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Abstract

In this paper, by using the techniques of the q-exponential generating series, we
extend a well-known two-parameter identity for the Appell polynomials to the q-Appell
polynomials of type I and II. More precisely, we obtain two different q-analogues of
such an identity. Then, we specialize these identities for some q-polynomials arising in
combinatorics, in q-calculus or in the theory of orthogonal polynomials. In particular,
we consider the generalized q-Bernoulli and q-Euler polynomials and then we deduce
some further identities involving the Bernoulli and Euler numbers. In this way, as a
byproduct, we derive the symmetric Carlitz identity for the Bernoulli numbers. Finally,
we find a (non-symmetric) q-analogue of Carlitz’s identity involving the q-Bernoulli
numbers of type I and II.

1 Introduction

Appell sequences form an important and interesting class containing many classical poly-
nomials arising in physics, in numerical analysis, in the theory of orthogonal polynomials
[13], in analysis [6, 10, 36], in the modern umbral calculus [32, 33, 34] and in the theory of
Sheffer sequences [38, 41] or, equivalently, in the theory of Sheffer matrices (or exponential
Riordan arrays) [25, 26]. The ordinary powers, the generalized Hermite polynomials, the
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generalized Bernoulli and Euler polynomials, and the generalized rencontres polynomials are
all examples of Appell polynomials.

An Appell sequence {an(x)}n∈N can be characterized in several ways [5, 45]. The following
statements are equivalent.

1. For every n ∈ N, the polynomial an(x) has degree n and a′n(x) = nan−1(x).

2. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
n∑

k=0

(
n

k

)
gn−k x

k

or, equivalently,

gn =
n∑

k=0

(
n

k

)
(−1)kxk an−k(x).

3. The sequence {an(x)}n∈N has exponential generating series

A(x; t) =
∑

n≥0

an(t)
tn

n!
= g(t) ext,

where g(t) =
∑

n≥0 gn
tn

n!
is an exponential series with g0 6= 0.

4. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
∑

k≥0

gk
D

k

k!
xn,

where D is the derivative with respect to x.

5. The sequence {an(x)}n∈N satisfies the Appell identity

n∑

k=0

(
n

k

)
ak(x) y

n−k = an(x+ y).

Furthermore, the Appell polynomials an(x) and the coefficients gn are related by the
following two-parameter binomial identity [45, p. 316] [36, Formula (16′)]:

n∑

k=0

(
n

k

)
(−1)kxk am+n−k(x) =

m∑

k=0

(
m

k

)
gn+k x

m−k . (1)

It is easy to see that this is a further characterization of the Appell polynomials. More
precisely, we have that the polynomials an(x) form an Appell sequence if and only if there
exists a sequence {gn}n∈N, with g0 6= 0, for which identity (1) is satisfied for every m,n ∈ N.
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In 1967, after a paper by Sharma and Chak [37], Al-Salam [2] introduced the q-Appell
polynomials (of type I) and, recently, Sadjang [35] introduced the q-Appell polynomials of
type II. In this paper, we extend identity (1) to the q-Appell polynomials of type I and II.
Specifically, through the techniques of the theory the q-exponential generating series, we
obtain two different q-analogues of this identity. Then, we specialize these identities for
some q-polynomials arising in combinatorics, in q-calculus or in the theory of orthogonal
polynomials, such as the q-Hermite polynomials, the Gaussian polynomials, the Al-Salam-
Carlitz polynomials, the q-permutation polynomials, the q-rencontres and q-arrangement
polynomials (and some of their generalizations), the q-Bernoulli and q-Euler polynomials. In
this last case, we further specialize our identities to the Bernoulli and Euler polynomials and
we deduce some other identities involving the Bernoulli and Euler numbers. In particular,
as a byproduct, we derive the Carlitz symmetric identity for the Bernoulli numbers [9, 25].
Finally, we find a q-analogue of Carlitz’s identity. Such an identity, however, is not symmetric
and involves the q-Bernoulli numbers of type I and II.

2 q-Appell polynomials

We start by recalling some definitions [23]. For every n ∈ N, we have the q-natural number
[n]q = 1+ q+ q2+ · · ·+ qn−1 and the q-factorial number [n]q! = [n]q[n− 1]q · · · [2]q[1]q. Then,
for every n, k ∈ N, the q-binomial coefficients (or Gaussian coefficients) are defined by

(
n

k

)

q

=
[n]q!

[k]q![n− k]q!
for k = 0, 1, . . . , n

and by 0 otherwise. A q-polynomial is a polynomial with coefficients in Qq = Q(q), i.e., the
field of quotients of Q[q], where q is an indeterminate. The algebra of the q-polynomials are
denoted by Qq[x]. The q-Pochhammer symbol is the q-polynomial defined by

(x; q)n = (1− x)(1− qx) · · · (1− qn−1x) =
n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xk. (2)

A q-exponential series is a formal series of the form f(t) =
∑

n≥0 fn
tn

[n]q !
. The sum and

the multiplication by a scalar are defined componentwise. The product of two q-exponential
series f(t) =

∑
n≥0 fn

tn

[n]q !
and g(t) =

∑
n≥0 gn

tn

[n]q !
is defined by

f(t)g(t) =
∑

n≥0

(
n∑

k=0

(
n

k

)

q

fkgn−k

)
tn

[n]q!
. (3)

The q-derivative (Jackson’s derivative) Dq of a q-exponential generating series f(t) =∑
n≥0 fn

tn

[n]q !
is defined [21, 22] by the formula

Dqf(t) =
f(qt)− f(t)

(q − 1)t
=
∑

n≥0

fn+1
tn

[n]q!
.
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Given two q-exponential series f(t) and g(t), we have the q-Leibniz formula

D
m
q f(t)g(t) =

m∑

k=0

(
m

k

)

q

D
k
qf(t) · Q

k
qD

m−k
q g(t), (4)

where Qq is the operator defined by Qqh(t) = h(qt).
The q-exponential series (Jackson’s q-exponential) [21]

Eq(t) =
∑

n≥0

tn

[n]q!
=
∏

k≥0

1

1 + (q − 1)qkt
(5)

is the eigenfunction of the q-derivative, that is,

DqEq(λt) = λEq(t). (6)

In particular, since DqEq(t) = Eq(t), we have the relation

Eq(qt) = (1− (1− q)t)Eq(t). (7)

Consequently, for every m ∈ N, we have

Eq(q
mt) = ((1− q)t; q)mEq(t). (8)

The inverse of the q-exponential series Eq(t) is

Eq(t)
−1 =

∑

n≥0

(−1)nq(
n

2) tn

[n]q!
. (9)

Given two q-exponential series f(t) =
∑

n≥0 fn
tn

[n]q !
and g(t) =

∑
n≥0 gn

tn

[n]q !
, we have

f(t) = Eq(αt)g(t) if and only if g(t) = Eq(αt)
−1f(t). This is equivalent to the q-binomial

inversion theorem:

fn =
n∑

k=0

(
n

k

)

q

αkgn−k ⇐⇒ gn =
n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)αkfn−k.

A q-Appell sequence (of type I) [2] is a sequence {an(x)}n∈N, where an(x) is a q-polynomial
of degree n and Dqan(x) = [n]qan−1(x) for every n ∈ N. Also the q-Appell sequences can be
characterized in several ways, as in the ordinary case. Indeed, the following statements are
equivalent.

1. {an(x)}n∈N is a q-Appell sequence (of type I).
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2. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
n∑

k=0

(
n

k

)

q

gn−k x
k

or, equivalently,

gn =
n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xk an−k(x).

3. The sequence {an(x)}n∈N has q-exponential generating series

A(x; t) =
∑

n≥0

an(x)
tn

[n]q!
= g(t)Eq(xt), (10)

where g(t) =
∑

n≥0 gn
tn

[n]q !
is a q-exponential series with g0 6= 0.

4. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
∑

k≥0

gk
D

k
q

[k]q!
xn.

Similarly, a q-Appell sequence of type II [35] is a sequence {an(x)}n∈N, where an(x) is a
q-polynomial of degree n and Dqan(x) = [n]qan−1(qx), for every n ∈ N. Also in this case, we
have the following equivalent characterizations:

1. {an(x)}n∈N is a q-Appell sequence of type II.

2. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
n∑

k=0

(
n

k

)

q

q(
k

2)gn−k x
k

or, equivalently,

gn =
n∑

k=0

(
n

k

)

q

(−1)kxk an−k(x).

3. The sequence {an(x)}n∈N has q-exponential generating series

A(x; t) =
∑

n≥0

an(x)
tn

[n]q!
= g(t)Eq(−xt)

−1, (11)

where g(t) =
∑

n≥0 gn
tn

[n]q !
is a q-exponential series with g0 6= 0.

4. There exists a sequence {gn}n∈N, with g0 6= 0, such that

an(x) =
∑

k≥0

gk q
(n−k

2 ) D
k
q

[k]q!
xn.
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3 Two-parameter identities

To obtain a q-analogue of identity (1), we apply the q-Leibniz rule to the q-exponential
generating series of a q-Appell sequence. By applying such a rule in two different ways, we
obtain two different extensions of identity (1). First, we have the following result:

Theorem 1. Let {an(x)}n∈N be the q-Appell sequence (of type I) associated with the sequence
{gn}n∈N. Then, for every m,n ∈ N, we have the identity

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkam+n−k(x) =
m∑

k=0

(
m

k

)

q

qnkgn+m−k x
k . (12)

Proof. By applying the q-Leibniz rule (4) to series (10), we get

D
m
q A(x; t) = D

m
q Eq(xt)g(t) =

m∑

k=0

(
m

k

)

q

D
k
qEq(xt) · Q

k
qD

m−k
q g(t).

Then, by identity (6) and by setting g(h)(t) = D
h
qg(t), we have

D
m
q A(x; t) =

m∑

k=0

(
m

k

)

q

xkEq(xt) g
(m−k)(qkt),

that is,

Eq(xt)
−1
D

m
q A(x; t) =

m∑

k=0

(
m

k

)

q

xk g(m−k)(qkt).

Recalling formulas (3) and (9) and taking the coefficients of tn

[n]q !
from the first and last series,

we obtain identity (12).

To state the next theorem, we need the following definition: given the q-Appell polyno-
mials an(x) associated with the q-numbers gn, we define the shifted polynomials a

[m]
n (x) as

the q-Appell polynomials associated with the q-numbers gm+n; namely,

a[m]
n (x) =

n∑

k=0

(
n

k

)

q

gm+n−k x
k.

This means that their q-exponential generating series is

∑

n≥0

a[m]
n (x)

tn

[n]q!
= g(m)(t)Eq(xt),

where g(m)(t) = D
m
q g(t).
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Theorem 2. Let {an(x)}n∈N be the q-Appell sequence (of type I) associated with the sequence
{gn}n∈N. Then, for every m,n ∈ N, we have the identity

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkam+n−k(x) =
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)xka
[n]
m−k(x), (13)

where m ∧ n denotes the minimum between m and n.

Proof. By applying the q-Leibniz rule (4) to series (10), we have

D
m
q A(x; t) = D

m
q g(t)Eq(xt) =

m∑

k=0

(
m

k

)

q

D
k
qg(t) · Q

k
qD

m−k
q Eq(xt).

Then, by identity (6), we have

D
m
q A(x; t) =

m∑

k=0

(
m

k

)

q

g(k)(t) xm−kEq(q
kxt)

and, by Eq. (8), we have

D
m
q A(x; t) =

m∑

k=0

(
m

k

)

q

g(k)(t) xm−k((1− q)xt; q)kEq(xt),

that is,

Eq(xt)
−1
D

m
q A(x; t) =

m∑

k=0

(
m

k

)

q

g(k)(t) xm−k((1− q)xt; q)k.

Hence, by Eq. (2), we have

Eq(xt)
−1
D

m
q A(x; t) =

m∑

k=0

(
m

k

)

q

g(k)(t) xm−k

k∑

i=0

(
k

i

)

q

(q − 1)iq(
i

2)xiti

=
m∑

i,k≥0

(
m

k

)

q

(
k

i

)

q

(q − 1)iq(
i

2)xi+m−ktig(k)(t)

=
m∑

i,k≥0

(
m

i

)

q

(
m− i

k − i

)

q

(q − 1)iq(
i

2)xi+m−k
∑

n≥0

(
n

i

)

q

[i]q!gn+k−i
tn

[n]q!

=
∑

n≥0

(
∑

i,k≥0

(
m

i

)

q

(
m− i

k − i

)

q

(
n

i

)

q

[i]q!(q − 1)iq(
i

2)gn+k−ix
m−k+i

)
tn

[n]q!

=
∑

n≥0

(
∑

i≥0

(
m

i

)

q

(
n

i

)

q

[i]q!(q − 1)iq(
i

2)xi
m∑

k=i

(
m− i

k − i

)

q

gn+k−ix
m−k

)
tn

[n]q!
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=
∑

n≥0

(
∑

i≥0

(
m

i

)

q

(
n

i

)

q

[i]q!(q − 1)iq(
i

2)xi
m−i∑

k=0

(
m− i

k

)

q

gn+kx
m−i−k

)
tn

[n]q!

=
∑

n≥0

(
∑

i≥0

(
m

i

)

q

(
n

i

)

q

[i]q!(q − 1)iq(
i

2)xi
m−i∑

k=0

(
m− i

k

)

q

gn+m−i−kx
k

)
tn

[n]q!

=
∑

n≥0

(
∑

i≥0

(
m

i

)

q

(
n

i

)

q

[i]q!(q − 1)iq(
i

2)xia
[n]
m−i(x)

)
tn

[n]q!
.

Taking the coefficients of tn

[n]q !
in the first and last series, we obtain identity (13).

Given a sequence {gn}n∈N, we denote by an(x) the associated q-Appell polynomials of
type I and by a∗n(x) the associated q-Appell polynomials of type II. To establish a relation
between these two sequences, we define the umbral map ψ : Qq[x] → Qq[x] by setting

ψ(xn) = q(
n

2)xn

and by extending it by linearity. Then, we immediately have the following first result:

Lemma 3. The umbral map ψ transforms the q-Appell polynomials of type I into the q-Appell
polynomials of type II, that is, for every n ∈ N, we have

ψ(an(x)) = a∗n(x).

This result can be extended as follows.

Lemma 4. For every m ∈ N and for every polynomial p(x), we have

ψ(xmp(x)) = q(
m

2 )xm p∗(qmx), (14)

where p∗(x) = ψ(p(x)).

Proof. Suppose p(x) =
∑n

k=0 pkx
k. Then, by the linearity of the umbral map, we have

ψ(xmp(x)) =
n∑

k=0

(
n

k

)

q

pk ψ(x
m+k) =

n∑

k=0

(
n

k

)

q

pk q
(m+k

2 )xm+k

= q(
m

2 )xm
n∑

k=0

(
n

i

)

q

q(
k

2)pk (q
mx)k = q(

m

2 )xmp∗(qmx).

This establishes identity (14).

By this lemma, we can easily find the following analogues of identities (12) and (13) for
the q-Appell polynomials of type II:
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Theorem 5. Let {a∗n(x)}n∈N be the q-Appell sequence of type II associated with the sequence
{gn}n∈N. Then, for all m,n ∈ N, we have the identities

n∑

k=0

(
n

k

)

q

(−1)kqk
2−kxka∗m+n−k(q

kx) =
m∑

k=0

(
m

k

)

q

q(
k

2)+nkgn+m−k x
k (15)

n∑

k=0

(
n

k

)

q

(−1)kqk
2−kxka∗m+n−k(q

kx) =
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kqk
2−kxka

[n]∗
n+m−k(q

kx). (16)

Proof. By Lemma 4, we have ψ
(
xma

[r]
n (x)

)
= q(

m

2 )xma
[r]∗
n (qmx). Hence, by applying ψ to

identities (12) and (13) we obtain at once identities (15) and (16).

4 Examples (of type I)

4.1 q-Hermite polynomials

The q-Hermite polynomials (or Rogers-Szegö polynomials) [8, 3] [32, p. 180] are the q-Appell
polynomials associated with the numbers gn = 1; namely,

Hn(q; x) =
n∑

k=0

(
n

k

)

q

xk , (17)

and have q-exponential generating series

∑

n≥0

Hn(q; x)
tn

[n]q!
= Eq(t)Eq(xt).

Since H
[m]
n (q; x) = Hn(q; x), identities (12) and (13) become

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkHm+n−k(q; x) =
m∑

k=0

(
m

k

)

q

qnk xk, (18)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkHm+n−k(q; x) =
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)xkHm−k(q; x). (19)

In particular, for x = 1, we have the Galois numbers Gn(q) = Hn(q; 1) =
∑n

k=0

(
n
k

)
q
, [18, 28],

and the two previous identities become

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)Gm+n−k(q) =
m∑

k=0

(
m

k

)

q

qnk, (20)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)Gm+n−k(q) =
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)Gm−k(q). (21)
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4.2 Gaussian polynomials

The Gaussian polynomials [18, 19] are the q-Appell polynomials associated with the q-

numbers gn = (−1)nq(
n

2); namely,

gn(q; x) = (x− 1)(x− q) · · · (x− qn−1) =
n∑

k=0

(
n

k

)

q

(−1)n−kq(
n−k

2 )xk ,

and have q-exponential generating series

∑

n≥0

gn(q; x)
tn

[n]q!
= Eq(t)

−1Eq(xt).

In this case, we have

g[m]
n (q; x) =

n∑

k=0

(
n

k

)

q

(−1)m+n−kq(
m+n−k

2 )xk

= (−1)mq(
m

2 )qmn

n∑

k=0

(
n

k

)

q

(−1)n−kq(
n−k

2 )
( x
qm

)k

= (−1)mq(
m

2 )qmngn(q; x/q
m) = (−1)mq(

m

2 ) gm+n(q; x)

gn(q; x)
.

Hence, identities (12) and (13) become

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkgm+n−k(q; x) =
m∑

k=0

(
m

k

)

q

(−1)n+m−kq(
n+m−k

2 )+nkxk, (22)

gn(q; x)
n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkgm+n−k(q; x) =

= (−1)nq(
n

2)
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)xkgn+m−k(q; x).

(23)

These two identities can be rewritten in terms of the Pochhammer symbol. More precisely,
since (x; q)n = xngn(q; x

−1), we have the identities

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)(x; q)m+n−k =
m∑

k=0

(
m

k

)

q

(−1)n+m−kq(
n+m−k

2 )+nkxn+m−k, (24)

(x; q)n

n∑

k=0

(
n

k

)

q

(−1)n−kq(
k

2)(x; q)m+n−k

= q(
n

2)xn
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)(x; q)n+m−k.

(25)
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4.3 Al-Salam-Carlitz polynomials

The Al-Salam-Carlitz polynomials (or q-Carlitz polynomials) ([4] [13, p. 195] [20]) are defined
by the formula

U (α)
n (q; x) =

n∑

k=0

(
n

k

)

q

(−α)n−kgk(x)

and consequently they have q-exponential generating series

U (α)
q (x; t) =

∑

n≥0

U (α)
n (q; x)

tn

[n]q!
=

Eq(xt)

Eq(t)Eq(αt)
= Eq(t)

−1Eq(αt)
−1Eq(xt).

This means that they form the q-Appell sequence associated with the q-numbers

u(α)n (q) = (−1)n
n∑

k=0

(
n

k

)

q

q(
k

2)q(
n−k

2 )αk

defined by the q-exponential generating series

u(α)q (t) =
∑

n≥0

u(α)n (q)
tn

[n]q!
= Eq(t)

−1Eq(αt)
−1.

In this case, identity (12) become

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkU
(α)
m+n−k(q; x) =

m∑

k=0

(
m

k

)

q

qnku
(α)
n+m−k(q) x

k . (26)

4.4 q-Factorial polynomials

The q-factorial polynomials are the q-Appell polynomials associated with the q-factorial
numbers gn = [n]q!; namely,

Fn(q; x) =
n∑

k=0

(
n

k

)

q

[n− k]q! x
k.

Hence, they have q-exponential generating series

Fq(x, t) =
∑

n≥0

Pn(q; x)
tn

[n]q!
=
Eq(xt)

1− t
.

Moreover, the polynomials

F [m]
n (q; x) =

n∑

k=0

(
n

k

)

q

[m+ n− k]q! x
k

11



have q-exponential generating series

F [m]
q (x, t) =

∑

n≥0

P [m]
n (q; x)

tn

[n]q!
= F [m]

q (t)Eq(xt),

where

F [m]
q (t) =

∑

n≥0

[m+ n]q!
tn

[n]q!
= [m]q!

∑

n≥0

[m+ n]q!

[m]q![n]q!
tn = [m]q!

∑

n≥0

(
m+ n

m

)

q

tn,

that is,

F [m]
q (t) =

[m]q!

(t; q)m+1

=
[m]q!

(1− t)(1− qt) · · · (1− qmt)
.

Hence, we have

F [m]
q (x, t) =

[m]q!Eq(xt)

(1− t)(1− qt) · · · (1− qmt)
.

Identities (12) and (13) become

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkFm+n−k(x) =
m∑

k=0

(
m

k

)

q

qnk[n+m− k]q! x
k, (27)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkFm+n−k(x) =
m∧n∑

k=0

(
m

k

)

q

(
n

k

)

q

[k]!(q − 1)kq(
k

2)xkF
[n]
n+m−k(x). (28)

4.5 q-rencontres and q-arrangement polynomials

The q-derangement numbers dn(q) [46, 11, 27] and the q-arrangement numbers an(q) are
respectively defined by the formulas

dn(q) =
n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)[n− k]q! and an(q) =
n∑

k=0

(
n

k

)

q

[n− k]q!

and have q-exponential generating series

Dq(t) =
∑

n≥0

dn(q)
tn

[n]q!
=
Eq(t)

−1

1− t
and Aq(t) =

∑

n≥0

an(q)
tn

[n]q!
=
Eq(t)

1− t
.

For q = 1, we recover the derangement numbers dn ([31, p. 65] and A000166 and the
arrangement numbers an ([31, p. 16] and A000522).

The q-rencontres polynomials Dq(x; t) and the q-arrangement polynomials Aq(x; t) are the
q-Appell polynomials associated respectively with the q-numbers dn(q) and an(q); namely,

Dn(q; x) =
n∑

k=0

(
n

k

)

q

dn−k(q) x
k and An(q; x) =

n∑

k=0

(
n

k

)

q

an−k(q) x
k,

12
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and have q-exponential generating series

Dq(x; t) =
∑

n≥0

Dn(q; x)
tn

[n]q!
=
Eq(t)

−1

1− t
Eq(xt),

Aq(x; t) =
∑

n≥0

An(q; x)
tn

[n]q!
=
Eq(t)

1− t
Eq(xt).

Then, by identity (12), we have

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkDm+n−k(q; x) =
m∑

k=0

(
m

k

)

q

qnkdn+m−k(q) x
k, (29)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkAm+n−k(q; x) =
m∑

k=0

(
m

k

)

q

qnkan+m−k(q) x
k. (30)

More generally, given m ∈ N, we can consider the generalized q-derangement numbers
d
(m)
n (q) and the generalized q-arrangement numbers a

(m)
n (q) defined by

d(m)
n (q) =

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)[m+ n− k]q! and a(m)
n (q) =

n∑

k=0

(
n

k

)

q

[m+ n− k]q!

and having q-exponential generating series

D(m)
q (t) =

∑

n≥0

d(m)
n (q)

tn

[n]q!
=

[m]q!Eq(t)
−1

(1− t)(1− qt) · · · (1− qmt)
,

A(m)
q (t) =

∑

n≥0

a(m)
n (q)

tn

[n]q!
=

[m]q!Eq(t)

(1− t)(1− qt) · · · (1− qmt)
.

Then, the associated q-Appell polynomials are the generalized q-rencontres polynomials
D

(m)
q (x; t) and the generalized q-arrangement polynomials A

(m)
q (x; t) defined by

D(m)
n (q; x) =

n∑

k=0

(
n

k

)

q

d
(m)
n−k(q) x

k and A(m)
n (q; x) =

n∑

k=0

(
n

k

)

q

a
(m)
n−k(q) x

k

and with q-exponential generating series

D(m)
q (x; t) =

∑

n≥0

D(m)
n (q; x)

tn

[n]q!
=

[m]q!Eq(t)
−1

(1− t)(1− qt) · · · (1− qmt)
Eq(xt),

A(m)
q (x; t) =

∑

n≥0

A(m)
n (q; x)

tn

[n]q!
=

[m]q!Eq(t)

(1− t)(1− qt) · · · (1− qmt)
Eq(xt).

13



In this way, when q = 1, we recover the generalized derangement numbers d
(m)
n and the

generalized arrangement numbers a
(m)
n , and the associated Appell polynomials D

(m)
n (x) and

A
(m)
n (x), [7, 15, 16].
For these generalized polynomials, by identity (12), we have

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkD
(µ)
m+n−k(q; x) =

m∑

k=0

(
m

k

)

q

qnkd
(µ)
n+m−k(q) x

k, (31)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkA
(µ)
m+n−k(q; x) =

m∑

k=0

(
m

k

)

q

qnka
(µ)
n+m−k(q) x

k. (32)

In particular, for x = 1, we have D
(µ)
n (q; 1) = [µ+ n]q!. Hence, the first identity becomes

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)[µ+m+ n− k]q! =
m∑

k=0

(
m

k

)

q

qnkd
(µ)
n+m−k(q). (33)

4.6 Generalized q-Bernoulli and q-Euler polynomials

The generalized q-Bernoulli numbers B
(ν)
n (q) and the generalized q-Bernoulli polynomials

B
(ν)
n (q; x), [1], are defined, respectively, by the q-exponential generating series

B(ν)
q (t) =

∑

n≥0

B(ν)
n (q)

tn

[n]q!
=

(
t

Eq(t)− 1

)ν
,

B(ν)
q (x; t) =

∑

n≥0

B(ν)
n (q; x)

tn

[n]q!
=

(
t

Eq(t)− 1

)ν
Eq(xt).

Similarly, the q-numbers Ẽ
(ν)
n (q) and the generalized q-Euler polynomials E

(ν)
n (q; x) are

defined, respectively, by the q-exponential generating series

Ẽ(ν)
q (t) =

∑

n≥0

Ẽ(ν)
n (q)

tn

[n]q!
=

(
2

Eq(t) + 1

)ν
,

E(ν)
q (x; t) =

∑

n≥0

E(ν)
n (q; x)

tn

[n]q!
=

(
2

Eq(t) + 1

)ν
Eq(xt).

Hence, by identity (12), we have

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkB
(ν)
m+n−k(q; x) =

m∑

k=0

(
m

k

)

q

qnkB
(ν)
n+m−k(q) x

k, (34)

n∑

k=0

(
n

k

)

q

(−1)kq(
k

2)xkE
(ν)
m+n−k(q; x) =

m∑

k=0

(
m

k

)

q

qnkẼ
(ν)
n+m−k(q) x

k. (35)
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Clearly, when ν = 1 and q = 1, we have the Bernoulli polynomials Bn(x) and the Euler
polynomials En(x), [24, 29]. Moreover, we have the Bernoulli numbers Bn = Bn(0) and

Ẽn = En(0) = (2−2n+2)Bn+1

n+1
, the Euler numbers En = 2nEn(1/2), ([14, p. 49] and A122045,

A000364, A028296) and the Springer numbers Sn = (−1)⌈n/2⌉4nEn(1/4) ([40] and A001586).
Hence, the above identities can be rewritten as

n∑

k=0

(
n

k

)
(−1)n−kxn−kBm+k(x) =

m∑

k=0

(
m

k

)
Bn+k x

m−k, (36)

n∑

k=0

(
n

k

)
(−1)n−kxn−kEm+k(x) =

m∑

k=0

(
m

k

)
Ẽn+k x

m−k. (37)

In particular, when x = 1/2, we have Bn(1/2) = (21−n − 1)Bn and identities (36) and
(37) become

n∑

k=0

(
n

k

)
(−1)n−k(2− 2m+k)Bm+k =

m∑

k=0

(
m

k

)
2n+k Bn+k, (38)

n∑

k=0

(
n

k

)
(−1)n−kEm+k =

m∑

k=0

(
m

k

)
2n+k(2− 2n+k+2)

Bn+k+1

n+ k + 1
. (39)

Similarly, when x = 1/4, we have Bn(1/4) =
1
2n

(
1

2n−1 − 1
)
Bn −

1
4n
nEn−1 and identities (36)

and (37) become

n∑

k=0

(
n

k

)
(−1)n−k

(
(2− 2m+k)Bm+k − (m+ k)Em+k−1

)
=

m∑

k=0

(
m

k

)
4n+k Bn+k, (40)

n∑

k=0

(
n

k

)
(−1)n−k+⌈m+k

2
⌉Sm+k =

m∑

k=0

(
m

k

)
4n+k(2− 2n+k+2)

Bn+k+1

n+ k + 1
. (41)

From identities (38) and (40), we also have

n∑

k=0

(
n

k

)
(−1)n−k(m+ k)Em+k−1 =

m∑

k=0

(
m

k

)
2n+k(1− 2n+k)Bn+k. (42)

Finally, when x = 1, we have Bn(1) = (−1)nBn and En(1) = (−1)nEn(0) = (−1)nẼn

and identities (36) and (37) become

(−1)n
n∑

k=0

(
n

k

)
Bm+k = (−1)m

m∑

k=0

(
m

k

)
Bn+k (43)

(−1)n
n∑

k=0

(
n

k

)
(2− 2m+k+2)

Bm+k+1

m+ k + 1
,= (−1)m

m∑

k=0

(
m

k

)
(2− 2n+k+2)

Bn+k+1

n+ k + 1
. (44)
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The first identity (43) is the symmetric Carlitz identity for the Bernoulli numbers [9].
Such an identity can be proved (and generalized) in several ways [12, 17, 30, 42, 44]. In [25],
we proved it by using a general method based on umbral calculus. Here, we proved that
it is a simple consequence of the general two-parameter identity for the Appell polynomials
(specialized to the Bernoulli polynomials). Similarly, the second identity (44) is the analogue

symmetric identity for the numbers Ẽn.
We conclude by noticing that the previous symmetric identities can be extended to

the generalized Bernoulli numbers. Indeed, we have B
(ν)
n (ν) = (−1)nB

(ν)
n and E

(ν)
n (ν) =

(−1)nẼ
(ν)
n . So, setting q = 1 and x = ν, we obtain

(−1)n
n∑

k=0

(
n

k

)
νn−kB

(ν)
m+k = (−1)m

m∑

k=0

(
m

k

)
νm−kB

(ν)
n+k, (45)

(−1)n
n∑

k=0

(
n

k

)
νn−kẼ

(ν)
m+k = (−1)m

m∑

k=0

(
m

k

)
νm−kẼ

(ν)
n+k. (46)

However, Carlitz’s identity (43) cannot be immediately extended to the q-Bernoulli num-
bers. To obtain such an extension, we need to consider the q-Bernoulli numbers B∗

n(q) of
type II defined by the q-exponential generating series

B∗
q (t) =

∑

n≥0

B∗
n(q)

tn

[n]q!
=

t

E∗
q (t)− 1

,

where

E∗
q (t) = Eq(−t)

−1 =
∑

n≥0

q(
n

2) tn

[n]q!
.

Since the q-exponential generating series of the q-Bernoulli numbers can be written as follows

Bq(t) =
t

Eq(t)− 1
=

−t Eq(t)
−1

Eq(t)−1 − 1
= B∗

q (−t)Eq(t)
−1 ,

we have Bq(1; t) = B∗
q (−t), that is, Bn(q; 1) = (−1)nB∗

n(q). Therefore, for ν = 1 and x = 1,
identity (34) can be rewritten as

(−1)n
n∑

k=0

(
n

k

)

q

q(
n−k

2 )B∗
m+k(q) = (−1)m

m∑

k=0

(
m

k

)

q

qn(m−k)Bn+k(q). (47)

This is the q-analogue of Carlitz’s identity (43), even though it is not symmetric and involves
the q-Bernoulli numbers of type I and II. The q-Bernoulli numbers of type II, however, can
be expressed in terms of the q-Bernoulli numbers of type I. Indeed, since

B∗
q (t) =

t

Eq(−t)−1 − 1
=

−t Eq(−t)

Eq(−t)− 1
=

−t (1 + Eq(−t)− 1)

Eq(−t)− 1
= Bq(−t)− t ,
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we have B∗
n(q) = (−1)nBn(q)− δn,1 = (−1)n(Bn(q) + δn,1). Moreover, by the identity [43]

Eq(−t)Eq−1(t) = 1 , or Eq(−t)
−1 = Eq−1(t) ,

we also have

B∗
q (t) =

t

Eq(−t)−1 − 1
=

t

Eq−1(t)− 1
= Bq−1(t).

Since [n]q−1 ! = q−(
n

k)[n]q! , we have

B∗
q (t) =

∑

n≥0

Bn(q
−1)

tn

[n]q−1 !
=
∑

n≥0

q(
n

k)Bn(q
−1)

tn

[n]q!
,

that is,

B∗
n(q) = q(

n

k)Bn(q
−1).

So, replacing this expression in (47), we obtain the identity

(−1)nq(
n

2)
n∑

k=0

(
n

k

)

q

qk(m−n+k)Bm+k(q
−1) = (−1)mq−(

m

k )
m∑

k=0

(
m

k

)

q

qn(m−k)Bn+k(q). (48)

In a completely similar way, defining the q-numbers Ẽ∗
n(q) of type II by the q-exponential

generating series

Ẽ∗
q (t) =

∑

n≥0

Ẽ∗
n(q)

tn

[n]q!
=

2

E∗
q (t) + 1

=
2

Eq−1(t) + 1
= Ẽq−1(t) ,

we can derive the following identity from identity (35):

(−1)n
n∑

k=0

(
n

k

)

q

q(
n−k

2 )Ẽ∗
m+k(q) = (−1)m

m∑

k=0

(
m

k

)

q

qn(m−k)Ẽn+k(q). (49)

Finally, since Ẽ∗
n(q) = q(

n

k)Ẽn(q
−1), we also have

(−1)nq(
n

2)
n∑

k=0

(
n

k

)

q

qk(m−n+k)Ẽm+k(q
−1) = (−1)mq−(

m

k )
m∑

k=0

(
m

k

)

q

qn(m−k)Ẽn+k(q). (50)
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