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Abstract

Let ϕ(n) be the Euler totient function of n, defined as the number of positive
integers less than or equal to n that are co-prime with n. In this paper, we consider
the function ϕk, a generalization of ϕ, and establish some inequalities related to Lucas
sequences of the first kind

(

Un

)

n≥1
with characteristic equation having real roots. As an

application to these inequalities, we further establish inequalities related to Fibonacci,
Pell, and balancing sequences.

1 Introduction

Mathematicians have long been interested in studying arithmetic functions and the associ-
ated problems in number theory. These problems include solving Diophantine equations,
exploring generalizations, and investigating divisibility concerned with arithmetic functions
(see [3, 4, 5, 9, 10, 15, 16] and references therein). The Euler totient function ϕ(n) counts
the number of positive integers less than or equal to n that are co-prime with n. Addition-
ally, σk(n) represents the sum of the kth power of the positive divisors of n, where k is a
non-negative integer. Also σk(n) reduces to τ(n) for k = 0, where τ(n) denotes the num-
ber of positive divisors of n. These arithmetic functions are primarily utilized in the field
of number theory. In recent times, numerous researchers have worked towards examining
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arithmetic functions connected to binary recurrence sequences like the Fibonacci sequence,
Lucas sequence, Pell sequence, and balancing sequence (see [1, 5, 9, 10, 11, 12, 13, 14]).

The study of inequalities related to arithmetic functions and binary recurrence sequences
is one of the interesting problems, and many researchers have contributed in this direction.
Before mentioning some recent results, we first define Lucas sequence of the first kind.

Let r = α + β and s = −αβ be two non-zero co-prime integers with ∆ = r2 + 4s > 0.
Then α and β are roots of the quadratic equation x2 − rx − s = 0. For any non-negative
integer n, define

Un := Un(r, s) =
αn − βn

α− β
.

The sequence
(

Un

)

n≥0
is called a Lucas sequence of the first kind and quadratic equation

x2− rx− s = 0 is the corresponding characteristic equation of
(

Un

)

n≥0
. From the definition,

it is clear that U0 = 0, U1 = 1 and that

Un+2 = rUn+1 + sUn, n = 0, 1, 2, . . . .

In 1997, Luca [7] showed that the Euler totient function for Lucas sequence of the first kind
(

Un

)

n≥1
satisfies the inequality ϕ(|Un|) ≥ |Uϕ(n)| for those sequences whose characteristic

equation has real roots, and the inequality is not valid for the sequences with characteristic
equation having complex roots. In [8], Luca proved that the nth Fibonacci number satisfies
σk(Fn) ≤ Fσk(n) and τ(Fn) ≥ Fτ(n) which are extended to the case of balancing numbers by
Sahukar and Panda [17]. There are many generalizations and analogs of the Euler totient
function [18]. For example, ϕk is defined as

ϕk(n) =
∑

1≤m<n,(m,n)=1

mk,

where k ≥ 0 is an integer, and the Jordan totient function Jk is defined as

Jk(n) = nk
∏

p|n

(

1− 1

pk

)

,

where k is a positive integer and p is a prime number (see [18, 2]). Clearly, we have ϕ0(n) =
ϕ(n) = J1(n).

In 2019, Jaidee and Pongsriiam [6] showed that for every natural number n, the nth

Fibonacci number satisfies ϕk(Fn) ≤ Fϕk(n) except for (n, k) = (6, 1) for which the inequality
is reversed, and Jk(Fn) ≤ FJk(n) for all n ≥ 1. They also established similar results for Lucas
sequence in the same article. Motivated by the work of [6] and [7], we establish inequalities
related with ϕk and Lucas sequences of the first kind

(

Un

)

n≥1
with characteristic equation

having real roots. As an application, we also establish inequalities related to Fibonacci, Pell,
and balancing sequences. More precisely, we prove the following result:
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Theorem 1. Let n and k be positive integers, ϕk be the generalized Euler totient func-
tion, and

(

Un

)

n≥1
be Lucas sequence of the first kind with α, β as non-zero real roots of the

corresponding characteristic equation. Then the following statements hold.

(i) For every k ≥ 1, ϕk(|U1|) = |Uϕk(1)|, and
if |U2| = 1 or 2, then ϕk(|U2|) = |Uϕk(2)| otherwise ϕk(|U2|) > |Uϕk(2)|.

(ii) ϕ1(|Un|) < |Uϕ1(n)| whenever n ≥ 16.

(iii) ϕk(|Un|) < |Uϕk(n)| for every n ≥ 3 and k ≥ 2 except for
(n, k) = (3, 2), (3, 3), (3, 4), (4, 2).

Remark 2. In Theorem 1, the inequality may or may not hold for (n, 1) where 3 ≤ n ≤ 15,
and (n, k) = (3, 2), (3, 3), (3, 4), (4, 2). Therefore, the inequality can be checked for every
Lucas sequence of the first kind just by computing for the values mentioned above.

As a consequence of Theorem 1, we obtain the result of Jaidee and Pongsriiam [6, Theo-
rem 3.2(i)] concerning the Fibonacci sequence. Additionally, we establish a set of inequalities
associated with the Pell sequence and the balancing sequence within the theorem, which can
be expressed as follows:

Theorem 3. Let n and k be positive integers, ϕk be the generalized Euler totient function,
and

(

Fn

)

n≥1
,
(

Pn

)

n≥1
, and

(

Bn

)

n≥1
are Fibonacci sequence, Pell sequence and balancing

sequence, respectively. Then the following statements hold.

(i) ϕk(Fn) ≤ Fϕk(n) for all n ≥ 1 except for (n, k) = (6, 1) for which the inequality reverses,
and equality holds for (n, k) = (1, k), (2, k), (4, 1), where k ≥ 1.

(ii) ϕk(Pn) ≤ Pϕk(n) for all n ≥ 1 except for (n, k) = (3, 1), (4, 1), (6, 1), (3, 2) for which the
inequality reverses, and equality holds for (n, k) = (1, k), (2, k), where k ≥ 1.

(iii) ϕk(Bn) ≤ Bϕk(n) for all n ≥ 1 except for (n, k) = (2, k), (3, 1), (4, 1), (6, 1), (12, 1), (3, 2)
for which the inequality reverses, and equality holds for (n, k) = (1, k), where k ≥ 1.

2 Some examples and related results

In this section, we first give some examples of Lucas sequences of the first kind and some
results which are needed to prove our main theorems.

Example 4 (Lucas sequences of the first kind). Some examples of Lucas sequences of the
first kind are as follows:

(i) The Fibonacci sequence
(

Fn

)

n≥0
defined as

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn, n ≥ 0,

is the Lucas sequence of the first kind with r = 1 and s = 1 (see [19, A000045]). The

characteristic equation of
(

Fn

)

n≥0
is x2−x−1 = 0 with roots α = 1+

√
5

2
and β = 1−

√
5

2
.
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(ii) The Pell sequence
(

Pn

)

n≥0
defined as

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn, n ≥ 0,

is the Lucas sequence of the first kind with r = 2 and s = 1 (see [19, A000129]). The
characteristic equation of

(

Pn

)

n≥0
is x2 − 2x − 1 = 0 with roots α = 1 +

√
2 and

β = 1−
√
2.

(iii) The balancing sequence
(

Bn

)

n≥0
defined as

B0 = 0, B1 = 1 and Bn+2 = 6Bn+1 −Bn, n ≥ 0,

is the Lucas sequence of the first kind with r = 6 and s = −1 (see [19, A001109]).
The characteristic equation of

(

Bn

)

n≥0
is x2 − 6x+ 1 = 0 with roots α = 3 +

√
2 and

β = 3−
√
2.

Throughout this article, we consider the Lucas sequences of the first kind for which α, β are
real roots of the corresponding characteristic equation such that |α| > |β| > 0. Further, we
obtain

|α| = |r|+
√
∆

2
, |β| = ||r| −

√
∆|

2
.

We now give results related with Lucas sequences of the first kind which will be used to
prove our main results:

Lemma 5. [7, Lemma 1] Let
(

Un

)

n≥1
be Lucas sequence of the first kind, where n is positive

integer and α, β be non-zero real roots of the corresponding characteristic equation. Then
the following statements hold.

(i) If |α| 6= 1+
√
5

2
, then |α| ≥ 2.

(ii) |Un| < 2|α|n.

(iii) If 0 < m < n and m is even, then | Un

Um
| > |α|n−m.

Lemma 6. Let Fibonacci sequence
(

Fn

)

n≥0
as defined in Example 4 with α = 1+

√
5

2
and

β = 1−
√
5

2
as real roots of the corresponding characteristic equation. Then the following

statements hold.

(i) (Binet formula) Fn = αn−βn

α−β
for all n ≥ 0.

(ii) αn−2 ≤ Fn ≤ αn−1 for all n ≥ 0.

Proof. The proof of statement (i) follows directly from the definition of the Lucas sequence
of the first kind and statement (ii) can be proved by mathematical induction.
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Using the Lemma 5 and Lemma 6, we establish the following result:

Lemma 7. Let
(

Un

)

n≥1
be Lucas sequence of the first kind and α, β be non-zero real roots

of the corresponding characteristic equation. Then the following statements hold.

(i) If |α| = 1+
√
5

2
, then |Un| = Fn and |α|n−2 ≤ |Un| ≤ |α|n−1.

(ii) If |α| ≥ 2, then |α|n−2 < |Un| < |α|n+1.

Proof.

(i) Let |α| = 1+
√
5

2
. Since α is a real number, either α = 1+

√
5

2
or α = −

(

1+
√
5

2

)

. Now

if α = 1+
√
5

2
, then β = 1−

√
5

2
is also a root of the characteristic equation. Therefore,

|Un| = |Fn| = Fn. Similarly, if α = −
(

1+
√
5

2

)

, then β = −1+
√
5

2
= −

(

1−
√
5

2

)

is also a

root of the characteristic equation. Therefore, in this case we have

|Un| = |(−1)n−1Fn| = |Fn| = Fn.

Hence, for either case using Lemma 6 (ii), we have |α|n−2 ≤ |Un| ≤ |α|n−1. This
completes the proof of (i).

(ii) Consider |α| ≥ 2. Using Lemma 5 (ii), we have |Un| < 2|α|n ≤ |α||α|n = |α|n+1. Now
using Lemma 5 (iii) for m = 2, we have |Un| ≥ |Un

U2

| > |α|n−2. On combining the above

two inequalities, we conclude that |α|n−2 < |Un| < |α|n+1.

Now we establish some results related with the Euler totient function and the generalized
Euler totient function ϕk.

Lemma 8. [6, Lemma 2.5] Let n ≥ 3. Then the following statements hold.

(i) If k = 1, then ϕk(n) =
nϕ(n)

2
.

(ii) If k ≥ 2, then
nkϕ(n)

2k
< ϕk(n) <

nkϕ(n)

2
.

Lemma 9. [7, Lemma 3 (iv)] Let ϕ be the Euler totient function and n be any natural
number. Then ϕ(n) ≥ 2

√

n/3 whenever n 6= 1, 2, 6.

Lemma 10. Let n and k be positive integer such that 3 ≤ n ≤ 6 and k ≥ 2. Then for the
generalized Euler totient function ϕk, the following statements hold.

(i) ϕk(3) ≥ 4(k + 1) + 2 whenever k ≥ 5.

(ii) ϕk(4) ≥ 5(k + 1) + 2 whenever k ≥ 3.
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(iii) ϕk(5) ≥ 6(k + 1) + 2 whenever k ≥ 2.

(iv) ϕk(6) ≥ 7(k + 1) + 2 whenever k ≥ 2.

Proof. By definition of ϕk, ϕk(3) = 1 + 2k. Therefore, ϕk(3) ≥ 4(k + 1) + 2 if and only
if 2k ≥ 4k + 5 and by induction, 2k ≥ 4k + 5 is true whenever k ≥ 5. This implies that
ϕk(3) ≥ 4(k+1)+2 whenever k ≥ 5. This completes the proof of (i). The proof of (ii), (iii),
and (iv) follows similarly using definition of function ϕk and mathematical induction.

3 Proof of main results

3.1 Proof of Theorem 1

(i) Using the definition of ϕk, we have ϕk(1) = 1 and ϕk(2) = 1 for every k ≥ 1. Therefore,
using the definition of the Lucas sequence of the first kind for n = 1, we have ϕk(|U1|) =
ϕk(1) = 1 = |U1| = |Uϕk(1)| for every k ≥ 1. Similarly, using the definition of the Lucas
sequence of the first kind for n = 2, we have |U2| = |α + β| = |r| ≥ 1. Therefore,
ϕk(|U2|) = ϕk(|r|) ≥ ϕk(1) = 1 = |U1| = |Uϕk(2)| for every k ≥ 1. Hence, if |U2| = |r| =
1 or 2, then ϕk(|U2|) = |Uϕk(2)| otherwise ϕk(|U2|) = ϕk(|r|) > 1 = |Uϕk(2)| for every
k ≥ 1.

(ii) Let n be positive integer such that n ≥ 16. By Lemma 5(i), we divide our problem in
two cases:

Case I: |α| = 1+
√
5

2
.

If |α| = 1+
√
5

2
, then using Lemma 8 and Lemma 7, we obtain

ϕ1(|Un|) =
|Un|ϕ(|Un|)

2
<

|Un||Un|
2

=
|Un|2
2

≤ |α|2(n−1)

2
≤ |α|2(n−1)−1,

and |Uϕ1(n)| ≥ |α|ϕ1(n)−2. Therefore, in order to prove ϕ1(|Un|) < |Uϕ1(n)|, it is sufficient
to show that ϕ1(n)− 2 ≥ 2(n− 1)− 1, i.e.,

ϕ1(n) ≥ 2n− 1. (1)

Case II: |α| ≥ 2.

If |α| ≥ 2, again using Lemma 8 and Lemma 7, we obtain

ϕ1(|Un|) =
|Un|ϕ(|Un|)

2
<

|Un||Un|
2

=
|Un|2
2

<
|α|2(n+1)

2
≤ |α|2(n+1),

and |Uϕ1(n)| > |α|ϕ1(n)−2. Hence, in order to prove ϕ1(|Un|) < |Uϕ1(n)|, it is sufficient
to show that ϕ1(n)− 2 ≥ 2(n+ 1), i.e.,

ϕ1(n) ≥ 2n+ 4. (2)
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Since 2n + 4 > 2n − 1 for every n ≥ 16, therefore, in order to prove (1) and (2), it is

sufficient to prove (2), i.e., ϕ1(n) ≥ 2n + 4. By Lemma 8, ϕ1(n) =
nϕ(n)

2
and using

Lemma 9, for n ≥ 16, ϕ(n) ≥ 2
√

n/3. Hence, in order to prove (2), it is sufficient to
prove that

n
√

n/3 ≥ 2n+ 4. (3)

Consider the function f : [16,∞) → R defined by

f(x) = x
√

x/3− 2x− 4.

If x ≥ 16, then f ′(x) =
√
3x/2 − 2 > 2

√
3 − 2 > 0, and therefore, f is an increasing

function on [16,∞). Therefore, f(x) ≥ f(16) = 16
√

16/3− 2 · 16− 4 = 0.95 > 0. This
implies that

x
√

x/3− 2x− 4 ≥ 0 for x ≥ 16.

Hence, (3) holds and this proves that ϕ1(|Un|) < |Uϕ1(n)| whenever n ≥ 16.

(iii) We proceed in similar manner as in proof of (i). Let n and k be positive integer such
that n ≥ 7 and k ≥ 2. By Lemma 5(i), we divide our problem in two cases:

Case I: |α| = 1+
√
5

2
.

If |α| = 1+
√
5

2
, then using Lemma 8 and Lemma 7, we obtain

ϕk(|Un|) <
|Un|kϕ(|Un|)

2

<
|Un|k|Un|

2
=

|Un|k+1

2

≤ |α|(n−1)(k+1)

2
< |α|(n−1)(k+1)−1,

and |Uϕk(n)| ≥ |α|ϕk(n)−2. Therefore, in order to prove ϕk(|Un|) < |Uϕk(n)|, it is sufficient
to show that ϕk(n)− 2 ≥ (n− 1)(k + 1)− 1, i.e.,

ϕk(n) ≥ (n− 1)(k + 1) + 1. (4)

Case II: |α| ≥ 2.

If |α| ≥ 2, again using Lemma 8 and Lemma 7, we obtain

ϕk(|Un|) <
|Un|kϕ(|Un|)

2

<
|Un|k|Un|

2
=

|Un|k+1

2

<
|α|(n+1)(k+1)

2
≤ |α|(n+1)(k+1),
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and |Uϕk(n)| > |α|ϕk(n)−2. Similar to Case I, in order to prove ϕk(|Un|) < |Uϕk(n)|, it
suffices to show that ϕk(n)− 2 ≥ (n+ 1)(k + 1), i.e.,

ϕk(n) ≥ (n+ 1)(k + 1) + 2. (5)

Since (n + 1)(k + 1) + 2 ≥ (n− 1)(k + 1) + 1 for every n ≥ 1 and k ≥ 2, therefore in
order to prove (4) and (5), it is sufficient to prove (5), i.e., ϕk(n) ≥ (n+ 1)(k+ 1) + 2.
Now we claim that ϕ(n) ≥ 4 for every n ≥ 7. For this, suppose that n ≥ 7. If there
exists a prime p ≥ 5 dividing n, then by multiplicativity of ϕ, we obtain

ϕ(n) ≥ ϕ(p) ≥ p− 1 ≥ 4.

Suppose n = 2a3b for some a, b ∈ N ∪ {0}. If a ≥ 3, then ϕ(n) ≥ ϕ(23) = 23 − 22 = 4.
If a = 2, b ≥ 1, then ϕ(n) ≥ ϕ(22)φ(3) = (22 − 2)(3 − 1) = 4. If a ≤ 1, b ≥ 2, then
ϕ(n) ≥ ϕ(32) = 6. Thus, ϕ(n) ≥ 4 for every n ≥ 7.

Now by Lemma 8, we have

ϕk(n) ≥ ϕ(n)
(n

2

)k

≥ 4
(n

2

)k

.

Hence, in order to prove (5), it is sufficient to prove that

4
(n

2

)k

≥ (n+ 1)(k + 1) + 2. (6)

Consider the function f : [7,∞) → R defined by

f(x) = 4
(x

2

)k

− (x+ 1)(k + 1)− 2.

If x ≥ 7, then f ′(x) = 2k
(x

2

)k−1

− (k + 1) > 6k − (k + 1) > 0, and so f is an

increasing function on [7,∞). Therefore, f(x) ≥ f(7) = 4

(

7

2

)k

− 8(k + 1) − 2 >

4(3)k − (8)(k + 1)− 2 > 0, where k ≥ 2. This implies that

4
(x

2

)k

≥ (x+ 1)(k + 1) + 2 for x ≥ 7.

Hence, (6) holds and this proves that ϕk(|Un|) < |Uϕk(n)| for every n ≥ 7 and k ≥
2. By Lemma 10, for 3 ≤ n ≤ 6 and k ≥ 2, (5) holds except for for (n, k) =
(3, 2), (3, 3), (3, 4), (4, 2). This completes the proof of (iii).
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3.2 Proof of Theorem 3

(i) The Fibonacci sequence
(

Fn

)

n≥1
is the Lucas sequence of the first kind with r = 1 and

s = 1. The characteristic equation of
(

Fn

)

n≥1
is x2 − x − 1 = 0 with roots α = 1+

√
5

2

and β = 1−
√
5

2
. Since both α and β are real roots of the characteristic equation, all

hypothesis of Theorem 1 holds. Hence, |Un| = Fn and by using Theorem 1 (i), for
every k ≥ 1, ϕk(F1) = Fϕk(1) and since F2 = 1, this implies that ϕk(F2) = Fϕk(2). Now,
using Theorem 1 (ii), ϕ1(Fn) < Fϕ1(n) whenever n ≥ 16. Using definition of ϕ and a
straightforward calculation for (n, 1) where 3 ≤ n ≤ 15, we obtain that ϕ1(Fn) ≤ Fϕ1(n)

except for (n, k) = (6, 1) for which the inequality is reversed, and equality holds for
(n, k) = (4, 1). Using Theorem 1 (iii), ϕk(Fn) < Fϕk(n) for every n ≥ 3 and k ≥ 2 except
for (n, k) = (3, 2), (3, 3), (3, 4), (4, 2). Again using definition of ϕ and a straightforward
calculation, we obtain ϕk(Fn) < Fϕk(n) for (n, k) = (3, 2), (3, 3), (3, 4), (4, 2). This
completes the proof of (i).

(ii) The Pell sequence
(

Pn

)

n≥1
is the Lucas sequence of the first kind with r = 2 and

s = 1. The characteristic equation of
(

Pn

)

n≥1
is x2−2x−1 = 0 with roots α = 1+

√
2

and β = 1 −
√
2. Since both α and β are real roots of the characteristic equation,

all hypothesis of Theorem 1 holds. Hence, |Un| = Pn and by using Theorem 1 (i), for
every k ≥ 1, ϕk(P1) = Pϕk(1) and since P2 = 2, this implies that ϕk(P2) = Pϕk(2). Now,
using Theorem 1 (ii), ϕ1(Pn) < Pϕ1(n) whenever n ≥ 16. Using definition of ϕ and
a straightforward calculation for (n, 1) where 3 ≤ n ≤ 15, we obtain that ϕ1(Pn) ≤
Pϕ1(n) except for (n, k) = (3, 1), (4, 1), (6, 1) for which the inequality is reversed. Using
Theorem 1 (iii), we have ϕk(Pn) < Pϕk(n) for every n ≥ 3 and k ≥ 2 except for (n, k) =
(3, 2), (3, 3), (3, 4), (4, 2). Again using definition of ϕ and a straightforward calculation
, we obtain ϕk(Pn) < Pϕk(n) for (n, k) = (3, 3), (3, 4), (4, 2) and ϕk(Pn) > Pϕk(n) for
(n, k) = (3, 2). This completes the proof of (ii).

(iii) The balancing sequence
(

Bn

)

n≥1
is the Lucas sequence of the first kind with r = 6 and

s = −1. The characteristic equation of
(

Bn

)

n≥1
is x2−6x+1 = 0 with roots α = 3+

√
2

and β = 3 −
√
2. Since both α and β are real roots of the characteristic equation, all

hypothesis of Theorem 1 holds. Hence, |Un| = Bn and by using Theorem 1 (i), for
every k ≥ 1, ϕk(B1) = Bϕk(1) and since B2 = 6, this implies that ϕk(B2) > Bϕk(2).
Now, using Theorem 1 (ii), ϕ1(Bn) < Bϕ1(n) whenever n ≥ 16. Using definition of
ϕ and a straightforward calculation for (n, 1) where 3 ≤ n ≤ 15, we obtain that
ϕ1(Bn) ≤ Bϕ1(n) except for (n, k) = (3, 1), (4, 1), (6, 1), (12, 1) for which the inequality
is reversed. Using Theorem 1 (iii), ϕk(Bn) < Bϕk(n) for every n ≥ 3 and k ≥ 2 except
for (n, k) = (3, 2), (3, 3), (3, 4), (4, 2). Again using definition of ϕ and a straightforward
calculation, we obtain ϕk(Fn) < Fϕk(n) for (n, k) = (3, 3), (3, 4), (4, 2) and ϕk(Bn) >
Bϕk(n) for (n, k) = (3, 2). This completes the proof of (iii).
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