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Abstract

We examine the structure of the periodic continued fractions of square roots of
non-square positive integers given by an integer-valued quadratic polynomial Q(n) =
(an+ b)2 + (gn+ h). The aim is to identify repeated blocks of partial quotients in the
period. The quotients in the period form a palindrome, and when the period length is
even, the period has a central term an. The paper focuses on periods with an = a0 or
an = a0 − 1, where a0 is the initial partial quotient. For an = a0 we give an algorithm
to obtain formulas involving repeated blocks comprising three or more elements, not
all equal.
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1 Introduction

1.1 Preliminaries

Irrational square roots entered into mathematics with the Pythagorean theorem which led
to the discovery of the irrationality of

√
2. About 400 BCE, rational approximations a

b

to
√
2 appeared in India and Greece. Bombelli (Algebra, 1572) and Cataldi, who contin-

ued Bombelli’s work, introduced continued fractions to approximate square roots. For an
irrational number α, an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
with ai ∈ N for i ≥ 0, is called a simple continued fraction (scf) of α. It is generally denoted
by a space-saving symbolism: [a0; a1, a2, a3, . . . ]. The integers ai are called partial quotients.
The rational number represented by the truncated continued fraction [a0; a1, a2, a3, . . . , an]
is called the nth convergent (cn) of α. If we define the sequences {pk}, {qk}:

p−2 = 0, p−1 = 1, pk = ak pk−1 + pk−2 for k ≥ 0,

q−2 = 1, q−1 = 0, qk = ak qk−1 + qk−2 for k ≥ 0,

then [a0; a1, . . . , ak] =
pk
qk
. Note that

[
p−1 p−2

q−1 q−2

]

=

[
1 0
0 1

]

is the identity matrix.

If the quotients repeat from a point r onward, i.e., amℓ+r+k = ar+k, m ∈ N, 0 ≤ k ≤ ℓ,
with period length ℓ, then the scf is said to be periodic and is written as

[a0; a1, a2, . . . ar−1, ar, ar+1, ar+2, . . . , ar+ℓ−1 ].

If the scf repeats from the start, [ a0, a1, . . . , an ], it is called purely periodic.
Euler proved in 1737 that the value of every periodic scf is a quadratic irrational of the

form P+
√
d

Q
with P,Q ∈ Z, Q 6= 0 and d ∈ Z

+ not a perfect square. In 1770, Lagrange proved
the converse of Euler’s theorem that each quadratic irrational has a periodic scf expansion.

The continued fraction algorithm, the algorithm for obtaining the scf of
√
d, is given in

many books. See [24, § 8.4]. The period of the scf of
√
d is symmetrical and for period length

ℓ(d) its form is √
d = [a0; a1, a2, a3, . . . , aℓ−3, aℓ−2, aℓ−1, 2a0 ]

with a1 = aℓ−1, a2 = aℓ−2, . . . ; a1, a2, . . . , aℓ−1 form a palindrome that may or may not have a
central term. When ℓ(d) = 2n, the period is symmetric around an with an+1 = an−1, an+2 =
an−2, and so on. If ℓ(d) = 2n+1, then an+1 = an, an+2 = an−1, and so on. ℓ(d) is odd if and
only if d = a2 + b2, gcd(a, b) = 1 [21]. In the scf expansion of

√
d with period length ℓ, each

partial quotient ak for 0 ≤ k < ℓ satisfies ak <
√
d [15, p. 245, 3(f)] .
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1.2 Schinzel’s criterion for bounded period length

Schinzel [23] gave two theorems on the period length ℓ in the scf of
√

f(n).
(A) Let f(x) =

∑p

k=0 ck xp−k be an integer-valued polynomial with c0 > 0. If (i) p is odd or

(ii) p is even and c0 is not a rational square, then lim ℓ
(√

f(n)
)

=∞.

(B) Let f(n) = a2n2 + bn + c, a, b, c ∈ Z, a > 0. Then the inequality lim ℓ
(√

f(n)
)

< ∞
holds if and only if ∆ | 4 gcd(2a2, b)2 where ∆ = b2 − 4a2c 6= 0.

These two theorems together fully solved the problem of when ℓ
(√

f(n)
)

can be bounded

independently of n if f(n) is an integer-valued quadratic polynomial [11, pp. 134–135].
In [20], van der Poorten and Williams obtained the scf of

√
A2X2 + 2BX + C in terms

of C’s scf expansion. In this case Schinzel’s condition becomes B2 − A2C | 4 gcd(A2, B)2.
Cheng et al. [6, 7] considered the polynomial D(X) = A2X2 + 2BX + C that satisfies

Schinzel’s condition. They found that the scf of
√

D(X) has the form

[q0(X); S0, q1(X),S1, q2(X), . . . ,Sκ−1, qκ(X) ].

Here the period comprises κ segments, each consisting of a string Si (an ordered set of

natural numbers) followed by a linear function qi+1(X). Using the notation
←−Sj for the

reverse of Sj , the symmetry of the period shows that Sκ−1 =
←−S0, Sκ−2 =

←−S1, and so on.
q0(X) = a0, qκ(X) = 2q0(X). Furthermore, qκ−1(X) = q1(X), qκ−2(X) = q2(X), and so on.

We present two types of results (presumably new) obtained by us: (i) Scf expansions in
individual formulas (numbered in the text) containing two parameters m,n; (ii) Theorems
yielding polynomials that give predictable patterns each consisting of a single string or block
repeated k times. Throughout the paper, d is a non-square positive integer generated by
Q(n) = (an + b)2 + (gn + h), a, b, g, h ∈ Z, (gn + h) < 2(an + b). This form of polynomial
makes a0 evident. Our technique involves ‘tweaking’ the continued fraction of some smaller
quadratic irrational whose quotients replicate themselves endlessly as a singleton, a pair,
triple, etc. Tweaking inserts a0 or a0 − 1 in the middle of the pattern. We use the matrix
method to validate our methodology.

1.3 Two useful continued fraction expansions

Consider the equation x2 − (2m + 1)x − 1 = 0 with roots
2m+1±

√
(2m+1)2+4

2
. The equation

can be written as x = (2m + 1) + 1
x
. Replacing x by (2m + 1) + 1

x
in the RHS repeatedly

leads to the scf of the positive root of the preceding equation:

2m+ 1 +
√

(2m+ 1)2 + 4

2
= 2m+ 1 +

1

2m+ 1 +
1

2m+ 1 +
1

2m+ 1 + · · ·

,
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which is denoted by [2m+ 1; 2m+ 1 ]. The convergents of this scf are given by

u2

u1

,
u3

u2

, . . . ,
un+1

un

, . . . .

where un (n ∈ N0) has the closed form

un =

(

2m+ 1 +
√

(2m+ 1)2 + 4
)n

−
(

2m+ 1−
√

(2m+ 1)2 + 4
)n

2n
√

(2m+ 1)2 + 4
. (1)

Note that un is even when n = 3r, and odd when n = 3r + 1, 3r + 2.
The value m = 0 yields a purely periodic scf for the golden ratio whose convergents are

ratios of the consecutive Fibonacci numbers
Fn+1

Fn

. The Fibonacci sequence (Fn)n≥0 is given

by the recurrence relation

Fn+1 = Fn + Fn−1 for n ≥ 1 with F0 = 0, F1 = 1.

In this case (1) reduces to the well-known Euler-Binet closed formula for Fn.
It is obvious that x2 − 2mx− k = 0 (m ∈ N, 1 ≤ k ≤ m) yields the quadratic irrational

m±
√
m2 + k.

The equation: x2 − 2x − 1 = 0, having roots 1 ±
√
2, can be rewritten as x2 = 2x + 1

or x = 2 + 1
x
. Substituting 2 + 1

x
for x repeatedly in the RHS yields the scf for the positive

root:

1 +
√
2 = 2 +

1

2 +
1

2 +
1

2 + · · ·

=⇒
√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·

,

where the left scf is purely periodic unlike the right one. In general, the scf of
√
d is not

purely periodic, while that of ⌊
√
d⌋ +

√
d, where ⌊x⌋ denotes the greatest integer less than

or equal to x, is purely periodic.

The convergents of
√
2 = [1; 2 ] are given by

pn
qn

=
2pn−1 + pn−2

2qn−1 + qn−2

for n ≥ 1 with p0 = a0 =

1, q0 = 1, p−1 = 1, q−1 = 0. So, for n ≥ 0 we have

1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
, . . . .

〈p2n−1−1
2

, p2n−1+1
2

, q2n−1〉 constitute Pythagorean triples. The numerators and denominators
occur in A001333 and A000129 [25]. Their closed forms are

pk =
(1 +

√
2)k + (1−

√
2)k

2
; qk =

(1 +
√
2)k − (1−

√
2)k

2
√
2

.

From the closed forms, we can deduce the following relations:

pk = qk+1 − qk = qk + qk−1, (2a)

2qk = pk+1 − pk = pk + pk−1. (2b)
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2 Matrix method in continued fractions

2.1 Linear recurrences with constant coefficients

The general form of a second-order linear recurrence with constant integer coefficients is
un+1 = a un + b un−1 with a, b ∈ Z (b 6= 0). Its characteristic equation is x2 − ax− b = 0. If
α, β are its roots, then α+β = a, α·β = −b, α−β =

√
a2 + 4b. If a2+4b > 0, both roots are

real with α 6= β. In this case the general solution of the given recurrence is un = λαn + µβn

for n = 0, 1, 2, . . . for arbitrary numbers λ and µ. If two initial values u0, u1 are given, these
two numbers are uniquely determined by λ + µ = u0; λα + µβ = u1 [16, p. 199, Th.4.10,
eq(4.5)].

Lenstra and Shallit [14] proved that the numerators and denominators of the convergents
to an irrational number θ satisfy a (sometimes higher order) linear recurrence with constant
coefficients if and only if θ is a quadratic irrational.

2.2 Correspondence between matrices and convergents

Given a sequence a0, a1, a2, . . . , we have

[
a0 1
1 0

] [
a1 1
1 0

] [
a2 1
1 0

]

· · ·
[
an 1
1 0

]

=

[
pn pn−1

qn qn−1

]

for n = 0, 1, 2, . . . ,

if and only if
pn
qn

= [a0; a1, . . . , an] for n = 0, 1, 2, . . . . This sets up a correspondence between

certain products of 2 × 2 matrices and continued fractions ([2, p. 45], [4, p. 142], [5, p. 28],
[9], [10, p. 244], [18, p. 104], [19, p. 87]).

If α = [0; a1, a2, a3, . . . ] and hence
pn
qn

= [0; a1, a2, . . . , an], then the convergents get in-

verted:

Mn :=

[
qn qn−1

pn pn−1

]

=

[
a1 1
1 0

] [
a2 1
1 0

]

· · ·
[
an 1
1 0

]

and the matrix Mn is symmetrical if and only if a1, a2, . . . , an is a palindrome and so pn =
qn−1. See proof of Theorem 2.1 in [1]. Note that in this case we have for all n ≥ 1 that

[
a1 1
1 0

] [
a2 1
1 0

]

· · ·
[
an 1
1 0

]

=

[
qn qn−1

qn−1 qn−2

]

.

Writing α = a0+
1
α1
, α1 = a1+

1
α2
, . . . , αn = an+

1
αn+1

(αi > 1), i.e., α = [a0, a1, . . . , an, αn+1]

with αn+1 = [an+1, an+2, . . . ], we have the following formula expressing α in terms of the
complete quotient αn+1 and two neighbouring convergents ([8, p. 80, eq(14)], [2, p. 45], [4,
p. 148, 2.6]):

α =
αn+1pn + pn−1

αn+1qn + qn−1

. (3)
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Given a continued fraction for a number of the form
√
d (with d a non-square integer):

√
d = [a0; a1, a2, a3, . . . , aℓ−3, aℓ−2, aℓ−1, 2a0 ]

with period length ℓ, Rippon and Taylor [21] deduced using (3) the following lemma:

Lemma 1. If [
A B
B C

]

=

[
a1 1
1 0

] [
a2 1
1 0

]

· · ·
[
aℓ−1 1
1 0

]

then
√
d =
√
a2 + b with

a = a0; b =
2a0B + C

A
(4)

Proof. As in [21], if β = a0 + α = [2a0, a1, a2, . . . , aℓ−1 ], the convergents of β are found from
the columns of [

2a0 1
1 0

] [
A B
B C

]

,

so by periodicity and (3),

β =
(2a0A+ B)β + (2a0B + C)

Aβ + B
.

Solving for β leads to the desired result.

2.3 Power of the matrix associated with convergents of
√
2

As Khovanskii [12, p. 292, Ex. 20] states, the matrix
[
1 2
1 1

]

=

[
p0 2q0
q0 p0

]

leads to
√
2 = [1; 2 ].

Using the values from Subsection 1.3, we deduce the relation

Lemma 2. [
1 2
1 1

]k

=

[
pk−1 2qk−1

qk−1 pk−1

]

.

Proof. We use induction. The statement is obviously true for k = 1. Assume it to be true
for k = m so that [

1 2
1 1

]m

=

[
pm−1 2qm−1

qm−1 pm−1

]

.

Now
[
pm−1 2qm−1

qm−1 pm−1

]

·
[
1 2
1 1

]

=

[
pm−1 + 2qm−1 2pm−1 + 2qm−1

pm−1 + qm−1 pm−1 + 2qm−1

]

=

[
pm 2qm
qm pm

]

,
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by using (2a) and (2b). Thus we get
[
1 2
1 1

]m+1

=

[
pm 2qm
qm pm

]

.

The statement is thus true for k = m+ 1 also. Hence it is true for all k.

Next, we record a useful formula:
[
2 1
1 0

]k

=

[
qk qk−1

qk−1 qk−2

]

provable by induction. We then have two relevant products, also provable by induction:
[
1 1
1 0

]

·
[
2 1
1 0

]k

=

[
pk pk−1

qk qk−1

]

;

[
2 1
1 0

]k

·
[
1 1
1 0

]

=

[
pk qk
pk−1 qk−1

]

. (5)

2.4 Matrix associated with
√
3

The convergents of
√
3 = [1; 1, 2 ] are 1

1
, 2
1
, 5

3
, 7

4
, 19

11
, 26

15
, 71

41
, 97

56
, 265

153
, . . . , whose numerators

occur in A002531 and denominators in A002530 and have these closed forms:

p2n−1 =
(1 +

√
3)2n + (1−

√
3)2n

2n+1
; q2n−1 =

(1 +
√
3)2n − (1−

√
3)2n

2n+1
√
3

,

p2n =
(1 +

√
3)2n+1 + (1−

√
3)2n+1

2n+1
; q2n =

(1 +
√
3)2n+1 − (1−

√
3)2n+1

2n+1
√
3

.

From the closed forms, we deduce the following relations:

p2n−1 = q2n − q2n−1; p2n+1 = q2n + q2n+1; (6)

3q2n + 2q2n−1 = q2n+2; 2q2n−1 + q2n−2 = q2n. (7)

By using the relations (6) and (7), we can prove (for k ∈ N) by induction:

Lemma 3. [
3 2
1 1

]k

=

[
q2k 2q2k−1

q2k−1 q2k−2

]

. (8)

2.5 Power of a general matrix

We introduce a matrix to be used later.

Lemma 4. [
2m+ 1 1

1 0

]n

=

[
un+1 un

un un−1

]

,

where un satisfies the recurrence relation

un+1 = (2m+ 1) un + un−1 with u1 = 1, u0 = 0.
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Proof. The statement is obviously true for n = 1 in view of (4). Assume the statement to
be true for n = r so that [

2m+ 1 1
1 0

]r

=

[
ur+1 ur

ur ur−1

]

.

Then
[
2m+ 1 1

1 0

]r+1

=

[
ur+1 ur

ur ur−1

] [
2m+ 1 1

1 0

]

=

[
(2m+ 1)ur+1 + ur ur+1

(2m+ 1)ur + ur−1 ur

]

=

[
ur+2 ur+1

ur+1 ur

]

by using (4). So the statement is true for n = r + 1 also. Hence it is true for all n.

3 Formulas without central term or central term < a0

3.1 Selected formulas without central term

3.1.1 Formulas with ℓ(d) = 2

These two are the only expansions (m ≥ 1) of length 2 [3, Th. 3].
√

(mn)2 + n = [mn; 2m, 2mn ], n > 1;
√

(mn)2 + 2n = [mn;m, 2mn ], n ≥ 1. (9)

3.1.2 Formulas with ℓ(d) = 3

This formula of Perron [17, p. 100] gives the only possible scf:
√

((4m2 + 1)n+m)2 + 4mn+ 1 = [(4m2 + 1)n+m; 2m, 2m, 2((4m2 + 1)n+m) ].

3.1.3 Formula with ℓ(d) = 5

This formula will be used in a later section:
√

(2n+ 1)2 + 4 = [2n+ 1; n, 1, 1, n, 4n+ 2 ]. (10)

Proof. Writing
√
d =
√
a2 + b = a + y, and y = [0; a−1

2
, 1, 1, a−1

2
, 2a + y] gives the equation

y2 +2ay− 4 = 0 with roots y = −a±
√
a2 + 4. For a−1

2
to be integer, a must be 2n+1.

3.2 Formulas with central term < a0 − 1

3.2.1 Formula with ℓ(d) = 6

We can easily establish the following formula (n ∈ N) by the continued fraction algorithm:
√

(2n+ 2)2 + (4n+ 1) = [2n+ 2; 1, n, 2, n, 1, 2(2n+ 2) ].

8



3.2.2 Formula with ℓ(d) = 8

This formula (n ∈ N) can be proved by the continued fraction algorithm:
√

(4n+ 5)2 + (8n+ 3) = [4n+ 5; 1, n, 2, 2n+ 2, 2, n, 1, 2(4n+ 5) ].

3.2.3 Formula with ℓ(d) = 12

This formula (n = 0, 1, 2, . . . ) can be proved by the continued fraction algorithm:
√

(209n+ 48)2 + (264n+ 61) = [209n+ 48; 1, 1, 1, 2, 2, 38n+ 8, 2, 2, 1, 1, 1, 2(209n+ 48) ].

3.3 Formulas with central term a0 − 1

3.3.1 Formula with ℓ(d) = 10

We discovered this formula for scf expansions for m,n ∈ N:
√

((8m2 + 1)n+ 2m(4m− 1))2 + ((4m− 1)2 + 1)n+ (4m− 1)2 − 2(2m− 1) =

[(8m2 + 1)n+ 2m(4m− 1); 1, 2m− 1, 2m+ 1, 1, (8m2 + 1)n+ 2m(4m− 1)− 1,

1, 2m+ 1, 2m− 1, 1, 2((8m2 + 1)n+ 2m(4m− 1)) ].

The coefficients occur in A081585 and A080856. The formula can be proved by the continued
fraction algorithm.

3.3.2 Formula with ℓ(d) = 12

We further discovered this formula for m = 2, 3, 4, . . . , and n ∈ N:
√

((2m2 + 4m+ 1)n+m)2 + 2(2m2 + 2m− 1)n+ (2m− 1) =

[(2m2 + 4m+ 1)n+m; 1,m− 1, 1, 2m, 1, (2m2 + 4m+ 1)n+m− 1,

1, 2m, 1,m− 1, 12((2m2 + 4m+ 1)n+m) ].

The coefficients occur in A056220 and A142463. It can be proved similarly.
Cheng et al. give Example 3.1 in [6] with D(X) = 1192X2 + 2(2205)X + 343 where 72

divides A,B,C. As ∆ = B2 − A2C = 2 · 74, Schinzel’s condition is satisfied. For each r in
X ≡ r (mod 7) with r = 0, 1, 2, . . . , 6, the structure of the period is similar. Period length
being even for every r, every period has the central or middle term. It is expedient to rewrite
D(X) as (119X + 18)2 + (126X + 19) to make a0 evident. We find that am = a0 − 1 only
when r = 0, 1, 3, 4. So we get these four expansions (of lengths 28, 32, 76, 80) valid for n ∈ N0:

√

(833n+ 375)2 + 882n+ 397 = [833n+ 375; 1, 1, 8, 17n+ 7, 1, 1, 4, 1, 10, 34n+ 15, 4, 3, 1,

833n+ 374, 1, 3, 4, 34n+ 15, 10, 1, 4, 1, 1, 17n+ 7, 8, 1, 1, 2(833n+ 375) ].
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√

(833n+ 137)2 + 882n+ 145 = [833n+ 137; 1, 1, 8, 17n+ 2, 1, 2, 4, 1, 1, 1, 2, 34n + 5, 4, 3, 1,

833n+ 136, 1, 3, 4, 34n+ 5, 2, 1, 1, 1, 4, 2, 1, 17n + 2, 8, 1, 1, 2(833n+ 137) ].

√

(833n+ 851)2 + 882n+ 901 = [833n+ 851; 1, 1, 8, 17n+ 17, 3, 1, 5, 4, 1, 34n+ 33,

1, 18, 1, 4, 1, 17n+ 16, 1, 1, 4, 1, 10, 34n+ 34, 1, 1, 1, 38, 1, 17n+ 16, 2, 2, 11, 1, 1, 34n+ 34,

4, 3, 1, 833n+ 850, 1, 3, 4, 34n+ 34, 1, 1, 11, 2, 2, 17n+ 16, 1, 38, 1, 1, 1, 34n+ 34,

10, 1, 4, 1, 1, 17n+ 16, 1, 4, 1, 18, 1, 34n+ 33, 1, 4, 5, 1, 3, 17n+ 17, 8, 1, 1, 2(833n+ 851) ].

√

(833n+ 494)2 + 882n+ 523 = [833n+ 494; 1, 1, 8, 17n+ 9, 1, 38, 1, 1, 1, 34n+ 19,

1, 1, 11, 2, 2, 17n+ 9, 1, 2, 4, 1, 1, 1, 2, 34n + 19, 1, 4, 5, 1, 3, 17n+ 9, 1, 4, 1, 18, 1, 34n+ 19,

4, 3, 1, 833n+ 493, 1, 3, 4, 34n+ 19, 1, 18, 1, 4, 1, 17n+ 9, 3, 1, 5, 4, 1, 34n+ 19,

2, 1, 1, 1, 4, 2, 1, 17n+ 9, 2, 2, 11, 1, 1, 34n+ 19, 1, 1, 1, 38, 1, 17n+ 9, 8, 1, 1, 2(833n+ 494) ].

What we are interested in are expansions involving a single string so that we can find
expansions wherein the same string repeats k times. For example, we found these three
expansions of length 28 each of which can be proved by the continued fraction algorithm:
√

(23689n+ 26)2 + (38574n+ 43) = [23689n+ 26;

1, 4, 2, 1, 1, 1, 1, 1, 4, 3, 1, 9, 1, 23689n + 25, 1, 9, 1, 3, 4, 1, 1, 1, 1, 1, 2, 4, 1, 2(23689n + 26) ],
√

(203009n+ 24)2 + (192646n+ 23) = [203009n+ 24;

2, 9, 3, 2, 1, 1, 3, 1, 6, 4, 1, 2, 1, 203009n + 23, 1, 2, 1, 4, 6, 1, 3, 1, 1, 2, 3, 9, 2, 2(203009n + 24) ],
√

(326471n+ 22)2 + (44450n+ 3) = [326471n+ 22;

14, 1, 2, 4, 1, 1, 3, 2, 5, 1, 6, 1, 1, 326471n + 21, 1, 1, 6, 1, 5, 2, 3, 1, 1, 4, 2, 1, 14, 2(326471n + 22) ].

The next scf having the period length of 30 can be proved similarly:
√

(3690313n+ 33)2 + (558498n+ 5) = [3690313n+ 33; 13, 4, 1, 1, 1, 5, 2, 1, 2,

3, 9, 6, 1, 1, 3690313n+ 32, 1, 1, 6, 9, 3, 2, 1, 2, 5, 1, 1, 1, 4, 13, 2(3690313n + 33) ].

3.3.3 Formula with repeated 2’s

Perron gives this formula [17, p. 114] with ℓ(d) = 6:
√

(3n+ 1)2 + (2n+ 1) = [3n+ 1; 2, 1, 3n, 1, 2, 6n+ 2 ].

Kraitchik [13, p. 47] gives this formula with ℓ(d) = 8:
√

(7n+ 1)2 + (6n+ 1) = [7n+ 1; 2, 2, 1, 7n, 1, 2, 2, 14n + 2 ].

These formulas are special cases of the following theorem:
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Theorem 5. Let pk be the numerator in the k-th convergent of
√
2. Then for k = 1, 2, . . .

√

(pk n+ 1)2 + (2pk−1 n+ 1) = [pkn+ 1; 2, 2, . . . , 2
︸ ︷︷ ︸

k

, 1, pkn, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

k

, 2(pkn+ 1) ].

Proof. Let
√
d := a+ y = [a; 2, 1, a− 1, 1, 2, 2a ]. Then

y = [0; 2, 1, a− 1, 1, 2, y + 2a],

which leads to the equation 3y2 + 6ay − (2a + 1) = 0. Solving the quadratic equation, we

get the positive root y = −a +
√

a2 + 2a+1
3

. This implies that b = 2a+1
3

, which must be an

integer if d is to be an integer. The solution a = 3n+ 1 gives b = 2n+ 1.
When

√
d = [a; 2, 2, 1, a− 1, 1, 2, 2, 2a ], the same procedure gives the equation 7y2 +

14ay − (6a + 1) = 0 whose positive root yields b = 6a+1
7

and for d to be an integer we have
a = 7n+ 1 and b = 6n+ 1.

With
√
d = [a; 2, 2, 2, 1, a− 1, 1, 2, 2, 2, 2a ] the procedure gives the equation 17y2+34ay−

(14a + 3) = 0 whose positive root yields b = 14a+3
17

and for d to be an integer we have
a = 17n+ 1 and b = 14n+ 1.

And if 2 is repeated k times in the period, we get the equation pk+1y
2 + 2pk+1ay −

(2pka+ pk−1) = 0 whose positive root yields b = 2pka+pk−1

pk+1
and for d to be an integer we have

a = pk+1n+ 1 and b = 2pkn+ 1 where pk is the numerator of ck of
√
2. To apply (4) to the

general case, we note that in this case

[
A B
B C

]

=

[
2 1
1 0

]k−1

·
[
1 1
1 0

]

·
[
pkn 1
1 0

]

·
[
1 1
1 0

]

·
[
2 1
1 0

]k−1

.

Using (5), we get
[
2 1
1 0

]k−1

·
[
1 1
1 0

]

=

[
pk qk
pk−1 qk−1

]

we can rewrite this matrix as follows:
[
A B
B C

]

=

[
pk qk
pk−1 qk−1

]

·
[
pkn 1
1 0

]

·
[
pk pk−1

qk qk−1

]

=

[
p3kn+ 2pk qk p2k pk−1n+ pk qk−1 + pk−1 qk

p2k pk−1n+ pk qk−1 + pk−1 qk pk p2k−1n+ 2pk−1 qk−1

]

.

We now use Lemma 1.
Since in Theorem 5 a0 = pkn+ 1, we have that a = a0 = pkn+ 1 and

b =
2a0B + C

A

=
2(pkn+ 1)(p2k pk−1n+ pk qk−1 + pk−1 qk) + pk p2k−1n+ 2pk−1 qk−1

p3kn+ 2pk qk
.

11



What we have to show is that b = 2pk−1n+ 1, or that

2(pkn+ 1)(p2k pk−1n+ pk qk−1 + pk−1 qk) + pk p2k−1n+ 2pk−1 qk−1

= (2pk−1n+ 1)(p3kn+ 2pk qk).

After canceling equal terms involving n2 on both sides, and subtracting 2pk pk−1 qkn from
both sides, we are left with

LHS =
(
2p2k qk−1 + 2p2k pk−1 + pk p2k−1

)
n+ 2pk qk−1 + 2pk−1 qk + 2pk−1 qk−1.

RHS =
(
p3k + 2pk pk−1 qk

)
n+ 2pk qk.

Using the relation pk−1 + qk−1 = qk, as deduced in (2b), we have

LHS =
(
2p2k qk + pk p2k−1

)
n+ 2(pk qk−1 + pk−1 qk + pk−1 qk−1).

Comparing LHS and RHS, we have to show that

2pk qk + p2k−1 = p2k + 2pk−1 qk and pk qk−1 + pk−1(qk + qk−1) = pk qk. (11)

The equation at the left is a consequence of (2b): we need to show that

2qk = pk + pk−1 ⇒ 2qk(pk − pk−1) = p2k − p2k−1 ⇒ 2pk qk + p2k−1 = p2k + 2pk−1 qk.

Using the relation (2a): pk = qk + qk−1, the equation at the right in (11) reduces to

pk qk−1 + pk−1 pk = pk qk,

which follows on using the relation pk−1 + qk−1 = qk again.

Our investigation with various blocks other than the singleton (2), which becomes (2,
2), (2, 2, 2), etc., suggests the conjecture that no other string can repeat in the period with
central term = a0 − 1.

4 Formulas with central term a0

4.1 Formulas with ℓ(d) = 6

For any fixed m ∈ N and n = 1, 2, 3, . . . , we have

√

((2m2 + 1)n+m)2 + 2(2mn+ 1) = [(2m+ 1)n+m;

m, 2m, (2m2 + 1)n+m, 2m,m, 2((2m+ 1)n+m) ].

The formula can be proved by means of the continued fraction algorithm.

12



4.2 Formulas with ℓ(d) = 8

We find the following result in Kraitchik’s book [13, p. 47]:

√

(7n+ 5)2 + 2(4n+ 3) = [7n+ 5; 1, 1, 3, 7n+ 5, 3, 1, 1, 14n+ 10 ], n ∈ N0.

It is a special case (m = 2) of the following general formula for any fixed m ∈ N \ {1}:
√

((2m2 − 1)n+ 2m2 −m− 1)2 + 2(2mn+ 2m− 1) = [(2m2 − 1)n+ 2m2 −m− 1;

m− 1, 1, 2m− 1, (2m2 − 1)n+ 2m2 −m− 1, 2m− 1,

1,m− 1, 2((2m2 − 1)n+ 2m2 −m− 1) ],

which can be proved by using the continued fraction algorithm. The sequences appearing
here occur in A056220 and A014106.

4.3 Formula with ℓ(d) = 10

We have this pair of expansions valid for n = 1, 2, . . . ,
√

(9n+ 3)2 + 18 = [9n+ 3; n, 2, 1, 2n, 9n+ 3, 2n, 1, 2, n, 2(9n+ 3) ],
√

(9n+ 6)2 + 18 = [9n+ 6; n, 1, 2, 2n+ 1, 9n+ 6, 2n+ 1, 2, 1, n, 2(9n+ 6) ].

Both can be proved easily by the continued fraction algorithm.

5 Formulas with replicating pair (m, 2m)

5.1 Formula with repeated pair (1, 2)

Theorem 6. Let qk denote the denominator of the convergent to
√
3. Then for k ∈ N

√

(q2k n+ 1)2 + 2(2q2k−1 n+ 1) = [q2k n+ 1;

1, 2, 1, 2, . . . , 1, 2
︸ ︷︷ ︸

k

, (q2k n+ 1), 2, 1, 2, 1, . . . , 2, 1
︸ ︷︷ ︸

k

, 2(q2k n+ 1) ].

Proof. As noted in [14], we have qn+4 = 4qn+2 − qn for all n ≥ 0.

The sequences defined above give
q2k
q2k−1

for k = 1, 2, 3, . . .

3

1
,
11

4
,
41

15
,
153

56
,
571

209
, . . . .

From Lemma 2 we have [
3 2
1 1

]k

=

[
q2k 2q2k−1

q2k−1 q2k−2

]

.
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Hence,
[
3 2
1 1

]2

=

[
11 8
4 3

]

;

[
3 2
1 1

]3

=

[
41 30
15 11

]

;

[
3 2
1 1

]4

=

[
153 112
56 41

]

.

Applying the same procedure as in the proof of Theorem 5, we have
√
d =

√
a2 + b =

[a; 1, 2, a, 2, 1, 2a ] and
y = [0; 1, 2, a, 2, 1, y + 2a],

which after some long calculation leads to the equation 3y2 + 6ay − (4a + 2) = 0. Solving

the quadratic equation, we get as positive root y = −a+
√

a2 + 4a+2
3

. For d to be an integer

we have to take a = 3n+ 1 giving b = 4n+ 2.
When

√
d = [a; 1, 2, 1, 2, a, 2, 1, 2, 1, 2a ], the same procedure gives the equation 11y2 +

22ay− (16a+ 6) = 0 whose positive root yields b = 16a+6
11

and for d to be an integer we take
a = 11n+ 1 and b = 16n+ 2.

With
√
d = [a; 1, 2, 1, 2, 1, 2, a, 2, 1, 2, 1, 2, 1, 2a ], the procedure gives the equation 41y2 +

82ay− (60a+22) = 0 and hence for d to be an integer we take a = 41n+1 and b = 60n+2.
And for k times the pairs (1, 2) and (2, 1), the equation obtained is q2k y2 + 2q2ka y −

2(2q2k−1a+ q2k−2) = 0, which gives a = q2kn+ 1, b = 2(2q2k−1n+ 1).

The first three formulas follow.

√

(3n+ 1)2 + 2(2n+ 1) = [3n+ 1; 1, 2, 3n+ 1, 2, 1, 2(3n+ 1) ].
√

(11n+ 1)2 + 2(8n+ 1) = [11n+ 1; 1, 2, 1, 2, 11n+ 1, 2, 1, 2, 1, 2(11n+ 1) ].
√

(41n+ 1)2 + 2(30n+ 1) = [41n+ 1; 1, 2, 1, 2, 1, 2, 41n+ 1, 2, 1, 2, 1, 2, 1, 2(41n + 1) ].

5.2 Generalization of Theorem 6

Let
√
m2 + 2 = [m;m, 2m ], and let q2k, q2k−1 be the denominators of its convergents. We

have q2k+1 = mq2k + q2k−1 and the recurrence with gap 2 xi+2 = 2(m2 + 1)xi − xi−2, which
gives

q2k+1 = 2(m2 + 1)q2k−1 − q2k−3, q1 = 1, q−1 = 1,

q2k+2 = 2(m2 + 1)q2k − q2k−2, q0 = 1, q2 = m.

We then have the following generalization of Theorem 6:

Theorem 7. Let the numbers be as defined above. Then for k ∈ N we have

√

(q2k n+m)2 + 2(2q2k−1 n+ 1) = [ q2k n+m;m, 2m,m, 2m, . . . ,m, 2m
︸ ︷︷ ︸

k

,

(q2k n+m), 2m,m, 2m,m, . . . , 2m,m
︸ ︷︷ ︸

k

, 2(q2k n+m) ] .
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Proof. The proof of the general case is similar to the proof of Theorem 5. We prove the case
m = 1: ([

1 1
1 0

]

·
[
2 1
1 0

])k

·
[
q2kn+ 1 1

1 0

]

·
([

2 1
1 0

]

·
[
1 1
1 0

])k

=

[
A B
B C

]

or, using (8):

[
q2k q2k−1

2q2k−1 q2k−2

]

·
[
q2kn+ 1 1

1 0

] [
q2k 2q2k−1

q2k−1 q2k−2

]

=

[
A B
B C

]

.

Here a = a0 = q2kn+ 1, so applying (4) to the matrix noted above gives

b =
2aB + C

A
= 2(2q2k−1n+ 1)

using the relation 2q2k−1 + q2k−2 = q2k from (7).

5.2.1 Formulas for cases m = 2, 3

The convergents of
√
6 = [2; 2, 4 ] for k ≥ 0, with denominators occurring in A041006 and

A041007, are
2

1
,
5

2
,
22

9
,
49

20
,
218

89
,
485

198
,
2158

881
,
48271

1960
,
21362

8721
, . . . .

They yield these following formulas:

√

(9n+ 2)2 + 2(2 · 2n+ 1) = [9n+ 2; 2, 4, 9n+ 2, 4, 2, 2(9n+ 2) ].
√

(89n+ 2)2 + 2(2 · 20n+ 1) = [89n+ 2; 2, 4, 2, 4, 89n+ 2, 4, 2, 4, 2, 2(89n+ 2) ].
√

(881n+ 2)2 + 2(2 · 198n+ 1) = [881n+ 2;

2, 4, 2, 4, 2, 4, 41n+ 1, 4, 2, 4, 2, 4, 2, 2(881n + 2) ].

The convergents of
√
11 = [3; 3, 6 ] from for k ≥ 0 with denominators occurring in

A041014 and A041015, are

3

1
,
10

3
,
63

19
,
199

60
,
1257

379
,
3970

1197
,
25077

7561
,
79201

23880
,
500283

150841
, . . . .

leading to the following formulas:

√

(19n+ 3)2 + 2(2 · 3n+ 1) = [19n+ 3; 3, 6, 19n+ 3, 6, 3, 2(19n+ 3) ].
√

(379n+ 3)2 + 2(2 · 60n+ 1)

= [379n+ 3; 3, 6, 3, 6, 379n+ 3, 6, 3, 6, 3, 2(379n+ 3) ].
√

(7561n+ 3)2 + 2(2 · 1197n+ 1)

= [7561n+ 3; 3, 6, 3, 6, 3, 6, 7561n + 3, 6, 3, 6, 3, 6, 3, 2(7561n + 3) ].
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6 Formulas with repeated triple 〈1, 1, 3〉
First, we establish a lemma to be used for proving the next theorem. We set α = 4+

√
17, β =

4−
√
17 and so α + β = 8, α− β = 2

√
17 and get the values

(α− 1)α− (β − 1)β = (α− β)(α + β − 1) = 14
√
17, (α− 1)β − (β − 1)α = 2

√
17,

leading to
(α− 1)α− (β − 1)β

α− β
= 7,

(α− 1)β − (β − 1)α

α− β
= 1.

We can then form the following unimodular matrix:

[
7 2
4 1

]

=
1

α− β

[
(α− 1)α− (β − 1)β 2(α− β)

4(α− β) (α− 1)β − (β − 1)α

]

.

Lemma 8. We have

[
7 2
4 1

]k

=
1

α− β

[
(α− 1)αk − (β − 1)βk 2(αk − βk)

4(αk − βk) (α− 1)βk − (β − 1)αk

]

.

Proof. We use induction.
The statement is obviously true for k = 1. Now assume it to be true for an integer m > 1,

[
7 2
4 1

]m

=
1

α− β

[
(α− 1)αm − (β − 1)βm 2(αm − βm)

4(αm − βm) (α− 1)βm − (β − 1)αm

]

.

Then

[
7 2
4 1

]m+1

=
1

(α− β)2

[
(α− 1)αm − (β − 1)βm 2(αm − βm)

4(αm − βm) (α− 1)βm − (β − 1)αm

]

×
[
(α− 1)α− (β − 1)β 2(α− β)

4(α− β) (α− 1)β − (β − 1)α

]

=
1

(α− β)2

[
a b
c d

]

.

After multiplication, we obtain the expression

a =(α− β)(α + β − 1)[(α− 1)αm − (β − 1)βm] + 8(α− β)(αm − βm)

= (α− β)[(α− 1)αm+1 − (β − 1)βm+1 + (α− 1)(β − 1)(αm − βm) + 8(αm − βm)]

= (α− β)[(α− 1)αm+1 − (β − 1)βm+1 + (αm − βm)((α− 1)(β − 1) + 8)]

= (α− β)[(α− 1)αm+1 − (β − 1)βm+1],

the last term in the penultimate line becoming 0 as (α−1)(β−1) = (3+
√
17)(3−

√
17) = −8.

b = 2(α−β)[(α−1)αm− (β−1)βm]+2(αm−βm)(α−β) = 2(α−β)(αm+1−βm+1). Further,
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c = 4(αm−βm)(α−β)(α+β−1)+4(α−β)[(α−1)βm−(β−1)αm] = 4(α−β)(αm+1−βm+1).

d = 8(α− β)(αm − βm) + (α− β)[(α− 1)βm − (β − 1)αm]

= (α− β)[8αm − 8βm + (α− 1)βm − (β − 1)αm]

= (α− β)[βm(−5 +
√
17) + αm(5 +

√
17)]

= (α− β)[(α− 1)βm+1 − (β − 1)αm+1].

The values of a, b, c, d show that the statement is true for m+ 1 also. Thus it is true for all
k.

Methodology. Let y = [1; 1, 3, 1, 1, 3, 1, 1, 3, . . . ]. We write it as y = [1, 1, 3, y] or y = 7y+2
4y+1

.

Hence the associated quadratic equation is 2y2−3y−1 = 0 giving the positive root y = 3+
√
17

4
.

Now
√
17 = [4; 8 ]⇒ 3 +

√
17 = [7; 8 ]. The convergents P ′

k/Q
′
k (k ≥ 0) of 3 +

√
17 are

7

1
,
57

8
,
463

65
,
3761

528
,
30551

4289
,
248169

34840
, . . . .

The numerators and denominators satisfy the recurrence xk+1 = 8xk + xk−1.

Let
pk
qk

be the k-th convergent to y. Define Pk = p3k−1, Qk = q3k−1, Then the recurrence

sequences {Pk}, {Qk} are

Pk = 8 Pk−1 + Pk−2; P0 = 7, P−1 = 1,

Qk = 8 Qk−1 +Qk−2; Q0 = 4, Q−1 = 0.

The specially defined convergents, Pk = P ′
k, Qk = 4Q′

k (for k ≥ 0) are

7

4
,
57

32
,
463

260
,
3761

2112
,
30551

17156
,
248169

139360
, . . . .

Theorem 9. Let Pk, Qk be the numbers as defined above. Then for k ∈ N0 we have

√
(
Pk(2n+ 1) + 3

2

)2

+Qk(2n+ 1) + 2 =

[
Pk(2n+ 1) + 3

2
;

1, 1, 3, 1, 1, 3, . . . , 1, 1, 3
︸ ︷︷ ︸

k+1

,
Pk(2n+ 1) + 3

2
, 3, 1, 1, 3, 1, 1, . . . , 3, 1, 1
︸ ︷︷ ︸

k+1

, Pk(2n+ 1) + 3

]

.

Proof. One may verify that Qk+1−Qk = 4Pk, 2Qk = Pk+Pk−1, 2(Pk−Pk−1) = 3Qk+Qk−1.
A few powers of the associated matrix are

[
7 2
4 1

]2

=

[
57 16
32 9

]

;

[
7 2
4 1

]3

=

[
463 130
260 73

]

;

[
7 2
4 1

]4

=

[
3761 1056
2112 593

]

.
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Using Lemma 8 we have

[
7 2
4 1

]k

=
1

α− β

[
(α− 1)αk − (β − 1)βk 2(αk − βk)

4(αk − βk) (α− 1)βk − (β − 1)αk

]

:=

[
Pk Qk/2

Qk
2Pk−1+Qk−1

2

]

and from this we deduce the matrix defined in Lemma 1:
[
A B
B C

]

=

[
Pk Qk/2

Qk
2Pk−1+Qk−1

2

] [
Pk(2n+1)+3

2
1

1 0

] [
Pk Qk

Qk/2
2Pk−1+Qk−1

2

]

.

Applying Lemma 1 with a = a0 =
Pk(2n+1)+3

2
,

b =
(Pk(2n+ 1) + 3)Qk + 2Pk−1 +Qk−1

Pk

= Qk(2n+ 1) + 2,

using the relation 2(Pk −Pk−1) = 3Qk +Qk−1, which can easily be proved by comparing the
initial values of the sequences at the LHS and the RHS.

The first three formulas yielded by Theorem 9 follow.

√

(7n+ 5)2 + 2(4n+ 3) = [7n+ 5; 1, 1, 3, 7n+ 5, 3, 1, 1, 2(7n+ 5) ].
√

(57n+ 30)2 + 2(32n+ 17) = [57n+ 30;

1, 1, 3, 1, 1, 3, 57n+ 30, 3, 1, 1, 3, 1, 1, 2(57n + 30) ].
√

(463n+ 233)2 + 2(260n+ 131) = [463n+ 233;

1, 1, 3, 1, 1, 3, 1, 1, 3, 463n + 233, 3, 1, 1, 3, 1, 1, 3, 1, 1, 2(463n + 233) ].

7 Repeated odd partial quotients

7.1 General formula for ℓ− 1 quotient (2m+ 1), m ≥ 0

7.1.1 Methodology

As derived earlier,
(2m+1)+

√
(2m+1)2+4

2
= [2m + 1; 2m+ 1 ]. Let (2m + 1) be the repeated

partial quotient in the period. We will use the scf for −(2m + 1) +
√

(2m+ 1)2 + 4 =
[0;m, 1, 1,m, 4m + 2] given in (10). Now if we calculate the inverse of its convergent at
each quotient we find that the denominator is odd at the quotient a1, at a2 and at a4,
while it is even at the quotient a3 and at a5. That is, only in the truncated fractions
[a1, a2, a3] and [a1, a2, a3, a4, 2a0] the denominator is even. Let us define Ck := c5k−2 and
Pk := p5k−2, Qk := q5k−2 and C ′

k := c5k and P ′
k := p5k, Q

′
k =: q5k, in terms of the regular

convergents.
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Computing c3 =
p3
q3

= [m, 1, 1], and denoting it by C1 =
P1

Q1
, we have

C1 =
P1

Q1

=
2m+ 1

2
=

2m+ 1

2
,

and its successor c8 =
p8
q8

= [m, 1, 1,m, 4m+ 2,m, 1, 1], denoted by C2 =
P2

Q2
, is given by

C2 =
P2

Q2

=
(2m+ 1)4 + 3(2m+ 1)2 + 1

2(2m+ 1)3 + 4(2m+ 1)
.

Next, we compute c5 =
p5
q5

= [m, 1, 1,m, 4m+ 2] and denote it by C ′
1 =

P ′

1

Q′

1

:

C ′
1 =

P ′
1

Q′
1

= [m, 1, 1,m, 4m+ 2] =
(2m+ 1)[(2m+ 1)2 + 2]

2[(2m+ 1)2 + 1]
,

and its successor with two full periods [m, 1, 1,m, 4m+2,m, 1, 1,m, 4m+2], the convergent

c10 =
p10
q10

, denoting it by C ′
2 =

P ′

2

Q′

2

:

C ′
2 =

P ′
2

Q′
2

=
(2m+ 1)6 + 5(2m+ 1)4 + 6(2m+ 1)2 + 1

2[(2m+ 1)5 + 4(2m+ 1)3 + 3(2m+ 1)
.

Then

Pk+1 = MPk + Pk−1; Qk+1 = MQk +Qk−1, k ≥ 2,

P ′
k+1 = MP ′

k + P ′
k−1; Q′

k+1 = MQ′
k +Q′

k−1, k ≥ 2,

with M := (2m+ 1)((2m+ 1)2 + 3) [14, p. 352].

7.1.2 General formula

Theorem 10. (i) Let Pk and Qk be the numbers as defined above. Then for k ∈ N

√
(
Pk(2n− 1) + (2m+ 1)

2

)2

+
Qk(2n− 1)

2
+ 1

=

[
Pk(2n− 1) + (2m+ 1)

2
; 2m+ 1, 2m+ 1, . . . , 2m+ 1
︸ ︷︷ ︸

3k−2

, Pk(2n− 1) + (2m+ 1)

]

.

(ii) Let Pk and Qk be the numbers as defined above. Then for k ∈ N

√
(
P ′
k(2n− 1) + (2m+ 1)

2

)2

+
Q′

k(2n− 1)

2
+ 1

=

[
P ′
k(2n− 1) + (2m+ 1)

2
; 2m+ 1, 2m+ 1, . . . , 2m+ 1
︸ ︷︷ ︸

3k

, P ′
k(2n− 1) + (2m+ 1)

]

.
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Proof. Part (i). Here the partial quotient (2m+ 1) is repeated (3k − 2) times. In the 2× 2
matrix approach, this just corresponds to the matrix

[
2m+ 1 1

1 0

]3k−2

=

[
u3k−1 u3k−2

u3k−2 u3k−3

]

,

where ui is the solution of the recurrence ui+1 = (2m + 1) ui + ui−1 with initial values
u0 = 0, u1 = 1 (Lemma 4 in Subsection 2.5). Now the general solution of this recurrence is

yn = λαn + µβn

with α =
2m+1+

√
(2m+1)2+4

2
and β =

2m+1−
√

(2m+1)2+4

2
, for arbitrary constants λ and µ.

Clearly α = − 1
β
. We can show that yn satisfies the relation

yn+6 = (2m+ 1)
(
(2m+ 1)2 + 3

)
yn+3 + yn. (12)

To do this we calculate

yn+6 − yn = λ ·
(
αn+6 − αn

)
+ µ ·

(
βn+6 − βn

)

= λ · αn+3
(
α3 − α−3

)
+ µ · βn+3

(
β3 − β−3

)

= λ · αn+3
(
α3 + β3

)
+ µ · βn+3

(
β3 + α3

)

=
(
α3 + β3

)
yn+3.

Note that α3 + β3 = (2m+ 1){(2m+ 1)2 + 3 has been denoted by M above.
The solution we need, un, is given by yn with λ = −µ = 2

α−β
:

un =
αn − βn

√

(2m+ 1)2 + 4

with
u−3 = (2m+ 1)2 + 1, u0 = 0, u3 = (2m+ 1)2 + 1,
u−2 = −(2m+ 1), u1 = 1, u4 = (2m+ 1)((2m+ 1)2 + 2),
u−1 = 1, u2 = 2m+ 1, u5 = (2m+ 1)4 + 3(2m+ 1)2 + 1,
...

...
...

As one can see, the sequence u−1, u2, u5, . . . , that satisfies (12) is precisely the sequence Pk

defined in 7.1.1; more specifically, u3k−1 = Pk. Furthermore, the sequence u−2, u1, u4, . . . ,
which also satisfies (12), is precisely the sequence Qk/2; more specifically, u3k−2 = Qk/2.

Note that for the sequence u−3, u0, u3, . . . , we have

u3k−3 = −(2m+ 1)u3k−2 + u3k−1, or u3k−3 = Pk − 2m+1
2

Qk.

So the conclusion is
[
2m+ 1 1

1 0

]3k−2

=

[
u3k−1 u3k−2

u3k−2 u3k−3

]

=

[
Pk

Qk

2
Qk

2
Pk − 2m+1

2
Qk

]

=

[
A B
B C

]
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the matrix at the RHS being the one defined in (4). We now apply (4). In (i) we have that

a = a0 =
Pk(2n− 1) + (2m+ 1)

2

and as a consequence of what we did above, we get

b =
2a0B + C

A
=

(Pk(2n− 1) + (2m+ 1)) Qk

2
+ Pk − 2m+1

2
Qk

Pk

=
Qk(2n− 1)

2
+ 1,

which is exactly what we had to prove.
To prove part (ii), we take 3k-th power of the matrix used previously. Note that P ′

1 = u4,
Q′

1 = 2u3 and more generally P ′
k = u3k+1, Q

′
k = 2u3k and u3k−1 = u3k+1− (2m+1)u3k. Hence

u3k+1 = P ′
k, u3k =

Q′

k

2
and u3k−1 = P ′

k − 2m+1
2

Q′
k. The rest of the proof proceeds along the

same lines as the proof of (i).

7.2 Period with ℓ− 1 units, case m = 0

Setting m = 0 in Theorem 10 yields the following corollary:

Corollary 11. (i) Let F3k−1 be the (3k − 1)-th Fibonacci number. Then for k ∈ N and
n = 1, 2, . . .

√
(
F3k−1 (2n− 1) + 1

2

)2

+ F3k−2 (2n− 1) + 1

=

[
F3k−1 (2n− 1) + 1

2
; 1, 1, . . . , 1
︸ ︷︷ ︸

3k−2

, F3k−1 (2n− 1) + 1

]

.

(ii) Let F3k+1 be the (3k + 1)-th Fibonacci number. Then

√
(
F3k+1 (2n− 1) + 1

2

)2

+ F3k (2n− 1) + 1

=

[
F3k+1 (2n− 1) + 1

2
; 1, 1, . . . , 1
︸ ︷︷ ︸

3k

, F3k+1 (2n− 1) + 1

]

.

We have these recurrence relations (with M = (2m+ 1)((2m+ 1)2 + 3) = 4):

F3k+4 = 4F3k+1 + F3k−2; F3k+3 = 4F3k + F3k−3; F3k+2 = 4F3k−1 + F3k−4.

For example, F13 = 233 and F12 = 144 together yield (n = 1) a dozen units:

√
13834 = [117; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 234 ].
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7.3 Period with ℓ− 1 threes

Taking m = 1, we have

√
13 = [3; 1, 1, 1, 1, 6 ]; −3 +

√
13 = [0; 1, 1, 1, 1, 6 ].

We also have

[
3 1
1 0

]3

=

[
33 10
10 3

]

;

[
3 1
1 0

]6

=

[
1189 360
360 109

]

;

[
3 1
1 0

]4

=

[
109 33
33 10

]

;

[
3 1
1 0

]7

=

[
3927 1189
1189 360

]

.

To elucidate, we give the associated terminating continued fractions. Note that the
element a21 (2nd row, 1st column) of each matrix is Q/2.

Example 12. (i) We have P1

Q1
= (1, 1, 1) = 3

2
. Hence

√

(3n)2 + 2n = [3n; 3, 6n ].

(ii) Subsequently we have that
P ′

1

Q′

1

= (1, 1, 1, 1, 6) = 33
20
. Hence

√

(33n− 15)2 + (20n− 9) = [33n− 15; 3, 3, 3, 2(33n− 15) ].

Example 13. (i) We have P2

Q2
= (1, 1, 1, 1, 6, 1, 1, 1) = 109

66
. Hence

√

(109n− 53)2 + (66n− 32) = [109n− 53; 3, 3, 3, 3, 2(109n− 53) ].

(ii) Subsequently we have
P ′

2

Q′

2

= (1, 1, 1, 1, 6, 1, 1, 1, 1, 6) = 1189
720

. Hence

√

(1189n− 593)2 + (720n− 359) = [1189n− 593; 3, 3, 3, 3, 3, 3, 2(1189n− 593) ].

Example 14. (i) We have P3

Q3
= (1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1) = 36·109+3

36·66+2
= 3927

2378
and

√

(3927n− 1962)2 + (2378n− 1188) = [3927n− 1962; 3, 3, 3, 3, 3, 3, 3, 2(3927n− 1962) ].

(ii) Subsequently we have
P ′

3

Q′

3

= (1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6) = 36·1189+33
36·720+20

= 42837
25940

and

√

(42837n− 21417)2 + (25940n− 12969)

= [42837n− 21417; 3, 3, 3, 3, 3, 3, 3, 3, 3, 2(42837n− 21417) ].
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7.4 Period with ℓ− 1 fives

The choice m = 2 gives −5 +
√
29 = [0; 2, 1, 1, 2, 29 ]. We list a few formulas here.

√

(5n)2 + 2n = [5n; 5, 10n) ].
√

(701n− 348)2 + (270n− 134) = [701n− 348; 5, 5, 5, 5, 2(701n− 348) ].
√

(98145n− 49070)2 + (37802n− 18900)

= [98145n− 49070; 5, 5, 5, 5, 5, 5, 5, 2(98145n− 49070) ].

√

(135n− 65)2 + (52n− 25) = [135n− 65; 5, 5, 5, 2(135n− 65) ].
√

(18901n− 9448)2 + (7280n− 3639)

= [18901n− 9448; 5, 5, 5, 5, 5, 5, 2(18901n− 9448) ].
√

(2646275n− 1323135)2 + (1019252n− 509625)

= [2646275n− 1323135; 5, 5, 5, 5, 5, 5, 5, 5, 5, 2(2646275n − 1323135) ].

8 Repeated even partial quotients

We first prove a simple lemma to be used in the proof of the next theorem.

Lemma 15. Let α := m +
√
m2 + 1, β := m −

√
m2 + 1 so that α + β = 2m, α − β =

2
√
m2 + 1 and αβ = −1. Then

[
2m 1
1 0

]k

=
1

α− β

[
αk+1 − βk+1 αk − βk

αk − βk αk−1 − βk−1

]

.

Proof. We prove the lemma by induction.
The statement is obviously true for k = 1. Assume it to be true for an integer m > 1,

[
2m 1
1 0

]m

=
1

α− β

[
αm+1 − βm+1 αm − βm

αm − βm αm−1 − βm−1

]

.

Then

[
2m 1
1 0

]m+1

=
1

α− β

[
αm+1 − βm+1 αm − βm

αm − βm αm−1 − βm−1

] [
α + β 1
1 0

]

=

[
a b
c d

]

with a = (αm+1 − βm+1)(α + β) + αm − βm = (αm+2 − βm+2) + (αm − βm)(αβ + 1) and so
a = αm+2 − βm+2 as the other term vanishes. Furthermore, b = αm+1 − βm+1. Similarly,
c = αm+1 − βm+1 and d = αm − βm. The values of a, b, c, d show that the statement is true
for m+ 1 also. Thus it is true for all k.
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8.1 Methodology

Let 2m (m ≥ 1) be the quotient that repeats in the period. We then use the scf for
√

(2m)2 + 4, the special case (n = 2) of (9), for the convergents to be used. The convergents
are computed from these recurrence relations (k ≥ 1):

p2k = m p2k−1 + p2k−2; p2k+1 = 4m p2k + p2k−1; p0 = 1, p1 = 2m,

q2k = m q2k−1 + q2k−2; q2k+1 = 4m q2k + q2k−1; q0 = 0, q1 = 1,

or from this one:

pk+2 = M ′pk − pk−2, p−1 = −2m, qk+2 = M ′qk − qk−2, q−1 = 1

with M ′ = 2(2m2 + 1), and c2 =
p2
q2

= [2m;m] =
2m2 + 1

m
.

8.2 General formula for ℓ− 1 partial quotients 2m, m ≥ 1

Theorem 16. Let the numbers as defined above. Then for k ∈ N

(i)
√

(q2k n +m)2 + (q2k−1 n+ 1) =
[
q2k n +m; 2m, 2m, . . . , 2m

︸ ︷︷ ︸

2k−1

, 2(q2kn+m)
]
,

(ii)
√

(q2k+1 n +m)2 + (4q2k n+ 1) =
[
q2k+1 n +m; 2m, 2m, . . . , 2m

︸ ︷︷ ︸

2k

, 2(q2k+1n+m)
]
.

Proof. We established above in Lemma 15:
[
2m 1
1 0

]k

=
1

α− β

[
αk+1 − βk+1 αk − βk

αk − βk αk−1 − βk−1

]

,

where α := m+
√
m2 + 1, β := m−

√
m2 + 1. We thus have

[
2m 1
1 0

]2k−1

=
1

α− β

[
α2k − β2k α2k−1 − β2k−1

α2k−1 − β2k−1 α2k−2 − β2k−2

]

,

[
2m 1
1 0

]2k

=
1

α− β

[
α2k+1 − β2k+1 α2k − β2k

α2k − β2k α2k−1 − β2k−1

]

.

We find that (14) yields only denominators but not numerators:
[
2m 1
1 0

]2k−1

=

[
2q2k q2k−1

q2k−1 2q2k−2

]

;

[
2m 1
1 0

]2k

=

[
q2k+1 2q2k
2q2k q2k−1

]

.

These are the associated closed forms for the denominators:

q2k−1 =
(m+

√
m2 + 1)2k−1 − (m−

√
m2 + 1)2k−1

2
√
m2 + 1

,

q2k =
(m+

√
m2 + 1)2k − (m−

√
m2 + 1)2k

4
√
m2 + 1

,
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while those for numerators are

p2k−1 = (m+
√
m2 + 1)2k−1 + (m−

√
m2 + 1)2k−1,

p2k =
(m+

√
m2 + 1)2k + (m−

√
m2 + 1)2k

2
.

Applying (4) from Lemma 1 to the matrix proves both parts of Theorem 16.
For (i) we have a0 = a = q2kn+m and the power 2k − 1 of the matrix giving

[
A B
B C

]

=

[
2q2k q2k−1

q2k−1 2q2k−2

]

so that

b =
2(q2kn+m)q2k−1 + 2q2k−2

2q2k
=

q2kq2k−1n+mq2k + q2k−2

q2k
= q2k−1 n+ 1

using the relation mq2k + q2k−2 = q2k.
For (ii) we have a0 = a = q2k+1n+m and the power 2k of the matrix giving

[
A B
B C

]

=

[
q2k+1 2q2k
2q2k q2k−1

]

so that

b =
2(q2k+1n+m)2q2k + q2k−1

2q2k+1

=
4q2kq2k+1n+ 4mq2k + q2k−1

q2k+1

= 4q2kn+ 1

using the relation 4mq2k + q2k−1 = q2k+1.

8.3 Derivation of a combined formula for Theorem 16 (i) & (ii)

The two sequences of numbers in the formula are linked by

p2k = 2mq2k + q2k−1; p2k+1 = 2mq2k+1 + 4q2k.

Expanding the square term under the root on the left of formula (i) gives us

q22kn+m2 + (2mq2k + q2k−1)n+ 1 = q22kn +m2 + p2kn+ 1. (17)

Similarly, from (ii) we obtain

q22k+1n+m2 + (2mq2k+1 + 4q2k)n+ 1 = q22k+1n+m2 + p2k+1n+ 1. (18)
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Similarity of the RHS of both (17) and (18) allows us to combine (i) and (ii):
√

((qk+1n)2 +m2) + (pk+1n+ 1) = [ qk+1n+m; 2m, 2m, . . . , 2m
︸ ︷︷ ︸

k

, 2(qk+1n+m) ] . (19)

We note that the even-numbered convergents are given by the matrix
[
2m2 + 1 4m(m2 + 1)

m 2m2 + 1

]k

=

[
p2k 4m(m2 + 1)q2k
q2k p2k

]

and the odd-numbered convergents by the product
[
2m2 + 1 4m(m2 + 1)

m 2m2 + 1

]k

·
[
2m 4(m2 + 1)
1 2m

]

=

[
p2k+1 4(m2 + 1)q2k+1

q2k+1 p2k+1

]

.

8.4 Period with ℓ− 1 twos

We have
√
22 + 4 = [2; 1, 4 ]. The recurrence relations for k ≥ 1 are

p2k = p2k−1 + p2k−2; p2k+1 = 4p2k + p2k−1; p0 = 1, p1 = 2;

q2k = q2k−1 + q2k−2; q2k+1 = 4q2k + q2k−1; q0 = 0, q1 = 1.

The convergents with numerators/denominators in A041010 and A041011 are

2

1
,
3

1
,
14

5
,
17

6
,
82

29
,
99

35
,
478

169
,
577

204
,
2786

985
, . . . .

Formula (19) and four of the convergents give us
√

n2 + 12 + (3n+ 1) = [n+ 1; 2, 2(n+ 1) ],
√

(5n)2 + 12 + (14n+ 1) = [5n+ 1; 2, 2, 2(5n+ 1) ],
√

(6n)2 + 12 + (17n+ 1) = [6n+ 1; 2, 2, 2, 2(6n+ 1) ],
√

(29n)2 + 12 + (82n+ 1) = [29n+ 1; 2, 2, 2, 2, 2(29n+ 1) ].

8.5 Period with ℓ− 1 fours

We have
√
42 + 4 = [4; 2, 8 ]. The convergents with numerators/denominators in A041030

and A041031 are

4

1
,
9

2
,
76

17
,
161

36
,
1364

305
,
2889

646
,
24476

5473
,
51841

11592
,
439204

98209
, . . . .

Formula (19) and three of the convergents yield
√

(2n)2 + 22 + (9n+ 1) = [2n+ 2; 4, 2(2n+ 2) ],
√

(17n)2 + 22 + (76n+ 1) = [17n+ 2; 4, 4, 2(17n+ 2) ],
√

(36n)2 + 22 + (161n+ 1) = [36n+ 2; 4, 4, 4, 2(36n+ 2) ].
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8.6 Period with ℓ− 1 sixes

We have
√
62 + 4 = [6; 3, 12 ]. Its convergents with numerators/denominators in A041066

and A041067 are
6

1
,
19

3
,
234

37
,
721

114
,
8886

1405
,
27379

4329
,
337434

53353
, . . . .

Formula (19) and three of the convergents lead to

√

(3n)2 + 32 + (19n+ 1) = [3n+ 3; 6, 2(3n+ 3) ],
√

(37n)2 + 32 + (234n+ 1) = [37n+ 3; 6, 6, 2(37n+ 3) ],
√

(114n)2 + 32 + (721n+ 1) = [114n+ 3; 6, 6, 6, 2(114n+ 3) ].

9 Algorithm involving five sequences

9.1 Methodology and general formula

Until now we dealt with formulas that involved only two sequences Pk, Qk. We found
empirically that repeated blocks having three (excepting (1, 1, 3)) or more numbers cannot
be formulated using only these two sequences but need a third auxiliary sequence Rk related
to Pk. Two more sequences Sk and Tk are computed further on. The computation of Sk and
Tk involves the solution of certain linear Diophantine equations.

Let B = (b0, b1, . . . , bj) with bi positive integers not all equal. Let
←−B = (bj, bj−1, . . . , b0) be

the reverse of B. Let y denote the purely periodic continued fraction: y = [ b0, b1, . . . , bj ]. We
write it as y = [b0, b1, . . . , bj , y], which leads to a quadratic equation of the form cy2−by−a =

0 with positive root y = b+
√
b2+4ac
2c

.
Empirical analysis revealed this necessary condition for the occurrence of block B in the

next theorem: B can occur in the formula only if the coefficient of y2 is twice the absolute
value of the constant term in the equation.

We now define P0

Q0
= SCF[b0, b1, . . . , bj] and

P1

Q1
= SCF[b0, b1, . . . , bj, b0, b1, . . . , bj ] and so

on. In general, Pk and Qk are defined by

[
b0 1
1 0

] [
b1 1
1 0

] [
b2 1
1 0

]

· · ·
[
bj 1
1 0

]

=

[
P0 V0

Q0 R0

]

and

[
Pk Vk

Qk Rk

]

=

[
P0 V0

Q0 R0

]k+1

. (20)

Note that using these notations the quadratic equation cy2− by− a = 0 equals Q0y
2− (P0−

R0)y − V0 = 0.
From now on we will assume that Q0 = 2V0 with as immediate consequence that Qk =

2Vk. It follows from [14, p. 352] that Pk, Qk, and Rk are solutions of the recurrence relation

yk+1 = Myk + (−1)jyk−1, k = 0, 1, 2, . . . ,
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with initial values P−1 = 1, Q−1 = 0, R−1 = 1 and with P0, Q0 and R0 defined by the product
in (20). Furthermore, M is equal to the trace of

[
P0

1
2
Q0

Q0 R0

]

.

Note that M = Q1

Q0
.

A fourth sequence of numbers Sk is obtained defining Sk as the least positive integer such
that Pk | (Qk · Sk + Rk). From these four sequences, we deduce a fifth sequence of numbers
Tk using the formula

Tk =
Qk · Sk +Rk

Pk

.

Theorem 17. Let Pk, Qk, Sk, Tk,B,
←−B be the numbers/blocks as defined above. Then for

k, n ∈ N0

√

(Pkn+ Sk)2 + 2(Qkn+ Tk) = [ Pkn+ Sk;

B,B, . . . ,B
︸ ︷︷ ︸

k+1

, Pkn+ Sk,
←−B ,←−B , . . . ,←−B
︸ ︷︷ ︸

k+1

, 2(Pkn+ Sk) ] .

Proof. The proof again uses (4). In this case
[
A B
B C

]

=

[
Pk

1
2
Qk

Qk Rk

]

·
[
Pkn+ Sk 1

1 0

]

·
[
Pk Qk
1
2
Qk Rk

]

from which it follows that

2(Pkn+ Sk)B + C

A
= 2Qkn+ 2

QkSk +Rk

Pk

.

For the second term to be an integer it is necessary that Sk is chosen in such a way that Pk

divides QkSk + Rk, or that the sequence Tk defined above consists only of integers. Hence
we are looking for an integer solution x = Tk, y = Sk with x, y > 0 of the linear equation

Pk · x−Qk · y = Rk. (21)

Now it is well known that such a solution exists if (Pk, Qk) = 1 [8, p. 77]. That this condition
is satisfied is a consequence of (20):

det

[
Pk

1
2
Qk

Qk Rk

]

= det

[
P0

1
2
Q0

Q0 R0

]k+1

=
(
(−1)j+1

)k+1
. (22)

A common factor of Pk and Qk is a factor of this determinant and hence has to divide 1.
Now it is easy to see from (22) (see also [8, p. 78]) that the integer solutions of the linear
equation

Pk · x̂−Qk · ŷ =
(
(−1)j+1

)k+1
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are determined by the denominator and the numerator of the penultimate convergent
1

2
Qk

Rk

of the continued fraction of Pk

Qk

:

x̂ = Rk +mQk, ŷ =
1

2
Qk +mPk

(with m an arbitrary integer). Combining this with (21) we immediately see that

Tk ≡
(
(−1)j+1

)k+1 ·R2
k (mod Qk), Sk ≡

(
(−1)j+1

)k+1 · 1
2
QkRk (mod Pk).

Remark 18. Let the positive root of the equation under review be denoted by p+
√
d

q
. We

found that

• M = 2a0 and P0 = p+ a0 if
√
d = [a0; 2a0 ].

• M = 2 + 2a0 and P0 = p+ a0 + 1 if
√
d = [a0; 1, 2a0 ].

• M = 2 + 4a0 and and P0 = 2p+ 2a0 + 1 if
√
d = [a0; 2, 2a0 ].

9.2 Two illustrative examples

9.2.1 B= (1, 1, 2, 3)

The characteristic equation is 10y2− 14y− 5 = 0 with positive root 7+
√
99

10
and scf expansion√

99 = [9; 1, 18 ]. SCF [1, 1, 2, 3] = 17
10

and SCF [1, 1, 2, 3, 1, 1, 2, 3] = 339
200

so that the multiplier
is M = 200/10 = 20 = 18 + 2.

Pk

Qk

=
17

10
,
339

200
,
6763

3990
,
134921

79600
,
2691657

1588010
, . . . .

Rk = 3, 59, 1177, 23481, 468443, . . . .

Sk = 15, 137, 1354, 80954, 2153327, . . . .

Tk = 9, 81, 799, 47761, 1270409, . . . .

For n = 0, 1, 2, . . ., we have these first three formulas:
√

(17n+ 15)2 + 2(10n+ 9) = [17n+ 15;

1, 1, 2, 3, 17n+ 15, 3, 2, 1, 1, 2(17n+ 15) ],
√

(339n+ 137)2 + 2(200n+ 81) = [339n+ 137;

(1, 1, 2, 3)2, 339n+ 137, (3, 2, 1, 1)2, 2(339n+ 137) ],
√

(6763n+ 1354)2 + 2(3990n+ 799) = [6763n+ 1354;

(1, 1, 2, 3)3, 6763n+ 1354, (3, 2, 1, 1)3, 2(6763n+ 1354) ].
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9.2.2 B = (1, 3, 1, 1, 2)

The equation here is 18y2−16y−9 = 0 with root 8+
√
226

18
and expansion

√
226 = [15; 30 ]. Now

SCF[1, 3, 1, 1, 2] = 23
18

and SCF [1, 3, 1, 1, 2, 1, 3, 1, 1, 2] = 691
540

, which yield M = 540/18 = 30.

Pk

Qk

=
23

18
,
691

540
,
20753

16218
,
623281

487080
,
18719183

14628618
, . . . .

Rk = 7, 211, 6337, 190321, 5710807, . . . .

Sk = 6, 308, 18448, 484775, . . . .

Tk = 5, 241, 14417, 378841, . . . .

For n = 0, 1, 2, . . . , we have

√

(23n+ 6)2 + 2(18n+ 5) = [23n+ 6;

1, 3, 1, 1, 2, 23n+ 6, 2, 1, 1, 3, 1, 46n+ 12 ],
√

(691n+ 308)2 + 2(540n+ 241) = [691n+ 308;

(1, 3, 1, 1, 2)2, 691n+ 308, (2, 1, 1, 3, 1)2, 2(691n+ 308) ],
√

(20753n+ 18448)2 + 2(16218n+ 14417) = [20753n+ 18448;

(1, 3, 1, 1, 2)3, 20753n+ 18448, (2, 1, 1, 3, 1)3, 2(20753n+ 18448) ].

9.3 On the composition of block B
We found the blocks initially by inspecting all the scf expansions of

√
d for d ≤ 1200.

However, one can take any arbitrary string of numbers and verify whether the equation
obtained therefrom is of the form 2ay2 − by − a = 0. If yes, then that is a candidate, else
not. Future work may lead to a more systematic way for producing these blocks. We give
here some blocks of various lengths. They have been ordered on the basis of rising sums of
the numbers in a block. The individual lists will grow as d rises. The length of the block
will go on rising indefinitely.

9.3.1 Triples

We found that the only triple candidate is of the form (n, 1, 2n + 1), n ∈ N, whose charac-
teristic equation is given by y = [n, 1, 2n+ 1, y]⇒ 2(n+ 1)y2 − 2n(n+ 2)y − (n+ 1) = 0.

9.3.2 Quadruples

(1, 1, 2, 3), (1, 4, 2, 2), (2, 2, 1, 4), (2, 1, 2, 5), (1, 6, 3, 2), (3, 2, 1, 6), (3, 1, 2, 7), (1, 10,
5, 2), (2, 8, 4, 4), (4, 4, 2, 8).

30



9.3.3 Quintuples

(1, 3, 1, 1, 2), (2, 3, 1, 1, 4), (1, 7, 1, 3, 2), (2, 5, 1, 2, 4), (3, 1, 2, 2, 7), (3, 7, 1, 3, 6).

9.3.4 Sextuples

(1, 3, 2, 1, 1, 2), (1, 1, 1, 1, 3, 3), (1, 5, 2, 1, 2, 2), (1, 1, 5, 2, 1, 3), (2, 1, 3, 1, 1, 5), (2, 1,
1, 1, 3, 5), (1, 6, 1, 2, 3, 2), (1, 1, 11, 5, 1, 3), (5, 2, 1, 2, 1, 10), (2, 2, 7, 14, 1, 4).

9.3.5 Septuples

(1, 3, 2, 2, 1, 1, 2), (1, 4, 1, 1, 3, 2, 2), (1, 1, 1, 2, 1, 6, 3), (2, 3, 2, 2, 1, 1, 4), (5, 4, 1, 1, 3,
2, 10).

9.3.6 Octuples

(1, 1, 2, 3, 1, 1, 2, 3), (1, 3, 1, 3, 7, 1, 1, 2), (2, 2, 1, 4, 2, 2, 1, 4).
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