ¢ := ¢(k) denotes that single root, which is located between
2(1 —27%) and 2 (see [20]). To simplify the notation, in general, we omit the dependence of
k on ¢.

Dresden and Du [11] gave the following simplified Binet-like formula for FP:

k k
;— 1
Fk) — ol = Pi n—1 10
where ¢ := @1, @9, ...,k are the roots of the characteristic polynomial Wy (z). It was also

proved in [11] that the contribution of the roots that lie inside the unit circle to the formula
(10) is very small, namely that the approximation

1
|F,£k) _ fk(¢)¢”—1‘ < 5 holds for all n > 2 —k. (11)

Furthermore, it was shown by Bravo and Luca in [7] that the inequality

"2 < FF < " holds for all n > 1 and k > 2. (12)



)

The first direct observation is that the first & + 1 non-zero terms in F\ are powers of 2,

namely

V=17 =1 K" =2, 7" =4, R

_ ok—1
k1= 2

while the next term in the above sequence is F, ,5?2 = 2F — 1. Thus, we have that
F® = 9m=2 holds for all 2 <n < k+ 1.
We also observe that the recursion (2) implies the three-term recursion
FW —2F® _F®  foralln >3,

which shows that the k-generalized Fibonacci sequence grows at a rate less than 272, In
fact, the inequality F\¥) < 27=2 holds for all n > k + 2 (see [7, Lemma 2]).
The following result was proved by Bravo and Luca [7].

Lemma 8. Let k > 2, ¢ be the dominant root of (ngk))nz,(k,g), and consider the function
defined in (10). Then the inequalities

1 ,
3 < frlp) < ?1 and |fk(g0(’))‘ <1 hold for all 2<i<k.
In addition, they proved that the logarithmic height of f satisfies

h(fr(¢)) <log(k+ 1) +logd forall k> 2. (13)

We finish this subsection with the following estimate due to Bravo, Gémez, and Luca [5],
which will be used later.

Lemma 9. Let k > 2 and suppose that n < 2¥/2. Then

. 1
EW® = 9n=2(1 1 ¢) where || < ST

3 Proof of Theorem 1

Proof. First, note that Fl(k) = FQ(k) =1 = Ley = Le;. Therefore, we may assume that n > 3.

For 3 <n <k + 1, we have that F,(Lk) = 2772 but Le,, is an odd number for m > 0. Thus,
there is no solution of (3) in this range. From now, we assume that n > k + 2 and k& > 2.
Combining the inequalities (9) and (12) together with equation (3), we have

Son—2 S am-l—l and am S Spn—l'

(n—2) (log‘p) —1<m<(n-1) (IOW)

log log o

Then, we deduce that

Using the fact 2(1 —27%) < ¢(k) < 2 for all k > 2, it follows that
0.8n — 2.6 < m < 1.5n — 1.5. (14)



3.1 An inequality for n and m in terms of £

By using (3), (8), (11) and taking absolute value, we obtain

2am+1 1 Q‘ﬁ‘m-i-l ’ _ Oé’ ﬂ
7 <3 + NG 7 + N3 (15)

Dividing both sides of the above inequality by 20‘\75 , we conclude that

frlp)e" ™t — +

‘ <\/§];€(<p)> QOn_lOé_(erl) 1| < 4o (16)
Let
A1 — (ﬁ%(@)) (pn—la—(m—&—l) —1, (17)
and inequality (16) becomes
A < da™. (18)

Before applying Theorem 2, we need to prove that A; # 0. Assume that Ay = 0, then we
get

2 e g me),

\/5<P
and so fx(p) is an algebraic integer, which is impossible. Thus, A; # 0. Therefore, we apply
Theorem 2 to get a lower bound for Ay given by (17) with the parameters:

\/gfk<90)
2

m=—5 5 MN:=¢ I3=qaq
and
by =1, by:=n—1, byg:=—(m+1).

Note that 71,72, 73 are positive real numbers and belong to the field K := Q(p, v/5). So we
can take D := [K : Q] < 2k. Since h(ny) = (log¢)/k < (log2)/k and h(ns) = (loga)/2, we
choose

max{2kh(ny),|logns|,0.16} = 2log2 := A,

and
max{2kh(ns), | logns|,0.16} = kloga := As.

By using the estimate (13) and the properties of logarithmic height, we get that for all k£ > 2

) < B(fule) + h (%5)

< log(k + 1) +log4 + log (2\/3>
< 5.8logk.



Thus, we obtain
max{2kh(m),|logm|,0.16} = 11.6klogk := A;.

In addition, by (14) we take B := 1.5n. Then by Theorem 2, we have
|A1] > exp (—1.432 x 10" (2k)*(1 + log 2k)(1 + log 1.5n)(11.6k log k) (2log 2)(klog av)) . (19)

Comparing (18) and (19), taking logarithms and then performing the respective calculations,
we get that

mloga —log4 < 4.43 x 10"k* log k(1 + log 2k)(1 + log 1.5n).

Taking into consideration the facts 1 + log2k < 3.5logk for all £k > 2 and 1 + log1.5n <
2.11logn for all n > 4, we conclude that

m < 6.77 x 103 k*1og? k log n.

Using (14), the last inequality becomes

< 847 x 103k* log? k. (20)
logn

Since the function x — z/logx is increasing for all = > e, it is easy to check that

< S = x<2SlogS whenever S > 3. (21)
log x

Then, taking  := n and S := 8.47 x 10%k*log® k, inequality (21) together with 32.07 +
4logk + 2loglogk < 49.3log k for all k£ > 2, yields

n <2 (8.47 x 10"k"log” k) log (8.47 x 10"k* log® k)

< (1.69 x 10"k*1og” k)(32.07 + 4log k + 2log log k)
< 8.35 x 10¥k* log® k.

By combining the above results, we obtain the following lemma.

Lemma 10. If (n,k,m) is a solution in integers of equation (3) with k > 2 and n >k + 2,
then the inequalities
0.6m < n < 8.35 x 10"°k*1log” k (22)

hold.



3.2 The case of small &
Suppose now that k € [2,230]. In order to apply Lemma 5, we let

)
I'y:=(n—1)loge — (m+1)loga+ log (%) : (23)
Then e!' — 1 := Ay, where A; is defined by (17). Therefore, (18) can be written as
et — 1] < 4a™™. (24)

Note that I'; # 0. Since A; # 0, we distinguish the following cases. If I'; > 0, then ' —1 > 0.
Using the fact z < e* — 1 for all € R and the inequality (24), we obtain

0<Iy <4da™™.

If, on the contrary, I'; < 0, then 4a~™ < 1/2 holds for all m > 5. Thus, from (24), we have
et — 1] < 1/2 and therefore el"1l < 2. Since T'; < 0, we have

0 < |y <eml—1=¢Mlel — 1] < 8a™™,

In both cases, we have

0 < || < 8a™™ < 8exp(—0.48 x m). (25)
Let
log <\/5f2k(<p)>
C .= 8, p = 0487 w = —_—
log ¢
and
! 5
V= oga’ V= —loga, vy:=logp, J:=log —\/_fk(ga) )
log ¢ 2

For each k € [2,230], we find a good approximation of ¢ and a convergent p;/q, of the
continued fraction of ¢ such that ¢ > Xo, where X, = |8.35 x 10"°k*log” k|, which is an
upper bound of max{n — 1, m} from Lemma 10. After doing this, we use Lemma 5 on
inequality (25). A computer search with Mathematica revealed that if k € [2,230], then the

maximum value of H log (q20/|192|X0)J is 318, which is an upper bound on m according to

Lemma 5. Hence, we deduce that the possible solutions (n,m,k) of the equation (3) for
which k € [2,230] have m < 318, therefore we use inequalities (14) to obtain n < 401.

Finally, we used Mathematica to compare F™ and Le,, for the range 4 < n < 401 and
2 <m < 318, with m < n/0.6 and checked that the solutions of equation (3) are

FP =3=1Ley, F?=5=1Le, and F” =15=Le;.
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3.3 The case of large £

From now on, we assume that k > 230. Here, it follows from Lemma 10 that
0.6m < n < 8.35 x 10"°k* log® k < 2¥/2,

Using (8) and Lemma 9, we can write (3) as

2 m+1 2 m+1
o — 277,—2&- . ﬁ - i +
V5 VB VB

Taking absolute values on both sides of (26), we have that

2n—2 o

. (26)

Sl

204m+1 2n—2 5

\/S < 2k/2+ﬁ

Dividing both sides of the above inequality by 272 and taking into account that 1/2"72 <
1/2%/2 for n > k + 2, we obtain

2n—2 o

3.23

-n m+1

V5

Applying Theorem 2 for the left-hand side, we set
8

Ny =2""—a™" — 1.
’ Vb
Note that Ay # 0. Indeed, if Ay = 0, then a?™*V is a rational number, which is not possible
for all positive integers m. Therefore Ay £ 0. We take t := 3,

8
= 27 n = —7 N3 ‘= Q,
V5

il (21)

and
by :=—n, by:=1, byg:=m+1.

Note that K := Q(«) contains n;, 72,13 and has D := 2. Since m < 1.5n, we deduce that
B :=max{|b],|bs], |b3|} = 1.5n. The logarithmic heights for 1y, 72, and 73 are calculated as

follows:
log «v

2

h(m) =log2,  h(np) =log (3v5) and  h(ns) =

Thus, we can take
Ap:=2log2, A;:=58 and Aj:=loga.

As before, by applying Theorem 2, we have

|Aa] > exp (—8.27 x 10 logn) (28)
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where 1 +log 1.5n < 2.1logn holds for all n > 4. Comparing (27) and (28), we obtain
k < 2.39 x 10'31logn.

By Lemma 10 and using the fact 36.66 + 4log k + 3loglog k < 11.7log k for all £ > 230, we
get

k < 2.39 x 10" log (8.35 x 10'9k* log® k)
< (2.39 x 10")(36.66 + 4log k + 3loglog k)
< 2.8 x 10" log k.

Solving the above inequality by using the relation (21) gives
k< 1.87 x 10",

Again from Lemma 10, we obtain

n <538 x 10% and m < 8.97 x 10%. (29)
Let <
I'y:=(m+1)loga—nlog2 +log | —= | . 30
2= (m+1)log g2+ log ( \/3) (30)
Using a similar method to show the inequality (25), one can see that
6.46
0 < |Pa| < S5 < 6.46 x exp(—0.34 x k) (31)

holds for all k& > 230. The inequality (29) implies that we can take X, := 8.97 x 10%°.
Further, we choose

(5
C = 646, p = 0347 '¢ = _—\/5’
log 2
and | 8
0og v
'19 = 10i27 791 = log OK, ’192 = —lOg 2, 5 = log (%) )

Using Lemma 3 with ¢ := 6.46, p := 0.34 and X, := 8.97 x 10*®, we get Yy := 411.954 .. ..
Let

lag, a1, as,...] ==1[0,1,2,3,1,2,3,2,4,2,1,2,11,2,1,11,1,1,134,2,2,2,1,4,1,1,3,1,.. . ]

be the continued fraction expansion of log o/ log 2. With the help of Mathematica, we find
that

max ap; = 880 := A.
0<k<Yp
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Then by Lemma 4, we have

]
k<531 los

1 46 - 882 - 8.97 - 10%
(6 6 8810g8297 0 )<609.

With the above upper bound on k£ and by Lemma 10, we have

n<31x10* and m <5.2x 10%. (32)

We apply again Lemma 4 with X := 5.2 x 10*. Hence by Lemma 3, we obtain Y, :=
142.863 ... and A := 134. According to Lemma 4, it becomes

1 6.46 - 136 - 5.2 - 10%
ko — .1 22
<034 Og( log 2 ) <233,

which contradicts our assumption that k£ > 230. Hence, we have shown that there are no
solutions (n, k, m) to equation (3) with &£ > 230. This completes the proof of Theorem 1. [J
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