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Abstract

For an integer k ≥ 2, let F
(k)
n be the k-generalized Fibonacci sequence that starts

with 0, . . . , 0, 1, 1 (k terms) and each term afterwards is the sum of k preceding terms. In
this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers.

More explicitly, we solve the Diophantine equation F
(k)
n = Lem in positive integers

n, k,m with k ≥ 2.

1 Introduction

The Fibonacci and Lucas sequence are two fascinating topics in integer sequences. The
Leonardo sequence (Lem)m≥0 is an integer sequence that is related to the Fibonacci and
Lucas sequences. Leonardo numbers are discussed by Catarino and Borges [9]. It is the
sequence A001595 in the OEIS satisfying the recurrence relation

Lem = Lem−1 +Lem−2 +1 (1)

for m ≥ 2 with the initial terms Le0 = 1 and Le1 = 1. The first few terms of (Lem)m≥0 are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, . . . .
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In the recent past, many aspects of Leonardo sequence have been studied such as hybrid
Leonardo numbers [1], incomplete Leonardo numbers [10], Leonardo Pisano polynomials,
hybrinomials [14] and q-Leonardo hybrid numbers [16].

The Fibonacci sequence (Fn)n≥0 is the binary recurrence sequence given by

Fn+2 = Fn+1 + Fn for n ≥ 0

with the initial terms F0 = 0 and F1 = 1.
Let k ≥ 2 be an integer. One of numerous generalizations of the Fibonacci sequence,

called the k-generalized Fibonacci sequence (F
(k)
n )n≥−(k−2) is given by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k =

k
∑

i=1

F
(k)
n−i for all n ≥ 2, (2)

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1. Here, F

(k)
n

denotes the nth k-generalized Fibonacci number.
Note that for k = 2, we have F

(2)
n = Fn, the nth Fibonacci number. For k = 3, we have

F
(3)
n = Tn, the nth Tribonacci number. They are followed by the Tetranacci numbers for
k = 4, and so on.

A Leonardo number is called k-Fibonacci Leonardo number if it is a k-generalized Fi-
bonacci number. The aim of this paper is to determine all the k-Fibonacci Leonardo numbers.

Finding the intersection of two recurrent sequences of positive integers is a topic that
has been extensively studied in number theory. Currently, several researchers have been
interested in finding the intersection of the k-generalized Fibonacci sequence with other
number sequences. For instance, one can go through [4, 5, 6, 13, 17, 18].

Motivated by the above literature, we study the Diophantine equation

F (k)
n = Lem . (3)

In particular, our main result is the following.

Theorem 1. All the solutions of the Diophantine equation (3) in positive integers with k ≥ 2
are given by

(n, k,m) ∈ {(1, k, 0), (2, k, 0), (1, k, 1), (2, k, 1), (4, 2, 2), (5, 2, 3), (6, 4, 5)}.

Thus, the only k-Fibonacci Leonardo numbers are 1, 3, 5, and 15.

2 Auxiliary results

Our proof of Theorem 1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport [3] (and improved
by Dujella and Pethö [12]). Here, we use a variant due to de Weger [19], but first, recall
some basic notation from algebraic number theory.
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2.1 Linear forms in logarithms

Let γ be an algebraic number of degree d with minimal primitive polynomial

f(X) := a0X
d + a1X

d−1 + · · ·+ ad = a0

d
∏

i=1

(X − γ(i)) ∈ Z[X],

where the ai are relatively prime integers, a0 > 0, and the γ(i) are conjugates of γ. Then

h(γ) =
1

d

(

log a0 +
d
∑

i=1

log
(

max{|γ(i)|, 1}
)

)

(4)

is called the logarithmic height of γ.
With the established notation, Matveev (see [15] or [8, Theorem 9.4]) proved the following

result.

Theorem 2. Assume that η1, . . . , ηt are positive real algebraic numbers in a real algebraic
number field K of degree D, b1, . . . , bt are rational integers, and

Λ := ηb11 · · · ηbtt − 1,

is not zero. Then

|Λ| ≥ exp
(

−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At

)

,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{Dh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

2.2 The de Weger reduction algorithm

Here we present a variant of the reduction method of Baker and Davenport [3] (and improved
by Dujella and Pethö [12]) due to de Weger [19].

Let ϑ1, ϑ2, δ ∈ R be given and let x1, x2 ∈ Z be unknowns. Let

Λ = δ + x1ϑ1 + x2ϑ2. (5)

Set X = max{|x1, |x2|}. Let X0, Y be positive. Assume that

|Λ| < c exp (−ρY ) (6)

and
Y ≤ X ≤ X0, (7)
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where c, ρ be positive constants. When δ = 0 in (5), we get

Λ = x1ϑ1 + x2ϑ2.

Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued fraction
expansion of ϑ be given by

[a0, a1, a2, . . . ],

and let the kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . . . We may assume without loss of
generality that |ϑ1| < |ϑ2| and x1 > 0. We have the following results.

Lemma 3. [19, Lemma 3.1] If (6) and (7) hold for x1, x2 with X ≥ 1 and δ = 0, then
(−x2, x1) = (pk, qk) for an index k that satisfies

k ≤ −1 +
log(1 +X0

√
5)

log
(

1+
√
5

2

) := Y0.

Lemma 4. [19, Lemma 3.2] Let
A = max

0≤k≤Y0

ak+1.

If (6) and (7) hold for x1, x2 with X ≥ 1 and δ = 0, then

Y <
1

ρ
log

(

c(A+ 2)

|ϑ2|

)

+
1

ρ
logX <

1

ρ
log

(

c(A+ 2)X0

|ϑ2|

)

.

When δ 6= 0 in (5), put ϑ = −ϑ1/ϑ2 and ψ = δ/ϑ2. Then we have

Λ

ϑ2

= ψ − x1ϑ+ x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x, we let ‖x‖ = min{|x−n| :
n ∈ Z} be the distance from x to the nearest integer. We have the following result.

Lemma 5. [19, Lemma 3.3] Suppose that

‖qψ‖ > 2X0

q
.

Then the solutions of (6) and (7) satisfy

Y <
1

ρ
log

(

q2c

|ϑ2|X0

)

.
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2.3 Properties of the Leonardo sequence

The characteristic equation of (Lem)m≥0 is x3 − 2x2 − 1 = 0, which has roots α = 1+
√
5

2
and

β = −1
α

(see [2]). The Binet formula for Lem is

Lem = 2

(

αm+1 − βm+1

α− β

)

− 1 =
α(2αm − 1)− β(2βm − 1)

α− β
for all m ≥ 0. (8)

Lemma 6. The inequality
αm ≤ Lem ≤ αm+1, (9)

holds for all positive integers m ≥ 2.

Proof. This can be easily proved by the method of induction on m.

Lemma 7. [9, Lemma 2.1] For all m ≥ 0, the m-th Leonardo number Lem is an odd number.

2.4 Properties of the k-generalized Fibonacci sequence

In this subsection, we recall some facts and properties of the k-generalized Fibonacci sequence
which will be used later. The characteristic polynomial of the k-generalized Fibonacci se-
quence is

Ψk(x) = xk − xk−1 − · · · − x− 1.

The polynomial Ψk(x) is irreducible over Q[x] and has just one root outside the unit circle.
It is real and positive, so it satisfies ϕ(k) > 1. The other roots are strictly inside the unit
circle. Throughout this paper, ϕ := ϕ(k) denotes that single root, which is located between
2(1− 2−k) and 2 (see [20]). To simplify the notation, in general, we omit the dependence of
k on ϕ.

Dresden and Du [11] gave the following simplified Binet-like formula for F
(k)
n :

F (k)
n =

k
∑

i=1

fk(ϕi)ϕ
n−1
i =

k
∑

i=1

ϕi − 1

2 + (k + 1)(ϕi − 2)
ϕn−1
i , (10)

where ϕ := ϕ1, ϕ2, . . . , ϕk are the roots of the characteristic polynomial Ψk(x). It was also
proved in [11] that the contribution of the roots that lie inside the unit circle to the formula
(10) is very small, namely that the approximation

∣

∣F (k)
n − fk(ϕ)ϕ

n−1
∣

∣ <
1

2
holds for all n ≥ 2− k. (11)

Furthermore, it was shown by Bravo and Luca in [7] that the inequality

ϕn−2 ≤ F (k)
n ≤ ϕn−1 holds for all n ≥ 1 and k ≥ 2. (12)
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The first direct observation is that the first k + 1 non-zero terms in F
(k)
n are powers of 2,

namely
F

(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1,

while the next term in the above sequence is F
(k)
k+2 = 2k − 1. Thus, we have that

F (k)
n = 2n−2 holds for all 2 ≤ n ≤ k + 1.

We also observe that the recursion (2) implies the three-term recursion

F (k)
n = 2F

(k)
n−1 − F

(k)
n−k−1 for all n ≥ 3,

which shows that the k-generalized Fibonacci sequence grows at a rate less than 2n−2. In
fact, the inequality F

(k)
n < 2n−2 holds for all n ≥ k + 2 (see [7, Lemma 2]).

The following result was proved by Bravo and Luca [7].

Lemma 8. Let k ≥ 2, ϕ be the dominant root of (F
(k)
n )n≥−(k−2), and consider the function

defined in (10). Then the inequalities

1

2
< fk(ϕ) <

3

4
and

∣

∣fk(ϕ
(i))
∣

∣ < 1 hold for all 2 ≤ i ≤ k.

In addition, they proved that the logarithmic height of f satisfies

h(fk(ϕ)) < log(k + 1) + log 4 for all k ≥ 2. (13)

We finish this subsection with the following estimate due to Bravo, Gómez, and Luca [5],
which will be used later.

Lemma 9. Let k ≥ 2 and suppose that n < 2k/2. Then

F (k)
n = 2n−2(1 + ξ) where |ξ| < 1

2k/2
.

3 Proof of Theorem 1

Proof. First, note that F
(k)
1 = F

(k)
2 = 1 = Le0 = Le1. Therefore, we may assume that n ≥ 3.

For 3 ≤ n ≤ k + 1, we have that F
(k)
n = 2n−2, but Lem is an odd number for m ≥ 0. Thus,

there is no solution of (3) in this range. From now, we assume that n ≥ k + 2 and k ≥ 2.
Combining the inequalities (9) and (12) together with equation (3), we have

ϕn−2 ≤ αm+1 and αm ≤ ϕn−1.

Then, we deduce that

(n− 2)

(

logϕ

logα

)

− 1 ≤ m ≤ (n− 1)

(

logϕ

logα

)

.

Using the fact 2(1− 2−k) < ϕ(k) < 2 for all k ≥ 2, it follows that

0.8n− 2.6 < m < 1.5n− 1.5. (14)
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3.1 An inequality for n and m in terms of k

By using (3), (8), (11) and taking absolute value, we obtain
∣

∣

∣

∣

fk(ϕ)ϕ
n−1 − 2αm+1

√
5

∣

∣

∣

∣

<
1

2
+

2|β|m+1

√
5

+
| − α|√

5
+

|β|√
5
. (15)

Dividing both sides of the above inequality by 2αm+1√
5

, we conclude that

∣

∣

∣

∣

∣

(√
5fk(ϕ)

2

)

ϕn−1α−(m+1) − 1

∣

∣

∣

∣

∣

< 4α−m. (16)

Let

Λ1 :=

(√
5fk(ϕ)

2

)

ϕn−1α−(m+1) − 1, (17)

and inequality (16) becomes
|Λ1| < 4α−m. (18)

Before applying Theorem 2, we need to prove that Λ1 6= 0. Assume that Λ1 = 0, then we
get

fk(ϕ) =
2√
5
ϕ−(n−1)α(m+1),

and so fk(ϕ) is an algebraic integer, which is impossible. Thus, Λ1 6= 0. Therefore, we apply
Theorem 2 to get a lower bound for Λ1 given by (17) with the parameters:

η1 :=

√
5fk(ϕ)

2
, η2 := ϕ, η3 := α,

and
b1 := 1, b2 := n− 1, b3 := −(m+ 1).

Note that η1, η2, η3 are positive real numbers and belong to the field K := Q(ϕ,
√
5). So we

can take D := [K : Q] ≤ 2k. Since h(η2) = (logϕ)/k < (log 2)/k and h(η3) = (logα)/2, we
choose

max{2kh(η2), | log η2|, 0.16} = 2 log 2 := A2

and
max{2kh(η3), | log η3|, 0.16} = k logα := A3.

By using the estimate (13) and the properties of logarithmic height, we get that for all k ≥ 2

h(η1) ≤ h(fk(ϕ)) + h

(√
5

2

)

< log(k + 1) + log 4 + log
(

2
√
5
)

< 5.8 log k.
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Thus, we obtain
max{2kh(η1), | log η1|, 0.16} = 11.6k log k := A1.

In addition, by (14) we take B := 1.5n. Then by Theorem 2, we have

|Λ1| > exp
(

−1.432× 1011(2k)2(1 + log 2k)(1 + log 1.5n)(11.6k log k)(2 log 2)(k logα)
)

. (19)

Comparing (18) and (19), taking logarithms and then performing the respective calculations,
we get that

m logα− log 4 < 4.43× 1012k4 log k(1 + log 2k)(1 + log 1.5n).

Taking into consideration the facts 1 + log 2k < 3.5 log k for all k ≥ 2 and 1 + log 1.5n <
2.1 log n for all n ≥ 4, we conclude that

m < 6.77× 1013k4 log2 k log n.

Using (14), the last inequality becomes

n

log n
< 8.47× 1013k4 log2 k. (20)

Since the function x 7→ x/ log x is increasing for all x > e, it is easy to check that

x

log x
< S =⇒ x < 2S log S whenever S ≥ 3. (21)

Then, taking x := n and S := 8.47 × 1013k4 log2 k, inequality (21) together with 32.07 +
4 log k + 2 log log k < 49.3 log k for all k ≥ 2, yields

n < 2
(

8.47× 1013k4 log2 k
)

log
(

8.47× 1013k4 log2 k
)

< (1.69× 1014k4 log2 k)(32.07 + 4 log k + 2 log log k)

< 8.35× 1015k4 log3 k.

By combining the above results, we obtain the following lemma.

Lemma 10. If (n, k,m) is a solution in integers of equation (3) with k ≥ 2 and n ≥ k + 2,
then the inequalities

0.6m < n < 8.35× 1015k4 log3 k (22)

hold.
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3.2 The case of small k

Suppose now that k ∈ [2, 230]. In order to apply Lemma 5, we let

Γ1 := (n− 1) logϕ− (m+ 1) logα + log

(√
5fk(ϕ)

2

)

. (23)

Then eΓ1 − 1 := Λ1, where Λ1 is defined by (17). Therefore, (18) can be written as

|eΓ1 − 1| < 4α−m. (24)

Note that Γ1 6= 0. Since Λ1 6= 0, we distinguish the following cases. If Γ1 > 0, then eΓ1−1 > 0.
Using the fact x ≤ ex − 1 for all x ∈ R and the inequality (24), we obtain

0 < Γ1 < 4α−m.

If, on the contrary, Γ1 < 0, then 4α−m < 1/2 holds for all m ≥ 5. Thus, from (24), we have
|eΓ1 − 1| < 1/2 and therefore e|Γ1| < 2. Since Γ1 < 0, we have

0 < |Γ1| ≤ e|Γ1| − 1 = e|Γ1||eΓ1 − 1| < 8α−m.

In both cases, we have

0 < |Γ1| < 8α−m < 8 exp(−0.48×m). (25)

Let

c := 8, ρ := 0.48, ψ :=
log
(√

5fk(ϕ)
2

)

logϕ
,

and

ϑ :=
logα

logϕ
, ϑ1 := − logα, ϑ2 := logϕ, δ := log

(√
5fk(ϕ)

2

)

.

For each k ∈ [2, 230], we find a good approximation of ϕ and a convergent pl/ql of the
continued fraction of ϑ such that ql > X0, where X0 =

⌊

8.35× 1015k4 log3 k
⌋

, which is an
upper bound of max{n − 1,m} from Lemma 10. After doing this, we use Lemma 5 on
inequality (25). A computer search with Mathematica revealed that if k ∈ [2, 230], then the

maximum value of
⌊

1
ρ
log (q2c/|ϑ2|X0)

⌋

is 318, which is an upper bound on m according to

Lemma 5. Hence, we deduce that the possible solutions (n,m, k) of the equation (3) for
which k ∈ [2, 230] have m ≤ 318, therefore we use inequalities (14) to obtain n ≤ 401.

Finally, we used Mathematica to compare F
(k)
n and Lem for the range 4 ≤ n ≤ 401 and

2 ≤ m ≤ 318, with m < n/0.6 and checked that the solutions of equation (3) are

F
(2)
4 = 3 = Le2, F

(2)
5 = 5 = Le3, and F

(4)
6 = 15 = Le5 .
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3.3 The case of large k

From now on, we assume that k > 230. Here, it follows from Lemma 10 that

0.6m < n < 8.35× 1015k4 log3 k < 2k/2.

Using (8) and Lemma 9, we can write (3) as

2n−2 − 2αm+1

√
5

= 2n−2ξ − 2βm+1

√
5

− α√
5
+

β√
5
. (26)

Taking absolute values on both sides of (26), we have that

∣

∣

∣

∣

2n−2 − 2αm+1

√
5

∣

∣

∣

∣

<
2n−2

2k/2
+

5√
5
.

Dividing both sides of the above inequality by 2n−2 and taking into account that 1/2n−2 <
1/2k/2 for n ≥ k + 2, we obtain

∣

∣

∣

∣

1− 2−n 8√
5
αm+1

∣

∣

∣

∣

<
3.23

2k/2
. (27)

Applying Theorem 2 for the left-hand side, we set

Λ2 := 2−n 8√
5
αm+1 − 1.

Note that Λ2 6= 0. Indeed, if Λ2 = 0, then α2(m+1) is a rational number, which is not possible
for all positive integers m. Therefore Λ2 6= 0. We take t := 3,

η1 := 2, η2 :=
8√
5
, η3 := α,

and
b1 := −n, b2 := 1, b3 := m+ 1.

Note that K := Q(α) contains η1, η2, η3 and has D := 2. Since m < 1.5n, we deduce that
B := max{|b1|, |b2|, |b3|} = 1.5n. The logarithmic heights for η1, η2, and η3 are calculated as
follows:

h(η1) = log 2, h(η2) = log
(

8
√
5
)

and h(η3) =
logα

2
.

Thus, we can take
A1 := 2 log 2, A2 := 5.8 and A3 := logα.

As before, by applying Theorem 2, we have

|Λ2| > exp
(

−8.27× 1012 log n
)

, (28)
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where 1 + log 1.5n < 2.1 log n holds for all n ≥ 4. Comparing (27) and (28), we obtain

k < 2.39× 1013 log n.

By Lemma 10 and using the fact 36.66 + 4 log k + 3 log log k < 11.7 log k for all k > 230, we
get

k < 2.39× 1013 log
(

8.35× 1015k4 log2 k
)

< (2.39× 1013)(36.66 + 4 log k + 3 log log k)

< 2.8× 1014 log k.

Solving the above inequality by using the relation (21) gives

k < 1.87× 1016.

Again from Lemma 10, we obtain

n < 5.38× 1085 and m < 8.97× 1085. (29)

Let

Γ2 := (m+ 1) logα− n log 2 + log

(

8√
5

)

. (30)

Using a similar method to show the inequality (25), one can see that

0 < |Γ2| <
6.46

2k/2
< 6.46× exp(−0.34× k) (31)

holds for all k > 230. The inequality (29) implies that we can take X0 := 8.97 × 1085.
Further, we choose

c := 6.46, ρ := 0.34, ψ := −
log
(

8√
5

)

log 2
,

and

ϑ :=
logα

log 2
, ϑ1 := logα, ϑ2 := − log 2, δ := log

(

8√
5

)

.

Using Lemma 3 with c := 6.46, ρ := 0.34 and X0 := 8.97 × 1085, we get Y0 := 411.954 . . . .
Let

[a0, a1, a2, . . . ] := [0, 1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, 2, 1, 11, 1, 1, 134, 2, 2, 2, 1, 4, 1, 1, 3, 1, . . . ]

be the continued fraction expansion of logα/ log 2. With the help of Mathematica, we find
that

max
0≤k≤Y0

ak+1 = 880 := A.
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Then by Lemma 4, we have

k <
1

0.34
· log

(

6.46 · 882 · 8.97 · 1085
log 2

)

< 609.

With the above upper bound on k and by Lemma 10, we have

n < 3.1× 1029 and m < 5.2× 1029. (32)

We apply again Lemma 4 with X0 := 5.2 × 1029. Hence by Lemma 3, we obtain Y0 :=
142.863 . . . and A := 134. According to Lemma 4, it becomes

k <
1

0.34
· log

(

6.46 · 136 · 5.2 · 1029
log 2

)

< 223,

which contradicts our assumption that k > 230. Hence, we have shown that there are no
solutions (n, k,m) to equation (3) with k > 230. This completes the proof of Theorem 1.
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