Journal of Integer Sequences, Vol. 26 (2023), Article 23.6.2

Common Values of Generalized Fibonacci and Leonardo Sequences

Bibhu Prasad Tripathy and Bijan Kumar Patel
Department of Mathematics
School of Applied Sciences
KIIT University Bhubaneswar
Odisha 751024
India
bptbibhu@gmail.com
bijan.patelfma@kiit.ac.in

Abstract

For an integer $k \geq 2$, let $F_{n}^{(k)}$ be the k-generalized Fibonacci sequence that starts with $0, \ldots, 0,1,1$ (k terms) and each term afterwards is the sum of k preceding terms. In this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers. More explicitly, we solve the Diophantine equation $F_{n}^{(k)}=\mathrm{Le}_{m}$ in positive integers n, k, m with $k \geq 2$.

1 Introduction

The Fibonacci and Lucas sequence are two fascinating topics in integer sequences. The Leonardo sequence $\left(\mathrm{Le}_{m}\right)_{m \geq 0}$ is an integer sequence that is related to the Fibonacci and Lucas sequences. Leonardo numbers are discussed by Catarino and Borges [9]. It is the sequence A001595 in the OEIS satisfying the recurrence relation

$$
\begin{equation*}
\mathrm{Le}_{m}=\mathrm{Le}_{m-1}+\mathrm{Le}_{m-2}+1 \tag{1}
\end{equation*}
$$

for $m \geq 2$ with the initial terms $\mathrm{Le}_{0}=1$ and $\mathrm{Le}_{1}=1$. The first few terms of $\left(\mathrm{Le}_{m}\right)_{m \geq 0}$ are

$$
1,1,3,5,9,15,25,41,67,109,177,287,465,753,1219,1973, \ldots
$$

In the recent past, many aspects of Leonardo sequence have been studied such as hybrid Leonardo numbers [1], incomplete Leonardo numbers [10], Leonardo Pisano polynomials, hybrinomials [14] and q-Leonardo hybrid numbers [16].

The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is the binary recurrence sequence given by

$$
F_{n+2}=F_{n+1}+F_{n} \text { for } n \geq 0
$$

with the initial terms $F_{0}=0$ and $F_{1}=1$.
Let $k \geq 2$ be an integer. One of numerous generalizations of the Fibonacci sequence, called the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$ is given by the recurrence

$$
\begin{equation*}
F_{n}^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots+F_{n-k}^{(k)}=\sum_{i=1}^{k} F_{n-i}^{(k)} \text { for all } n \geq 2, \tag{2}
\end{equation*}
$$

with the initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_{1}^{(k)}=1$. Here, $F_{n}^{(k)}$ denotes the nth k-generalized Fibonacci number.

Note that for $k=2$, we have $F_{n}^{(2)}=F_{n}$, the nth Fibonacci number. For $k=3$, we have $F_{n}^{(3)}=T_{n}$, the nth Tribonacci number. They are followed by the Tetranacci numbers for $k=4$, and so on.

A Leonardo number is called k-Fibonacci Leonardo number if it is a k-generalized Fibonacci number. The aim of this paper is to determine all the k-Fibonacci Leonardo numbers.

Finding the intersection of two recurrent sequences of positive integers is a topic that has been extensively studied in number theory. Currently, several researchers have been interested in finding the intersection of the k-generalized Fibonacci sequence with other number sequences. For instance, one can go through $[4,5,6,13,17,18]$.

Motivated by the above literature, we study the Diophantine equation

$$
\begin{equation*}
F_{n}^{(k)}=\mathrm{Le}_{m} . \tag{3}
\end{equation*}
$$

In particular, our main result is the following.
Theorem 1. All the solutions of the Diophantine equation (3) in positive integers with $k \geq 2$ are given by

$$
(n, k, m) \in\{(1, k, 0),(2, k, 0),(1, k, 1),(2, k, 1),(4,2,2),(5,2,3),(6,4,5)\}
$$

Thus, the only k-Fibonacci Leonardo numbers are 1, 3, 5, and 15.

2 Auxiliary results

Our proof of Theorem 1 is mainly based on linear forms in logarithms of algebraic numbers and a reduction algorithm originally introduced by Baker and Davenport [3] (and improved by Dujella and Pethö [12]). Here, we use a variant due to de Weger [19], but first, recall some basic notation from algebraic number theory.

2.1 Linear forms in logarithms

Let γ be an algebraic number of degree d with minimal primitive polynomial

$$
f(X):=a_{0} X^{d}+a_{1} X^{d-1}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(X-\gamma^{(i)}\right) \in \mathbb{Z}[X],
$$

where the a_{i} are relatively prime integers, $a_{0}>0$, and the $\gamma^{(i)}$ are conjugates of γ. Then

$$
\begin{equation*}
h(\gamma)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\gamma^{(i)}\right|, 1\right\}\right)\right) \tag{4}
\end{equation*}
$$

is called the logarithmic height of γ.
With the established notation, Matveev (see [15] or [8, Theorem 9.4]) proved the following result.

Theorem 2. Assume that $\eta_{1}, \ldots, \eta_{t}$ are positive real algebraic numbers in a real algebraic number field \mathbb{K} of degree D, b_{1}, \ldots, b_{t} are rational integers, and

$$
\Lambda:=\eta_{1}^{b_{1}} \cdots \eta_{t}^{b_{t}}-1
$$

is not zero. Then

$$
|\Lambda| \geq \exp \left(-1.4 \cdot 30^{t+3} \cdot t^{4.5} \cdot D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t}\right)
$$

where

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

and

$$
A_{i} \geq \max \left\{D h\left(\eta_{i}\right),\left|\log \eta_{i}\right|, 0.16\right\}, \text { for all } i=1, \ldots, t .
$$

2.2 The de Weger reduction algorithm

Here we present a variant of the reduction method of Baker and Davenport [3] (and improved by Dujella and Pethö [12]) due to de Weger [19].

Let $\vartheta_{1}, \vartheta_{2}, \delta \in \mathbb{R}$ be given and let $x_{1}, x_{2} \in \mathbb{Z}$ be unknowns. Let

$$
\begin{equation*}
\Lambda=\delta+x_{1} \vartheta_{1}+x_{2} \vartheta_{2} \tag{5}
\end{equation*}
$$

Set $X=\max \left\{\left|x_{1},\left|x_{2}\right|\right\}\right.$. Let X_{0}, Y be positive. Assume that

$$
\begin{equation*}
|\Lambda|<c \exp (-\rho Y) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Y \leq X \leq X_{0} \tag{7}
\end{equation*}
$$

where c, ρ be positive constants. When $\delta=0$ in (5), we get

$$
\Lambda=x_{1} \vartheta_{1}+x_{2} \vartheta_{2}
$$

Put $\vartheta=-\vartheta_{1} / \vartheta_{2}$. We assume that x_{1} and x_{2} are coprime. Let the continued fraction expansion of ϑ be given by

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]
$$

and let the k th convergent of ϑ be p_{k} / q_{k} for $k=0,1,2, \ldots$. We may assume without loss of generality that $\left|\vartheta_{1}\right|<\left|\vartheta_{2}\right|$ and $x_{1}>0$. We have the following results.

Lemma 3. [19, Lemma 3.1] If (6) and (7) hold for x_{1}, x_{2} with $X \geq 1$ and $\delta=0$, then $\left(-x_{2}, x_{1}\right)=\left(p_{k}, q_{k}\right)$ for an index k that satisfies

$$
k \leq-1+\frac{\log \left(1+X_{0} \sqrt{5}\right)}{\log \left(\frac{1+\sqrt{5}}{2}\right)}:=Y_{0}
$$

Lemma 4. [19, Lemma 3.2] Let

$$
A=\max _{0 \leq k \leq Y_{0}} a_{k+1}
$$

If (6) and (7) hold for x_{1}, x_{2} with $X \geq 1$ and $\delta=0$, then

$$
Y<\frac{1}{\rho} \log \left(\frac{c(A+2)}{\left|\vartheta_{2}\right|}\right)+\frac{1}{\rho} \log X<\frac{1}{\rho} \log \left(\frac{c(A+2) X_{0}}{\left|\vartheta_{2}\right|}\right) .
$$

When $\delta \neq 0$ in (5), put $\vartheta=-\vartheta_{1} / \vartheta_{2}$ and $\psi=\delta / \vartheta_{2}$. Then we have

$$
\frac{\Lambda}{\vartheta_{2}}=\psi-x_{1} \vartheta+x_{2} .
$$

Let p / q be a convergent of ϑ with $q>X_{0}$. For a real number x, we let $\|x\|=\min \{|x-n|$: $n \in \mathbb{Z}\}$ be the distance from x to the nearest integer. We have the following result.

Lemma 5. [19, Lemma 3.3] Suppose that

$$
\|q \psi\|>\frac{2 X_{0}}{q}
$$

Then the solutions of (6) and (7) satisfy

$$
Y<\frac{1}{\rho} \log \left(\frac{q^{2} c}{\left|\vartheta_{2}\right| X_{0}}\right) .
$$

2.3 Properties of the Leonardo sequence

The characteristic equation of $\left(\operatorname{Le}_{m}\right)_{m \geq 0}$ is $x^{3}-2 x^{2}-1=0$, which has roots $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{-1}{\alpha}$ (see [2]). The Binet formula for Le_{m} is

$$
\begin{equation*}
\mathrm{Le}_{m}=2\left(\frac{\alpha^{m+1}-\beta^{m+1}}{\alpha-\beta}\right)-1=\frac{\alpha\left(2 \alpha^{m}-1\right)-\beta\left(2 \beta^{m}-1\right)}{\alpha-\beta} \quad \text { for all } m \geq 0 \tag{8}
\end{equation*}
$$

Lemma 6. The inequality

$$
\begin{equation*}
\alpha^{m} \leq \mathrm{Le}_{m} \leq \alpha^{m+1} \tag{9}
\end{equation*}
$$

holds for all positive integers $m \geq 2$.
Proof. This can be easily proved by the method of induction on m.
Lemma 7. [9, Lemma 2.1] For all $m \geq 0$, the m-th Leonardo number Le_{m} is an odd number.

2.4 Properties of the k-generalized Fibonacci sequence

In this subsection, we recall some facts and properties of the k-generalized Fibonacci sequence which will be used later. The characteristic polynomial of the k-generalized Fibonacci sequence is

$$
\Psi_{k}(x)=x^{k}-x^{k-1}-\cdots-x-1 .
$$

The polynomial $\Psi_{k}(x)$ is irreducible over $\mathbb{Q}[x]$ and has just one root outside the unit circle. It is real and positive, so it satisfies $\varphi(k)>1$. The other roots are strictly inside the unit circle. Throughout this paper, $\varphi:=\varphi(k)$ denotes that single root, which is located between $2\left(1-2^{-k}\right)$ and 2 (see [20]). To simplify the notation, in general, we omit the dependence of k on φ.

Dresden and $\mathrm{Du}[11]$ gave the following simplified Binet-like formula for $F_{n}^{(k)}$:

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} f_{k}\left(\varphi_{i}\right) \varphi_{i}^{n-1}=\sum_{i=1}^{k} \frac{\varphi_{i}-1}{2+(k+1)\left(\varphi_{i}-2\right)} \varphi_{i}^{n-1} \tag{10}
\end{equation*}
$$

where $\varphi:=\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$ are the roots of the characteristic polynomial $\Psi_{k}(x)$. It was also proved in [11] that the contribution of the roots that lie inside the unit circle to the formula (10) is very small, namely that the approximation

$$
\begin{equation*}
\left|F_{n}^{(k)}-f_{k}(\varphi) \varphi^{n-1}\right|<\frac{1}{2} \quad \text { holds for all } \quad n \geq 2-k \tag{11}
\end{equation*}
$$

Furthermore, it was shown by Bravo and Luca in [7] that the inequality

$$
\begin{equation*}
\varphi^{n-2} \leq F_{n}^{(k)} \leq \varphi^{n-1} \text { holds for all } n \geq 1 \text { and } k \geq 2 \tag{12}
\end{equation*}
$$

The first direct observation is that the first $k+1$ non-zero terms in $F_{n}^{(k)}$ are powers of 2, namely

$$
F_{1}^{(k)}=1, F_{2}^{(k)}=1, F_{3}^{(k)}=2, F_{4}^{(k)}=4, \ldots, F_{k+1}^{(k)}=2^{k-1}
$$

while the next term in the above sequence is $F_{k+2}^{(k)}=2^{k}-1$. Thus, we have that

$$
F_{n}^{(k)}=2^{n-2} \text { holds for all } 2 \leq n \leq k+1
$$

We also observe that the recursion (2) implies the three-term recursion

$$
F_{n}^{(k)}=2 F_{n-1}^{(k)}-F_{n-k-1}^{(k)} \text { for all } n \geq 3
$$

which shows that the k-generalized Fibonacci sequence grows at a rate less than 2^{n-2}. In fact, the inequality $F_{n}^{(k)}<2^{n-2}$ holds for all $n \geq k+2$ (see [7, Lemma 2]).

The following result was proved by Bravo and Luca [7].
Lemma 8. Let $k \geq 2$, φ be the dominant root of $\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$, and consider the function defined in (10). Then the inequalities

$$
\frac{1}{2}<f_{k}(\varphi)<\frac{3}{4} \text { and }\left|f_{k}\left(\varphi^{(i)}\right)\right|<1 \text { hold for all } 2 \leq i \leq k
$$

In addition, they proved that the logarithmic height of f satisfies

$$
\begin{equation*}
h\left(f_{k}(\varphi)\right)<\log (k+1)+\log 4 \quad \text { for all } \quad k \geq 2 . \tag{13}
\end{equation*}
$$

We finish this subsection with the following estimate due to Bravo, Gómez, and Luca [5], which will be used later.

Lemma 9. Let $k \geq 2$ and suppose that $n<2^{k / 2}$. Then

$$
F_{n}^{(k)}=2^{n-2}(1+\xi) \quad \text { where } \quad|\xi|<\frac{1}{2^{k / 2}}
$$

3 Proof of Theorem 1

Proof. First, note that $F_{1}^{(k)}=F_{2}^{(k)}=1=\operatorname{Le}_{0}=\operatorname{Le}_{1}$. Therefore, we may assume that $n \geq 3$. For $3 \leq n \leq k+1$, we have that $F_{n}^{(k)}=2^{n-2}$, but Le_{m} is an odd number for $m \geq 0$. Thus, there is no solution of (3) in this range. From now, we assume that $n \geq k+2$ and $k \geq 2$.

Combining the inequalities (9) and (12) together with equation (3), we have

$$
\varphi^{n-2} \leq \alpha^{m+1} \quad \text { and } \quad \alpha^{m} \leq \varphi^{n-1}
$$

Then, we deduce that

$$
(n-2)\left(\frac{\log \varphi}{\log \alpha}\right)-1 \leq m \leq(n-1)\left(\frac{\log \varphi}{\log \alpha}\right) .
$$

Using the fact $2\left(1-2^{-k}\right)<\varphi(k)<2$ for all $k \geq 2$, it follows that

$$
\begin{equation*}
0.8 n-2.6<m<1.5 n-1.5 \tag{14}
\end{equation*}
$$

3.1 An inequality for n and m in terms of k

By using (3), (8), (11) and taking absolute value, we obtain

$$
\begin{equation*}
\left|f_{k}(\varphi) \varphi^{n-1}-\frac{2 \alpha^{m+1}}{\sqrt{5}}\right|<\frac{1}{2}+\frac{2|\beta|^{m+1}}{\sqrt{5}}+\frac{|-\alpha|}{\sqrt{5}}+\frac{|\beta|}{\sqrt{5}} \tag{15}
\end{equation*}
$$

Dividing both sides of the above inequality by $\frac{2 \alpha^{m+1}}{\sqrt{5}}$, we conclude that

$$
\begin{equation*}
\left|\left(\frac{\sqrt{5} f_{k}(\varphi)}{2}\right) \varphi^{n-1} \alpha^{-(m+1)}-1\right|<4 \alpha^{-m} . \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Lambda_{1}:=\left(\frac{\sqrt{5} f_{k}(\varphi)}{2}\right) \varphi^{n-1} \alpha^{-(m+1)}-1, \tag{17}
\end{equation*}
$$

and inequality (16) becomes

$$
\begin{equation*}
\left|\Lambda_{1}\right|<4 \alpha^{-m} \tag{18}
\end{equation*}
$$

Before applying Theorem 2, we need to prove that $\Lambda_{1} \neq 0$. Assume that $\Lambda_{1}=0$, then we get

$$
f_{k}(\varphi)=\frac{2}{\sqrt{5}} \varphi^{-(n-1)} \alpha^{(m+1)}
$$

and so $f_{k}(\varphi)$ is an algebraic integer, which is impossible. Thus, $\Lambda_{1} \neq 0$. Therefore, we apply Theorem 2 to get a lower bound for Λ_{1} given by (17) with the parameters:

$$
\eta_{1}:=\frac{\sqrt{5} f_{k}(\varphi)}{2}, \quad \eta_{2}:=\varphi, \quad \eta_{3}:=\alpha
$$

and

$$
b_{1}:=1, \quad b_{2}:=n-1, \quad b_{3}:=-(m+1) .
$$

Note that $\eta_{1}, \eta_{2}, \eta_{3}$ are positive real numbers and belong to the field $\mathbb{K}:=\mathbb{Q}(\varphi, \sqrt{5})$. So we can take $D:=[\mathbb{K}: \mathbb{Q}] \leq 2 k$. Since $h\left(\eta_{2}\right)=(\log \varphi) / k<(\log 2) / k$ and $h\left(\eta_{3}\right)=(\log \alpha) / 2$, we choose

$$
\max \left\{2 k h\left(\eta_{2}\right),\left|\log \eta_{2}\right|, 0.16\right\}=2 \log 2:=A_{2}
$$

and

$$
\max \left\{2 k h\left(\eta_{3}\right),\left|\log \eta_{3}\right|, 0.16\right\}=k \log \alpha:=A_{3} .
$$

By using the estimate (13) and the properties of logarithmic height, we get that for all $k \geq 2$

$$
\begin{aligned}
h\left(\eta_{1}\right) & \leq h\left(f_{k}(\varphi)\right)+h\left(\frac{\sqrt{5}}{2}\right) \\
& <\log (k+1)+\log 4+\log (2 \sqrt{5}) \\
& <5.8 \log k
\end{aligned}
$$

Thus, we obtain

$$
\max \left\{2 k h\left(\eta_{1}\right),\left|\log \eta_{1}\right|, 0.16\right\}=11.6 k \log k:=A_{1}
$$

In addition, by (14) we take $B:=1.5 n$. Then by Theorem 2 , we have

$$
\begin{equation*}
\left|\Lambda_{1}\right|>\exp \left(-1.432 \times 10^{11}(2 k)^{2}(1+\log 2 k)(1+\log 1.5 n)(11.6 k \log k)(2 \log 2)(k \log \alpha)\right) . \tag{19}
\end{equation*}
$$

Comparing (18) and (19), taking logarithms and then performing the respective calculations, we get that

$$
m \log \alpha-\log 4<4.43 \times 10^{12} k^{4} \log k(1+\log 2 k)(1+\log 1.5 n)
$$

Taking into consideration the facts $1+\log 2 k<3.5 \log k$ for all $k \geq 2$ and $1+\log 1.5 n<$ $2.1 \log n$ for all $n \geq 4$, we conclude that

$$
m<6.77 \times 10^{13} k^{4} \log ^{2} k \log n
$$

Using (14), the last inequality becomes

$$
\begin{equation*}
\frac{n}{\log n}<8.47 \times 10^{13} k^{4} \log ^{2} k \tag{20}
\end{equation*}
$$

Since the function $x \mapsto x / \log x$ is increasing for all $x>e$, it is easy to check that

$$
\begin{equation*}
\frac{x}{\log x}<S \Longrightarrow x<2 S \log S \quad \text { whenever } \quad S \geq 3 \tag{21}
\end{equation*}
$$

Then, taking $x:=n$ and $S:=8.47 \times 10^{13} k^{4} \log ^{2} k$, inequality (21) together with $32.07+$ $4 \log k+2 \log \log k<49.3 \log k$ for all $k \geq 2$, yields

$$
\begin{aligned}
n & <2\left(8.47 \times 10^{13} k^{4} \log ^{2} k\right) \log \left(8.47 \times 10^{13} k^{4} \log ^{2} k\right) \\
& <\left(1.69 \times 10^{14} k^{4} \log ^{2} k\right)(32.07+4 \log k+2 \log \log k) \\
& <8.35 \times 10^{15} k^{4} \log ^{3} k .
\end{aligned}
$$

By combining the above results, we obtain the following lemma.
Lemma 10. If (n, k, m) is a solution in integers of equation (3) with $k \geq 2$ and $n \geq k+2$, then the inequalities

$$
\begin{equation*}
0.6 m<n<8.35 \times 10^{15} k^{4} \log ^{3} k \tag{22}
\end{equation*}
$$

hold.

3.2 The case of small k

Suppose now that $k \in[2,230]$. In order to apply Lemma 5 , we let

$$
\begin{equation*}
\Gamma_{1}:=(n-1) \log \varphi-(m+1) \log \alpha+\log \left(\frac{\sqrt{5} f_{k}(\varphi)}{2}\right) \tag{23}
\end{equation*}
$$

Then $e^{\Gamma_{1}}-1:=\Lambda_{1}$, where Λ_{1} is defined by (17). Therefore, (18) can be written as

$$
\begin{equation*}
\left|e^{\Gamma_{1}}-1\right|<4 \alpha^{-m} \tag{24}
\end{equation*}
$$

Note that $\Gamma_{1} \neq 0$. Since $\Lambda_{1} \neq 0$, we distinguish the following cases. If $\Gamma_{1}>0$, then $e^{\Gamma_{1}}-1>0$. Using the fact $x \leq e^{x}-1$ for all $x \in \mathbb{R}$ and the inequality (24), we obtain

$$
0<\Gamma_{1}<4 \alpha^{-m}
$$

If, on the contrary, $\Gamma_{1}<0$, then $4 \alpha^{-m}<1 / 2$ holds for all $m \geq 5$. Thus, from (24), we have $\left|e^{\Gamma_{1}}-1\right|<1 / 2$ and therefore $e^{\left|\Gamma_{1}\right|}<2$. Since $\Gamma_{1}<0$, we have

$$
0<\left|\Gamma_{1}\right| \leq e^{\left|\Gamma_{1}\right|}-1=e^{\left|\Gamma_{1}\right|}\left|e^{\Gamma_{1}}-1\right|<8 \alpha^{-m} .
$$

In both cases, we have

$$
\begin{equation*}
0<\left|\Gamma_{1}\right|<8 \alpha^{-m}<8 \exp (-0.48 \times m) \tag{25}
\end{equation*}
$$

Let

$$
c:=8, \quad \rho:=0.48, \quad \psi:=\frac{\log \left(\frac{\sqrt{5} f_{k}(\varphi)}{2}\right)}{\log \varphi},
$$

and

$$
\vartheta:=\frac{\log \alpha}{\log \varphi}, \quad \vartheta_{1}:=-\log \alpha, \quad \vartheta_{2}:=\log \varphi, \quad \delta:=\log \left(\frac{\sqrt{5} f_{k}(\varphi)}{2}\right)
$$

For each $k \in[2,230]$, we find a good approximation of φ and a convergent p_{l} / q_{l} of the continued fraction of ϑ such that $q_{l}>X_{0}$, where $X_{0}=\left\lfloor 8.35 \times 10^{15} k^{4} \log ^{3} k\right\rfloor$, which is an upper bound of $\max \{n-1, m\}$ from Lemma 10. After doing this, we use Lemma 5 on inequality (25). A computer search with Mathematica revealed that if $k \in[2,230]$, then the maximum value of $\left\lfloor\frac{1}{\rho} \log \left(q^{2} c /\left|\vartheta_{2}\right| X_{0}\right)\right\rfloor$ is 318 , which is an upper bound on m according to Lemma 5. Hence, we deduce that the possible solutions (n, m, k) of the equation (3) for which $k \in[2,230]$ have $m \leq 318$, therefore we use inequalities (14) to obtain $n \leq 401$.

Finally, we used Mathematica to compare $F_{n}^{(k)}$ and Le_{m} for the range $4 \leq n \leq 401$ and $2 \leq m \leq 318$, with $m<n / 0.6$ and checked that the solutions of equation (3) are

$$
F_{4}^{(2)}=3=\mathrm{Le}_{2}, \quad F_{5}^{(2)}=5=\mathrm{Le}_{3}, \quad \text { and } \quad F_{6}^{(4)}=15=\mathrm{Le}_{5} .
$$

3.3 The case of large k

From now on, we assume that $k>230$. Here, it follows from Lemma 10 that

$$
0.6 m<n<8.35 \times 10^{15} k^{4} \log ^{3} k<2^{k / 2} .
$$

Using (8) and Lemma 9, we can write (3) as

$$
\begin{equation*}
2^{n-2}-\frac{2 \alpha^{m+1}}{\sqrt{5}}=2^{n-2} \xi-\frac{2 \beta^{m+1}}{\sqrt{5}}-\frac{\alpha}{\sqrt{5}}+\frac{\beta}{\sqrt{5}} \tag{26}
\end{equation*}
$$

Taking absolute values on both sides of (26), we have that

$$
\left|2^{n-2}-\frac{2 \alpha^{m+1}}{\sqrt{5}}\right|<\frac{2^{n-2}}{2^{k / 2}}+\frac{5}{\sqrt{5}}
$$

Dividing both sides of the above inequality by 2^{n-2} and taking into account that $1 / 2^{n-2}<$ $1 / 2^{k / 2}$ for $n \geq k+2$, we obtain

$$
\begin{equation*}
\left|1-2^{-n} \frac{8}{\sqrt{5}} \alpha^{m+1}\right|<\frac{3.23}{2^{k / 2}} \tag{27}
\end{equation*}
$$

Applying Theorem 2 for the left-hand side, we set

$$
\Lambda_{2}:=2^{-n} \frac{8}{\sqrt{5}} \alpha^{m+1}-1
$$

Note that $\Lambda_{2} \neq 0$. Indeed, if $\Lambda_{2}=0$, then $\alpha^{2(m+1)}$ is a rational number, which is not possible for all positive integers m. Therefore $\Lambda_{2} \neq 0$. We take $t:=3$,

$$
\eta_{1}:=2, \quad \eta_{2}:=\frac{8}{\sqrt{5}}, \quad \eta_{3}:=\alpha
$$

and

$$
b_{1}:=-n, \quad b_{2}:=1, \quad b_{3}:=m+1 .
$$

Note that $\mathbb{K}:=\mathbb{Q}(\alpha)$ contains $\eta_{1}, \eta_{2}, \eta_{3}$ and has $D:=2$. Since $m<1.5 n$, we deduce that $B:=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|\right\}=1.5 n$. The logarithmic heights for η_{1}, η_{2}, and η_{3} are calculated as follows:

$$
h\left(\eta_{1}\right)=\log 2, \quad h\left(\eta_{2}\right)=\log (8 \sqrt{5}) \quad \text { and } \quad h\left(\eta_{3}\right)=\frac{\log \alpha}{2} .
$$

Thus, we can take

$$
A_{1}:=2 \log 2, \quad A_{2}:=5.8 \quad \text { and } \quad A_{3}:=\log \alpha
$$

As before, by applying Theorem 2, we have

$$
\begin{equation*}
\left|\Lambda_{2}\right|>\exp \left(-8.27 \times 10^{12} \log n\right), \tag{28}
\end{equation*}
$$

where $1+\log 1.5 n<2.1 \log n$ holds for all $n \geq 4$. Comparing (27) and (28), we obtain

$$
k<2.39 \times 10^{13} \log n
$$

By Lemma 10 and using the fact $36.66+4 \log k+3 \log \log k<11.7 \log k$ for all $k>230$, we get

$$
\begin{aligned}
k & <2.39 \times 10^{13} \log \left(8.35 \times 10^{15} k^{4} \log ^{2} k\right) \\
& <\left(2.39 \times 10^{13}\right)(36.66+4 \log k+3 \log \log k) \\
& <2.8 \times 10^{14} \log k .
\end{aligned}
$$

Solving the above inequality by using the relation (21) gives

$$
k<1.87 \times 10^{16}
$$

Again from Lemma 10, we obtain

$$
\begin{equation*}
n<5.38 \times 10^{85} \quad \text { and } \quad m<8.97 \times 10^{85} . \tag{29}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Gamma_{2}:=(m+1) \log \alpha-n \log 2+\log \left(\frac{8}{\sqrt{5}}\right) . \tag{30}
\end{equation*}
$$

Using a similar method to show the inequality (25), one can see that

$$
\begin{equation*}
0<\left|\Gamma_{2}\right|<\frac{6.46}{2^{k / 2}}<6.46 \times \exp (-0.34 \times k) \tag{31}
\end{equation*}
$$

holds for all $k>230$. The inequality (29) implies that we can take $X_{0}:=8.97 \times 10^{85}$. Further, we choose

$$
c:=6.46, \quad \rho:=0.34, \quad \psi:=-\frac{\log \left(\frac{8}{\sqrt{5}}\right)}{\log 2}
$$

and

$$
\vartheta:=\frac{\log \alpha}{\log 2}, \quad \vartheta_{1}:=\log \alpha, \quad \vartheta_{2}:=-\log 2, \quad \delta:=\log \left(\frac{8}{\sqrt{5}}\right) .
$$

Using Lemma 3 with $c:=6.46, \rho:=0.34$ and $X_{0}:=8.97 \times 10^{85}$, we get $Y_{0}:=411.954 \ldots$ Let

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]:=[0,1,2,3,1,2,3,2,4,2,1,2,11,2,1,11,1,1,134,2,2,2,1,4,1,1,3,1, \ldots]
$$

be the continued fraction expansion of $\log \alpha / \log 2$. With the help of Mathematica, we find that

$$
\max _{0 \leq k \leq Y_{0}} a_{k+1}=880:=A
$$

Then by Lemma 4, we have

$$
k<\frac{1}{0.34} \cdot \log \left(\frac{6.46 \cdot 882 \cdot 8.97 \cdot 10^{85}}{\log 2}\right)<609
$$

With the above upper bound on k and by Lemma 10, we have

$$
\begin{equation*}
n<3.1 \times 10^{29} \quad \text { and } \quad m<5.2 \times 10^{29} \tag{32}
\end{equation*}
$$

We apply again Lemma 4 with $X_{0}:=5.2 \times 10^{29}$. Hence by Lemma 3, we obtain $Y_{0}:=$ $142.863 \ldots$ and $A:=134$. According to Lemma 4, it becomes

$$
k<\frac{1}{0.34} \cdot \log \left(\frac{6.46 \cdot 136 \cdot 5.2 \cdot 10^{29}}{\log 2}\right)<223
$$

which contradicts our assumption that $k>230$. Hence, we have shown that there are no solutions (n, k, m) to equation (3) with $k>230$. This completes the proof of Theorem 1.

4 Acknowledgments

The authors would like to thank the anonymous referee for their useful comments and suggestions that improved the exposition of the paper.

References

[1] Y. Alp and E. G. Kocer, Hybrid Leonardo numbers, Chaos Solitons Fractals 150 (2021), 111-128.
[2] Y. Alp and E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), 183-189.
[3] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Q. J. Math. 20 (1969), 129-137.
[4] J. J. Bravo and C. A. Gómez, Mersenne k-Fibonacci numbers, Glas. Mat. 51 (2016), 307-319.
[5] J. J. Bravo, C. A. Gómez, and J. L. Herrera, On the intersection of k-Fibonacci and Pell numbers, Bull. Korean Math. Soc. 56 (2019), 535-547.
[6] J. J. Bravo and J. L. Herrera, Fermat k-Fibonacci and k-Lucas numbers, Math. Bohem. 145 (2020), 19-32.
[7] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colomb. de Mat. 46 (2012), 67-79.
[8] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), 969-1018.
[9] P. M. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comen. 89 (2019), 75-86.
[10] P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), \#A43.
[11] G. P. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Sequences 17 (2014), Article 14.4.7.
[12] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Q. J. Math. 49 (1998), 291-306.
[13] A. Gueye, S. E. Rihane, and A. Togbé, Coincidence between k-Fibonacci numbers and products of two Fermat numbers, Bull. Braz. Math. Soc. 53 (2022), 541-552.
[14] F. Kürüz, A. Dağdeviren, and P. Catarino, On Leonardo Pisano hybrinomials, Mathematics 9 (2021), 2923.
[15] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217-1269.
[16] H. Özimamoğlu, A new generalization of Leonardo hybrid numbers with q-integers, Indian J. Pure Appl. Math. (2023), 1-10.
[17] S. E. Rihane, On k-Fibonacci balancing and k-Fibonacci Lucas-balancing numbers, Carpathian J. Math. 13 (2021), 259-274.
[18] S. E. Rihane and A. Togbé, k-Fibonacci numbers which are Padovan or Perrin numbers, Indian J. Pure Appl. Math. (2022), 1-15.
[19] B. M. M. de Weger, Algorithms for Diophantine Equations, Stichting Mathematisch Centrum, Amsterdam, 1989.
[20] D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), 129-145.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11J86, 11R52.
Keywords: k-generalized Fibonacci number, Leonardo number, linear form in logarithms, reduction method.
(Concerned with sequences $\underline{A 000032, ~} \underline{A 000045}$, and $\underline{A 001595 .)}$

Received January 31 2023; revised versions received February 8 2023; May 17 2023; May 26 2023. Published in Journal of Integer Sequences, June 122023.

Return to Journal of Integer Sequences home page.

