Journal of Integer Sequences, Vol. 26 (2023), Article 23.5.7

The 3-Additive Uniqueness of Generalized Pentagonal Numbers for Multiplicative Functions

Poo-Sung Park
Department of Mathematics Education
Kyungnam University
Changwon 517670
South Korea
pspark@kyungnam.ac.kr

Abstract

The set \mathcal{P} of all nonzero generalized pentagonal numbers is k-additively unique for multiplicative functions for fixed $k \geq 2$. That is, if a multiplicative function f satisfies the condition $$
f\left(a_{1}+a_{2}+\cdots+a_{k}\right)=f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{k}\right)
$$ for arbitrary $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$, then f is the identity function. The known proof for $k=3$ uses the generalized Riemann hypothesis (GRH). Here, we give a proof bypassing GRH.

1 Introduction

In 1992 Spiro [5] coined the term additive uniqueness to describe a curious property of a set $E \subset \mathbb{N}$ for a set S of arithmetic functions. If a function $f \in S$ satisfying the condition

$$
f(x+y)=f(x)+f(y) \text { for all } a, b \in E
$$

is uniquely determined, she called E an additive uniqueness set for S.
Many mathematicians have been studying and generalizing her seminal work. The concept of k-additive uniqueness is a generalization. A set E is called a k-additive uniqueness set for S, if a function $f \in S$ satisfying the condition

$$
f\left(x_{1}+x_{2}+\cdots+x_{k}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{k}\right) \text { for all } x_{i} \in E
$$

is uniquely determined.
In 2018, the author and colleagues [2] proved that the set

$$
\mathcal{P}=\left\{\left.P_{m}=\frac{m(3 m-1)}{2} \right\rvert\, m \in \mathbb{Z}, m \neq 0\right\}=\{1,2,5,7,12,15, \ldots\}
$$

of all nonzero generalized pentagonal numbers is an additive uniqueness set for multiplicative functions. Here, a multiplicative function refers to an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfying $f(1)=1$ and $f(a b)=f(a) f(b)$ for all a, b with $\operatorname{gcd}(a, b)=1$. In addition, they [3] extended this result to the set

$$
\left\{\left.P_{m}=\frac{m(3 m-1)}{2} \right\rvert\, m \in \mathbb{Z}, m \geq 1\right\}=\{1,5,12,22,35,51, \ldots\}
$$

of nonzero ordinary pentagonal numbers.
In 2022, Hasanalizade [1] extended the author's finding for generalized pentagonal numbers to k-additive uniqueness with $k \geq 3$. However, his proof for the case of $k=3$ relies on the proposition that every integer >2 can be written as a sum of three nonzero generalized pentagonal numbers [4, Theorem 4.3], which requires the generalized Riemann hypothesis (GRH). In this article, we present an elementary proof that does not rely on GRH.

2 Main result

Theorem 1. Let f be a multiplicative function and let \mathcal{P} be the set of nonzero generalized pentagonal numbers. If

$$
f(a+b+c)=f(a)+f(b)+f(c)
$$

for every $a, b, c \in \mathcal{P}$, then f is the identity function.
Proof. We have $f(1)=1$ and thus $f(3)=3$. Note that

$$
\begin{aligned}
& f(5)=f(1)+f(2)+f(2)=1+2 f(2) \\
& f(7)=f(1)+f(1)+f(5)=3+2 f f(2)
\end{aligned}
$$

Then $f(2)=2$ by

$$
\begin{aligned}
f(9) & =f(2)+f(2)+f(5)=1+4 f(2) \\
& =f(1)+f(1)+f(7)=5+2 f(2) .
\end{aligned}
$$

So, clearly, $f(n)=n$ for $n \leq 9$.
We use induction. Assume that $f(n)=n$ for all $n<N$.
If $N=a b$ with $a, b \geq 2$ and $\operatorname{gcd}(a, b)=1$, then $f(N)=f(a) f(b)=a b$ by the induction hypothesis. So it suffices to consider the case when N is a power of a prime.

Consider the case of $N=2^{r}$. We have that $2^{r}=3 m \pm 1$ for some m according to the parity of r.

If $N=2^{2 s+1}$, then $N=3 m-1$ for some $m \in \mathbb{N}$. Note that

$$
\begin{aligned}
& P_{m}+P_{-2 m+1}+P_{-2 m+1} \\
& =m \cdot \frac{3 m-1}{2}+(2 m-1)(3 m-1)+(2 m-1)(3 m-1) \\
& =\frac{3 m-1}{2} \cdot(9 m-4)
\end{aligned}
$$

and

$$
\begin{aligned}
& P_{2 m-1}+P_{-2 m+1}+P_{-2 m+1} \\
& =(2 m-1)(3 m-2)+(2 m-1)(3 m-1)+(2 m-1)(3 m-1) \\
& =(2 m-1)(9 m-4)
\end{aligned}
$$

Since each factor $<3 m-1$ is fixed by f by the induction hypothesis, letting $x=f(3 m-1)$ and $y=f(9 m-4)$, we have that

$$
\begin{aligned}
m \cdot \frac{3 m-1}{2}+2(2 m-1) x & =\frac{3 m-1}{2} y \\
(2 m-1)(3 m-2)+2(2 m-1) x & =(2 m-1) y
\end{aligned}
$$

Thus $x=3 m-1$ and $y=9 m-4$. So $f\left(2^{2 s+1}\right)=2^{2 s+1}$.
If we change m to $-m$, then we can show that f fixes $9 m+4$ and $N=2^{2 s}=3 m+1$ in the same way.

Now suppose $N=3^{r}$. Then

$$
P_{3^{r-1}}+P_{3^{r-1}}+P_{3^{r-1}}=3^{r-1} \cdot \frac{3^{r}-1}{2}+3^{r-1} \cdot \frac{3^{r}-1}{2}+3^{r-1} \cdot \frac{3^{r}-1}{2}=3^{r} \cdot \frac{3^{r}-1}{2},
$$

and thus $f\left(3^{r}\right)=3^{r}$.
Finally, let $N=p^{r}$ with odd prime $p \neq 3$. Assume $N=6 m-1$ for some m. Note that

$$
\begin{aligned}
P_{m}+P_{-m}+P_{2 m} & =\frac{m(3 m-1)}{2}+\frac{m(3 m+1)}{2}+m(6 m-1) \\
& =m(9 m-1)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{-m}+P_{2 m}+P_{2 m} & =\frac{m(3 m+1)}{2}+m(6 m-1)+m(6 m-1) \\
& =\frac{3 m(9 m-1)}{2} .
\end{aligned}
$$

The first expression leads to an equation

$$
3 m+x=y
$$

where $x=f(6 m-1)$ and $y=f(9 m-1)$.
For the second expression, there are two cases according to m. If $9 m-1$ is even, then m is odd and

$$
f\left(\frac{3 m(9 m-1)}{2}\right)=f(3 m) f\left(\frac{9 m-1}{2}\right)=3 m \cdot \frac{9 m-1}{2}
$$

since $3 m$ and $\frac{9 m-1}{2}$ are smaller than $N=6 m-1$. If $9 m-1$ is odd, then m is even and

$$
f\left(\frac{3 m(9 m-1)}{2}\right)=f\left(\frac{3 m}{2}\right) f(9 m-1)=\frac{3 m}{2} \cdot f(9 m-1)=\frac{3 m}{2} \cdot y
$$

In both cases, we conclude that $x=f(6 m-1)=6 m-1$ and $y=f(9 m-1)=9 m-1$.
Similarly, we can show that $f\left(p^{r}\right)=p^{r}$ by changing m to $-m$, when $p^{r}=6 m+1$. The proof is complete.

3 Acknowledgment

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021R1A2C1092930).

References

[1] E. Hasanalizade, Multiplicative functions k-additive on generalized pentagonal numbers, Integers 22 (2022), \#A43.
[2] B. Kim, J. Y. Kim, C. G. Lee, and P.-S. Park, Multiplicative functions additive on generalized pentagonal numbers, C. R. Math. Acad. Sci. Paris 356 (2018), 125-128.
[3] B. Kim, J. Y. Kim, C. G. Lee, and P.-S. Park, Multiplicative functions additive on polygonal numbers, Aequationes Math. 95 (2021), 601-621.
[4] D. Kim, J. Lee and B.-H. Oh, A sum of three nonzero triangular numbers, Int. J. Number Theory 17 (2021), 2279-2300.
[5] C. A. Spiro, Additive uniqueness sets for arithmetic functions, J. Number Theory 42 (1992), 232-246.

2020 Mathematics Subject Classification: Primary 11N64.
Keywords: k-additive uniqueness, multiplicative function, generalized pentagonal number.
(Concerned with sequence A001318.)

Received April 14 2023; revised version received June 9 2023. Published in Journal of Integer Sequences, June 92023.

Return to Journal of Integer Sequences home page.

