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Abstract

A sequence s(n) of integers is MC-finite if for every m ∈ N the sequence s(n) mod
m is ultimately periodic. We discuss various ways of proving and disproving MC-
finiteness. Our examples are mostly taken from set partition functions, but our methods
can be applied to many more integer sequences.
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1 Introduction

1.1 Goal of this paper

Given a sequence of integers s(n) with some combinatorial interpretation, one wonders what
can be said about the sequence s(n). Ideally, we would like to have an explicit formula for
s(n), or some recurrence relation with coefficients being constant or polynomial in n. Second
best is an asymptotic description of s(n). We could instead look at the sequence sm(n) ≡ s(n)
(mod m) and try to describe sm(n). If for every modulus m the sequence sm(n) is ultimately
periodic, we say that s(m) is MC-finite. We consider MC-finiteness a legitimate topic in the
study of integer sequences. The notion of MC-finiteness appears under this name only since
the publication of Makowsky [38] in 2010. Without its name, the concept seemingly appears
first in Blatter and Specker [10, 11]. Otherwise it rarely appears in the literature, e.g., under
the name of supercongruence in Banderier et al. [3, 5]. The four substantial monographs on
integer sequences published after 2000 by Everest et al., Mansour, and Mező [19, 41, 41, 43]
do not mention the concept at all,

All the sequences we discuss in this paper appear in the On-Line Encyclopedia of Integer
Sequences [27], with a number starting with A. We give these numbers with the first mention
of the sequence, and list them also at the end of the paper. Needless to say, our methods
also apply to many other entries in OEIS.

Broder [12] introduced the restricted Bell numbers Br(n) and the restricted Stirling num-
bers of the second kind Sr(n, k). The sequence Br(n) is only listed in OEIS for r = 2,A005493
and r = 3,A005494. The sequences Sr(n, k) appear in OEIS as A143494,A143495, and
A143496. This paper grew out of our attempts to show that the sequence Br(n) of restricted
Bell numbers is MC-finite.

The purpose of this paper is two-fold. Its first part is mostly expository. It is written with
the intent to popularize the study of MC-finiteness for researchers interested in properties
of integer sequences. However, the statements that the examples chosen are MC-finite have
not, to the best of our knowledge, been stated before in the literature. We have chosen our
examples in order to familiarize the reader with the two general methods to establish MC-
finiteness. The first method is a logical method, pioneered by Blatter and Specker [10, 54, 11].
It was further developed by two of the authors of this paper (EF and JAM) [22, 24]. The
second method is a combinatorial method to prove MC-finiteness. It was also first suggested
by Specker [54] and later, independently, by Sénizergues [52]. Only Cadilhac et al. [15]
finally made this second method precise. It is based on the existence of finitely many mutual
polynomial recurrence relations over Z that are used to define the integer sequence. In a
separate paper, the first method is applied by Fischer and Makowsky to show MC-finiteness
of infinitely many integer sequences arising from counting finite topologies [18].

In this paper we investigate MC-finiteness and counterexamples thereof of integer se-
quences derived from counting various unrestricted and restricted set partitions and transi-
tive relations. Among the unrestricted cases we look at the Bell numbers B(n), A000110,
and the Stirling numbers of the second kind S(n, k0), A000453. We also discuss the number
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of linear quasi-orders (pre-orders) LQ(n), A000670, the number of quasi-orders (pre-orders)
Q(n), A000798, the number of partial orders P (n), A001035, and the number of transitive
relations T (n), A006905, all of them on the set [n]. The numbers LQ(n) are called ordered
Bell numbers or Fubini numbers, often denoted in the literature by a(n) and also by F (n).
For the unrestricted cases the results are seemingly new, or at least have not been stated
before. They are simple consequences of growth arguments and the logical method due to
Blatter and Specker [11, 54], the Specker-Blatter theorem.

Typical restricted cases, first introduced by Broder [12] and further studied in [7], are
the Stirling numbers of the second kind SA,r(n, k), which count the partitions of [n+ r] into
k + r blocks such that the elements i ≤ r are all in different blocks and the size of every
block is in A ⊆ N. The case of r = 2 appears as A143494. The Bell numbers BA,r(n) are
defined as

∑

k SA,r(n, k). They appear as A005493 for r = 2 and A005494 for r = 3. The
same restrictions can also be imposed on Stirling numbers of the second kind SA,r(n, k), and
on all the unrestricted cases above. For the restricted cases, the results are new and require
non-trivial extensions of the Specker-Blatter theorem. The Catalan numbers, A000108, also
have an interpretation as set partitions. Roman [51, Theorem 9.4] and Koshy [36, Chapter
10] show that they count the number of non-crossing partitions. Although this can be viewed
as a restricted version of the Bell numbers, our results do not apply to this case. This is due
to the global character of the restriction, as we shall explain later.

1.2 Outline of the paper

In Section 2 we introduce C-finiteness and its modular variant MC-finiteness. In Section
3 we discuss the methods for proving and disproving C-finiteness and MC-finiteness. In
Section 4 we discuss larger classes of polynomial recursive sequences and weaker versions of
MC-finiteness, which in the literature appear under the name of supercongruences. We also
prove that, in a precise sense, almost all bounded integer sequences are not MC-finite.

In Section 5 we present immediate consequences of the logical method for set partitions
without positional restrictions and without restrictions on size of the blocks. The first four
sections have a tutorial character. The material on MC-finiteness has never been collected
in this way before in the literature and neither has the MC-finiteness of the examples been
stated.

In Sections 6 and 7 we discuss set partitions with positional restrictions and restrictions
on size of the blocks, and how new logical tools are used to obtain C-finiteness and MC-
finiteness in these cases. In Section 9 we give further details for on how to use logic in order
to prove C-finiteness. We conclude the main part of the paper with Section 10, where we
present our conclusions and suggestions for further research.

Sections 4, 7.1, 7.5, and 9 may be skipped in a first reading.
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2 C-finite and MC-finite integer sequences

A sequence of integers s(n) is C-finite if there are constants p, q ∈ N and ci ∈ Z, 0 ≤ i ≤ p−1
such that for all n ≥ q the linear recurrence relation

s(n+ p) =

p−1
∑

i=0

cis(n+ i), n ≥ q

holds for s(n). C-finite sequences are also called in the literature constant-recursive sequences
or linear-recursive sequences.

C-finite sequences have limited growth; see, for instance, Everest et al. [19, 34]:

Proposition 1. Let sn be a C-finite sequence of integers. Then there is c ∈ N+ such that
an ≤ 2cn for all n ∈ N.

Actually, a lot more can be said. Flajolet et al. [26] discussed this in great detail, but we
do not need it here for our purposes.

To prove that a sequence s(n) of integers is not C-finite, we can use Proposition 1. To
prove that a sequence s(n) of integers is C-finite, there are several methods: One can try to
find an explicit recurrence relation, one can exhibit a rational generating function, or one
can use a method based on model theory as described by Fischer and Makowsky in [23, 21].
The last method will be briefly discussed in Section 8 and further explained in Section 9. It
is referred to as method FM.

A sequence of integers s(n) is modular C-finite, abbreviated as MC-finite, if for every
m ∈ N there are constants pm, qm ∈ N+ such that for every n ≥ qm there is a linear recurrence
relation

s(n+ pm) ≡

pm−1
∑

i=0

ci,ms(n+ i) (mod m)

with constant coefficients ci,m ∈ Z. Note that the coefficients ci,m and both pm and qm
generally do depend on m.

Let sm(n) denote the sequence sm(n) ≡ s(n) (mod m).

Proposition 2. The sequence s(n) is MC-finite iff sm(n) is ultimately periodic for every m.

Proof. MC-finiteness implies periodicity. The converse is proved by Reeds and Sloane in
[50].

Clearly, if a sequence s(n) is C-finite then it is also MC-finite with rm = r and ci,m = ci for
all m. The converse is not true. Proposition 4 below shows that here are uncountably many
MC-finite sequences with integer coefficients, but only countably many C-finite sequences
with integer coefficients.
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Example 3.

(i) The Fibonacci sequence is C-finite.

(ii) If s(n) is C-finite then it has at most simple exponential growth, by Proposition 1.

(iii) The Bell numbers B(n) are not C-finite, but are MC-finite.

(iv) Let f(n) be any integer sequence. The sequence s1(n) = 2 · f(n) is ultimately periodic
modulo 2, but not necessarily MC-finite.

(v) Let g(n) be any integer sequence. The sequence s2(n) = n! · g(n) is MC-finite.

(vi) The sequence s3(n) = 1
2

(

2n
n

)

is not MC-finite: the value of s3(n) is odd iff n is a power
of 2, and otherwise it is even (Lucas, 1878). A proof may be found in Graham et al.
[31, Exercise 5.61], or in Specker [54].

(vii) The Catalan numbers C(n) = 1
n+1

(

2n
n

)

are not MC-finite, since C(n) is odd iff n is a
Mersenne number, that is n = 2m − 1 for some m ∈ N. A good reference is Koshy [36,
Chapter 13].

(viii) Let p be a prime and f(n) be monotone increasing. Let s(n) be the sequence

s(n) =

{

pf(n), if n 6= pf(n);

pf(n) + 1, otherwise.

Then s(n) is monotone increasing but not ultimately periodic modulo p, hence not
MC-finite.

Proposition 4.

(i) There are uncountably many monotone increasing sequences that are MC-finite, and
uncountably many that are not MC-finite.

(ii) Almost all integer sequences are not MC-finite.

Proof. Claim (i) follows from Examples 3 (v) and (viii). Claim (ii) is shown in Proposition
15 in Section 4.

Although we are mostly interested in MC-finite sequences s(n), it is natural to check in
each example whether the sequence s(n) is also C-finite. In most examples the answer is
negative. However, Theorem 46 shows that the restricted Stirling numbers of the second
kind listed therein are all C-finite. We show this via a general method, Theorem 44, without
exhibiting a generating function like in the classical case for S(n, k).
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3 How to prove and disprove MC-finiteness

3.1 Polynomial recurrence relations

In his paper, Specker [54, p. 144] noted the following:

In many known cases, [MC-finiteness] is a consequence of polynomial recurrence
relations

f(n) =
d

∑

i=1

Pi(n)f(n− i)

where Pi are polynomials in Z[x].

For f(n) = n! this is obvious. In general this needs some elaboration.

Definition 5.

(i) An integer sequence s(n) is holonomic over Z if there exist polynomials Pi ∈ Z[x] with
P1, Pk 6= 0 such that

s(n) =
k

∑

i=1

Pi(n)s(n− i).

(ii) An integer sequence s(n) is polynomially recursive (PRS) over Z if there exist k integer
sequences si(n), 1 ≤ i ≤ k with s(n) = s1(n) and polynomials Pi ∈ Z[x1, . . . , xk] such
that the mutual recursion

si(n+ 1) = Pi(s1(n), . . . , sk(n)), i = 1, . . . , k

holds.

(iii) An integer sequence s(n) is PRS over Z and n if the polynomials also involve n as an
additional variable. In other words Pi ∈ Z[x1, . . . , xk, y] and

si(n+ 1) = Pi(s1(n), . . . , sk(n), n), i = 1, . . . , k.

Actually, (ii) and (iii) are equivalent.

We note that if s(n) is an integer sequence that is polynomially recursive over Z and n,
then s(n) is holonomic over Z.

In fact, the following is true:

Theorem 6. If s(n) is an integer sequence that is polynomially recursive over Z and n
then s(n) is MC-finite. In particular, this is true also for integer sequences s(n) that are
holonomic over Z.
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The proof is given in Section 4. There we also briefly discuss weaker properties than
MC-finiteness, where the modular recurrence holds only for almost all m ∈ N+.

Remark 7.

(i) In general, holonomic sequences are defined over fields F rather than the ring Z. A
good reference is the monograph by Kauers and Paule [34, Chapter 7]. A theorem
related to Theorem 6 for holonomic sequences can be found in two papers by Banderier
et al. [3, Theorem 7] and [5].

(ii) Cadilhac et al. [14, 15] define polynomially recursive sequences for rational numbers
rather than integers, and the polynomials are in Q[x1, . . . , xk].

The following examples, except (v), are from [15].

Example 8.

(i) The sequences a(n) = n! with a(n) = n · a(n− 1) and a(0) = 1 is holonomic over Z. It
is obviously MC-finite.

(ii) The sequence a(n) = 22n is polynomially recursive with a(0) = 2 and a(n) = a(n− 1)2.
It is not holonomic, since Gerhold [28] showed that every holonomic sequence a(n) is
bounded by some 2p(n) for some polynomial p(n). It is easy to see that it is MC-finite,
but it is also MC-finite by the Specker-Blatter theorem below, as it counts the number
of ways one can interpret a unary predicate over [n].

(iii) The Catalan numbers Cn are holonomic: (n + 2)Cn+1 = (4n + 2)Cn. They are not
holonomic over Z, since they are not MC-finite. Furthermore, they are not polynomially
recursive even if we allow rational numbers.

(iv) The sequence nn is not polynomially recursive, but it is MC-finite by the Specker-
Blatter theorem below.

(v) We show in Section 4 that the sequence A086714 given by

a(0) = 4, a(n+ 1) =

(

a(n)

2

)

is not MC-finite but is periodic modulo every odd number.

MC-finite sequences are closed under various arithmetic operations.

Proposition 9. Let a(n), b(n) be MC-finite sequences and c ∈ Z.

(i) The sequences c · a(n), a(n) + b(n), a(n) · b(n) are MC-finite.

(ii) If additionally b(n) ∈ N+ and tends to infinity, then a(n)b(n) is also MC-finite.
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(iii) Let A ⊆ N+ be non-periodic and a(n) = 2 be a constant, hence MC-finite, sequence.
Let b(n) be the sequence

b(n) =

{

1, if n ∈ A;

n! + 1, otherwise.

Then b(n) is MC-finite and oscillates. However a(n)b(n) is not MC-finite.

3.2 A definability criterion

In order to prove that a sequence s(n) is MC-finite one can also use a method due to Blatter
and Specker from 1981 [10, 11, 54]. It uses logical definability as a sufficient condition. We let
FOL denote first order logic, MSOL denote monadic second-order logic, and CMSOL denote
the logic MSOL augmented with modular counting quantifiers. Details on the definition of
CMSOL are given in Section 7.2. In its simplest form, the Specker-Blatter theorem can be
stated as follows:

Theorem 10 (Specker-Blatter theorem). Let Sφ(n) be the number of binary relations R on
a set [n] that satisfy a given formula φ ∈ CMSOL. The sequence Sφ(n) is MC-finite or,
equivalently, Sm

φ (n) is ultimately periodic for every m.

The original Specker-Blatter theorem was stated for classes of structures with a finite set
of binary relations definable in monadic second-order logic MSOL. It also works with unary
relations added. The extension to CMSOL is due to Fischer and Makowsky [22]. These
combined methods are abbreviated in the sequel by SB.

3.3 Comparing the methods

If one proves MC-finiteness for an integer sequence directly, the proof may be sometimes
straightforward, but also sometimes tricky, and not applicable to other sequences. In contrast
to this, Theorems 6 and 10 are meta-theorems. They only require to check for some structural
data about the sequence s(n), recurrence relations or logical definability. However, these
meta-theorems are only existence theorems, without explicitly giving the required coefficients
ci,m that show MC-finiteness.

Example 11. We note that the two meta-theorems cannot always be applied to the same
integer sequences.

(i) The sequence s(n) = nn counts the number of unary functions (as binary relations)
from [n] to [n], which is FOL-definable, but not polynomially recursive, as shown by
Cadilhac et al. [15]. However, MC-finiteness can also be established directly without
much effort.
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(ii) There are polynomially recursive sequences over Z (hence MC-finite) that grow as fast
as 22n , e.g., the sequence defined by a(0) = 2 and a(n+ 1) = a(n)2 satisfies a(n) = 22n .
However, counting the number of k binary relations over [n] is bounded by 2kn2

. Hence,
Theorem 10 cannot be applied. Again, MC-finiteness can also be established directly
without much effort.

(iii) The class of regular simple graphs is not CMSOL-definable. For a general method for
proving non-definability in CMSOL the reader should consult Makowsky and Kotek
[39]. Hence Theorem 10 cannot be applied to the sequence A295193, which counts the
number of regular simple graphs on n labelled nodes. In contrast to this, r-regular
graphs are FOL-definable; hence Theorem 10 can be applied easily to the sequence
RG(n, r) that counts the number of labelled r-regular graphs. The existence of re-
currences for fixed r is discussed in McKay [42] and the references cited therein. For
r = 2, 3 this is A110040. Recurrences for r = 0, 1, 2 are found easily. For r = 3, 4
explicit recurrences were published by Read and Wormald [48, 49], and for r = 5 by
Goulden et al. [30]. The recurrence for r = 5 is linear but very long. Gessel [29] showed
that RG(n, r) is holonomic (P-recursive) for every k ∈ N+. We have not checked
whether RG(n, r) is holonomic over Z. Read showed that RG(n, 4) is polynomially
recursive [49], but the equations given there do not show that RG(n, 4) is polynomially
recursive over Z. It seems that Theorem 10 is the most suitable method to show that
for each r the sequence RG(n, r) is MC-finite.

We will use, like in Fischer and Makowsky [21, 24], the logic CMSOL, where we also allow
hard-wired constants. Dealing with hard-wired constants is briefly described in Section 7.5.

Clearly, Sφ(n) is computable by brute force, given φ and n. Specker [54], mentions that
Sm
φ (n) ≡ Sφ(n) (mod m) can be computed more efficiently, but no details are given. Only

the special case for Qm(n) is given, where Q(n) is the number of quasi-orders over [n].

4 More on MC-finiteness

4.1 Polynomial recursive sequences

Cadilhac [15] defines a polynomial recursive sequence as given by a mutual recurrence in
which the recurrence relation is a polynomial. That is, we define d sequences in parallel by
initial values a1(0), . . . , ad(0) and the recurrence

ai(n+ 1) = Pi(a1(n), . . . , ad(n)),

where Pi is a polynomial with rational coefficients. We will only consider recurrences for
which ai(n) ∈ N for all i ∈ [d] and n ≥ 0.

Theorem 12 ([15]). Let m be a natural number that is relatively prime to all denominators
of coefficients of the defining polynomials P1, . . . , Pd. Then the sequences ai(n) modulo m
are eventually periodic.
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Proof. Let the polynomials P1, . . . , Pd be given by

Pk(x1, . . . , xd) =
∑

e∈Nd

ske
tke

d
∏

i=1

xeii ,

where (tke,m) = 1 for all k, e, and the sum has finite support (that is, for each k, all but
finitely many of the ske vanish).

Let ℘ : Z → Zm be the (mod m) mapping. We extend the definition of ℘ to the polyno-
mials P1, . . . , Pd as follows:

℘(Pk)(y1, . . . , yd) =
∑

e∈Nd

℘(ske)

℘(tke)

d
∏

i=1

yeii ,

which is well-defined since (tke,m) = 1. Consequently, ℘(tke) is invertible in the ring Zm.
Elementary number theory shows that

℘(Pk(x1, . . . , xd)) = ℘(Pk)(℘(x1), . . . , ℘(xd)),

and so

℘(ak(n+ 1)) = ℘(Pk(a1(n), . . . , ad(n))) = ℘(Pk)(℘(a1(n)), . . . , ℘(ad(n))).

Now consider the mapping Q : Zd
m → Zd

m given by

Q(y1, . . . , yd) = (℘(P1)(y1, . . . , yd), . . . , ℘(Pd)(y1, . . . , yd)).

The foregoing shows that

(℘(a1(n+ 1)), . . . , ℘(ad(n+ 1))) = Q(℘(a1(n)), . . . , ℘(ad(n))).

Using the notation b(n) = (℘(a1(n)), . . . , ℘(ad(n))), we can express this more succinctly
as

b(n+ 1) = Q(b(n)).

Elementary induction shows that for all i < j,

b(j) = Q(j−i)(b(i)),

where Q(j−i) denotes the composition of Q with itself j − i times.
Since b(n) ∈ Zd

m, by the pigeonhole principle, the list b(0), . . . , b(md) must contain two
identical elements, say b(i) = b(j) for some i < j. This means that Q(j−i)(b(i)) = b(i), and
so b(i+ t(j− i)) = b(i) for all t ∈ N. Consequently, b(n) is eventually periodic. We conclude
that its components, ℘(ak(n)) ≡ ak(n) (mod m), are eventually periodic as well.

10



This result raises the following question: what happens for other m? It turns out that
the theorem fails in general for such m.

Consider the following sequence A086714:

a(n+ 1) =

(

a(n)

2

)

, a(0) = 4.

and put â(n) ≡ a(n) (mod 2).

Theorem 13. The sequence â(n) is not ultimately periodic.

The same result holds (with the same proof) for any a(0) ≥ 4, as well as for any recurrence
of the form a(n+ 1) = (a(n) + b)(a(n) + c)/2, as long as b, c have different parities and a(0)
is chosen so that a(n) → ∞.

4.2 Proof of Theorem 13

Let β(n) ≡ a(n) (mod 2). It is not hard to check that the sequence β(n), . . . , β(n + k − 1)
depends only on a(n) (mod 2k). It turns out that the opposite holds as well: we can determine
a(n) (mod 2k) from the values β(n), . . . , β(n+ k − 1).

Lemma 14. Let ar, βr be defined as above, except with the initial condition ar(0) = r. For
all k ≥ 1, the function

Φk(r) = βr(0), . . . , βr(k − 1)

is a bijection between {0, . . . , 2k − 1} and (0, 1)k.

For example, if k = 3, we get the following bijection:

Φ3(0) = 000 Φ3(1) = 100 Φ3(2) = 010 Φ3(3) = 111

Φ3(4) = 001 Φ3(5) = 101 Φ3(6) = 011 Φ3(7) = 110

Proof. The proof is by induction on k. The result is clear when k = 1, so suppose k > 1.
The first bit of Φk(r) is the parity of r, and the remaining bits are Φk−1(s), where s ≡

(

r
2

)

(mod 2k−1). To complete the proof, we show that the mapping r 7→ s is 2-to-1, with the two
pre-images of every s having different parity.

Indeed, suppose that
(

a

2

)

≡

(

b

2

)

(mod 2k−1)

for a, b ∈ {0, . . . , 2k − 1}. Then a(a− 1) ≡ b(b− 1) (mod 2k), and so

2k | a(a− 1) − b(b− 1) = (a− b)(a+ b− 1).

If a, b have the same parities then a + b − 1 is odd and so 2k | a − b. Since a, b ∈
{0, . . . , 2k − 1}, in this case a = b.

If a, b have different parities then a − b is odd and so 2k | a + b − 1, and so b ≡ 1 − a
(mod 2k) is uniquely defined, and has a parity different from a.
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We can now prove Theorem 13. First we notice that
(

a
2

)

> a for a ≥ 4, and so a(n) → ∞.
Now suppose that the sequence β is ultimately periodic, say with period β(N), . . . , β(N +
ℓ− 1).

Lemma 14 implies that for every k ≥ 1, the sequence a(n) (mod 2k) has period

a(N) (mod 2k), . . . , a(N + ℓ− 1) (mod 2k),

and in particular,
a(N) ≡ a(N + ℓ) (mod 2k).

We reach a contradiction by choosing k such that 2k > a(N + ℓ).

4.3 Normal sequences

Let s(n) be an integer sequence, b ∈ N+, and sb(n) ≡ s(n) (mod b). The sequence sb(n) is
normal if, when it is partitioned into substrings of length ℓ ≥ 1, then each of the bℓ possible
strings of [b]ℓ appear in sb(n) with equal limiting frequency. It is absolutely normal if it is
normal for every b. The sequence sb(n) ≡ s(n) (mod b) can be viewed as a real number rb
written in base b. A classical theorem from 1922 by Émile Borel says that almost all reals
are absolutely normal. This is discussed in Everest et al. [19]. The theorem below shows
that MC-finite integer sequences are very rare.

Let PRb be the set of integer sequences sb(n) with sb(n) ≡ s(n) (mod b) for some integer
sequence s(n). PRb is the projection of all integer sequences to sequences over Zb. We think
of PRb as a set of reals with the usual topology and its Lebesgue measure. Let UPb ⊆ PRb

be the set of sequences sb(n) ∈ PRb that are ultimately periodic.

Proposition 15.

(i) Almost all reals are absolutely normal.

(ii) s(n) is MC-finite iff for every b ∈ N+ the sequence sb(n) is ultimately periodic

(iii) If sb(n) is normal for some b, then s(n) is not MC-finite.

(iv) UPb ⊆ PRb has measure 0.

Proving that a specific sequence is normal is usually difficult. Here is a challenge:

Conjecture 16. The binary sequence β(n) ≡ a(n) (mod 2) from Theorem 13 is normal
with b = 2.

12



5 Immediate consequences of the Specker-Blatter the-

orem

5.1 The Bell numbers B(n)

The Bell numbers B(n) count the number of partitions of the set [n]. This is the same
as counting the number of equivalence relations over [n], which is expressible by an FOL-
formula. Therefore, we immediately get from Theorem 10 that:

Theorem 17. The Bell numbers B(n) are MC-finite.

The Bell numbers do satisfy some known congruences. For m = p a prime, they satisfy
the Touchard congruence

B(p+ n) ≡ B(n) + B(n+ 1) (mod p).

However, this is not enough to establish MC-finiteness.
The Bell numbers are not C-finite, because they grow too fast. The following estimate is

due to De Bruijn and Berend [13, 9].

Proposition 18. For every n ∈ N+

( n

e lnn

)n

≤ B(n).

Furthermore, for every ǫ > 0 there is n0(ǫ) such that for all n ≥ n0(ǫ)

B(n) ≤
( n

e1−ǫ lnn

)n

.

Flajolet et al. [26, Proposition VIII.3] gives better estimates, but they are not needed
here. Another way to see that Bell numbers are not C-finite is by noticing that they are not
holonomic, as shown by Klazar [35]. There, and in Banderier et al. [4], some variations of
Bell numbers are also studied:

Definition 19.

(i) B(n)k,m counts the number of partitions of [n] that have k blocks modulo m.

(ii) B(n)± = B(n)0,2 −B(n)1,2 are the Uppuluri-Carpenter numbers A000587.

(iii) B(n)bc counts the number of bicolored partitions of [n], that is, the partitions of [n]
where the blocks are colored with two non-interchangeable colors C1, C2, A001861.

Theorem 20. The sequences B(n), B(n)k,m, B(n)±, B(n)bc are not holonomic, hence not
C-finite, but they are MC-finite.
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Proof. In Klazar [35], and in Banderier et al. [4] is shown that they are not holonomic. To
see that they are MC-finite, we apply Theorem 10.

(i) B(n)k,m is definable in CMSOL. We say that there is a set X ⊆ [n] that intersects
every block in exactly one element, and the size of the set X is k (mod m).

(ii) B(n)± is the difference of two MC-finite sequences, hence MC-finite.

(iii) B(n)bc counts the number of binary and unary relations E,C1, C2 over [n] such that E
is an equivalence relations, C1, C2 ⊆ [n] partition [n], and each of them is closed under
E.

5.2 Counting transitive relations

The Bell numbers B(n) count the number of equivalence relations E(n) on a set [n]. Similarly
we can look at the number of linear quasi-orders (linear pre-orders) LQ(n), the number
of quasi-orders (pre-orders) Q(n), the number of partial orders P (n), and the number of
transitive relations T (n) on the set [n]. These integer sequences were analyzed by Pfeiffer
[46]. They are all definable in FOL, and we have

Proposition 21. B(n) = E(n) ≤ LQ(n) ≤ P (n) ≤ Q(n) ≤ T (n).

Proof. E(n) ≤ LQ(n): We can turn an equivalence relation into a linear quasi-order by
linearly ordering the equivalence classes.

LQ(n) ≤ P (n): Each linear quasi-order can be made into a partial order by replacing
every set of mutually equi-comparable elements in a linear quasi-order with an anti-chain.

P (n) ≤ Q(n): Each partial order is also a quasi-order.
Q(n) ≤ T (n): Each quasi-order is transitive.

Hence we get using the Specker-Blatter theorem and Proposition 21:

Theorem 22. The sequences B(n) = E(n),LQ(n), P (n), Q(n) and T (n) are MC-finite but
not C-finite.

5.3 Stirling numbers of the second kind

Let S(n, k) be the number of partitions of [n] into k non-empty blocks. S(n, k) is also known
as the Stirling number of the second kind. Clearly,

B(n) =
∑

k

S(n, k).

Theorem 23. For fixed k = k0 the sequence S(n, k0) is C-finite, and hence MC-finite.
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This can be seen by observing that S(n, k0) has the following rational generating function:

∞
∑

n=0

S(n, k0)x
n =

xk0

(1 − x)(1 − 2x) · · · (1 − k0x)
.

Details can be found in Graham et al. [31, 7.47].

5.4 Lah numbers Lah(n)

If we modify the Stirling numbers of the second kind S(n, k) such that the elements in the
blocks of the partition are ordered between them, we arrive at the somewhat less known
Lah number Lah(n, k), A001286, introduced by I. Lah [37] in the context of actuarial sci-
ence. Good references for Lah numbers are the monographs by Graham et al. [31], and by
Charalambides [16]. The Lah numbers are also coefficients expressing rising factorials x(n)

in terms of falling factorials x(n).

Proposition 24.

x(n) =
∑

k=1

Lah(n, k)x(k) and x(n) =
∑

k=1

(−1)n−kLah(n, k)x(k).

Guo [33] gives six proofs of Proposition 24. Furthermore we define Lah(n) =
∑

k Lah(n, k).
Lah(n) counts the number of linear quasi-orders over [n], in other words Lah(n) = LQ(n),

and Lah(n, k) counts the number of linear quasi-orders over [n] with k sets of equi-comparable
elements. Two elements u, v in a quasi-order are equi-comparable if both u ≤ v and v ≤ u.
This is again definable in first order logic FOL.

There are explicit formulas:

Proposition 25.

Lah(n, k) =
n!

k!
·

(

n− 1

k − 1

)

=
n

∑

j=0

s(n, j)S(j, k) (1)

and

Lah(n) =
∑

k

Lah(n, k) = n!
∑

k

1

k!
·

(

n− 1

k − 1

)

. (2)

where s(n, j) are the Stirling numbers of the first kind.

For details the reader may consult Comtet [17].
There is also a recurrence relation:

Lah(n+ 1, k) = Lah(n, k − 1) + (n+ k)Lah(n, k). (3)

But again this is not enough to establish C-finiteness or MC-finiteness, since it is a recurrence
involving both n and k.
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Theorem 26. Both Lah(n) and Lah(n, k0) are MC-finite but not C-finite.

Proof. It follows directly from Equation (1), and also from Equation (3), that for k = k0
fixed the sequence Lah(n, k0) is not C-finite. MC-finiteness again follows using Theorem
10.

Note however that the recurrence relation given in Equation (3) does not have constant
coefficients.

5.5 Summary so far

Table 1 summarizes the results that are direct consequences of the growth arguments or
non-holonomicity (NH), and the Specker-Blatter theorem 10 (SB).

Sequence C- Proof Theorem MC- Proof Theorem
finite finite

S(n) = B(n) no Growth 22 yes SB 17
S(n, ko) yes gen.fun 23 yes gen.fun 23
B(n)± no NH 20 yes SB 20
B(n)bc no NH 20 yes SB 20

LQ(n) no Growth 22 yes SB 22
Q(n) no Growth 22 yes SB 22
P (n) no Growth 22 yes SB 22
T (n) no Growth 22 yes SB 22

Lah(n) = LQ(n) no Growth 26 yes SB 26
Lah(n, k0) no Growth 26 yes SB 26

Table 1: Direct consequences of the Specker-Blatter theorem.

6 Restricted set partitions

The new results of this paper concern C-finiteness and MC-finiteness for restricted versions of
set partitions. We have two kinds of restrictions in mind. The first are positional restrictions,
which impose conditions on the positions of the elements of [n], where [n] is equipped with
its natural order. The second are size restrictions, which impose conditions on the size of
the blocks or their number.

6.1 Global positional restrictions

Definition 27. Let A and B be two blocks of a partition of [n].

(i) A and B are crossing if there are elements a1, a2 ∈ A and b1, b2 ∈ B such that a1 <
b1 < a2 < b2 or b1 < a1 < b2 < a2.
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(ii) Let minA,maxA,minB,maxB the smallest and the largest elements in A and B. A
and B are overlapping if minA < minB < maxA < maxB or minB < minA <
maxB < maxA.

(iii) If A and B are overlapping they are also crossing, but not conversely.

(iv) As shown in Roman [51], the number B(n)nc of non-crossing set partitions over [n] is
one of the interpretations of the Catalan numbers,

(v) The Bessel number B(n)B, A006789, is the number of non-overlapping set partitions
over [n]. It was introduced by Flajolet and Schott [25].

The Catalan numbers C(n) are not holonomic and not MC-finite. Banderier et al. [4]
show that the Bessel numbers B(n)B are not holonomic. Are the Bessel numbers B(n)B

MC-finite? The positional restrictions here are global in the sense that they involve all of
the elements of [n] with their natural order. For non-holonomic integer sequences s(n) that
count the number of set partitions subject to global positional restrictions, we have currently
no tools to decide whether they are MC-finite or not.

Inspired by Broder’s work [12], various recent papers look at local positional restrictions
one can impose on Stirling and Lah numbers, for instance the publications [56, 44, 8, 7]. They
are local because they only put restrictions on the positions of a fixed number of elements
of [n] with their natural order.

6.2 Local positional and size restrictions

Recall that we use [n] to denote the set {1, 2, . . . , n}. We write Sr(n, k) for the number of
partitions of [n+ r] into k + r non-empty blocks with the additional condition that the first
r elements are in distinct blocks. The elements 1, . . . , r are called special elements. The
partitions where the first r elements are in distinct blocks are called r-partitions. When
dealing with definability we view the special elements as hard-wired constants, i.e., constant
symbols ai, 1 ≤ i ≤ r with a fixed interpretation by elements of [n+ r].

We define Sr(n) = Br(n) by

Sr(n) =
∑

k

Sr(n, k).

Nyul [44] and Shattuck [53] define the sequences Lahr(n, k), A143497, and Lahr(n) analo-
gously with the condition that a1 < a2 < · · · < ar are in different blocks.

LetA ⊆ N. We write respectively SA,r(n) = BA,r(n), SA,r(n, k), LahA,r(n) and LahA,r(n, k)
for the number of corresponding partitions where every block has its size in A.

For r = 0, in the absence of special elements, we just write SA(n), SA(n, k),LahA(n) and
LahA(n, k). We note that SA(n) = BA(n). Analogous definitions can be made for LQ(n),
denoted by LQA,r, and also called r-Fubini sequences, with OEIS-number A232472.
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A set A ⊆ N is (ultimately) periodic if there exist p, n0 ∈ N+ such that for all n ∈ N

(n ≥ n0) we have n ∈ A iff n + p ∈ A. In other words, the characteristic function χA(n) of
A is ultimately periodic in the usual sense, χA(n) = χA(n+ p) (n ≥ n0).

6.3 Main results for restricted set partitions

Our results for restricted set partitions are summarized in Tables 2, 3, 4, and 5 below.
The abbreviation FM, SB* and NH refer respectively to the proof method of Fischer and
Makowsky [23, 21], to the extension of the Specker-Blatter theorem to allow a fixed finite set
of special elements as hard-wired constants, and to proofs of non-holonomicity. The results
listed in Table 4 also hold for LQA,r, the r-Fubini numbers, and other similarly defined
sequences.

Sequence C- Proof Theorem MC- Proof Theorem
finite finite

SA(n) = BA(n) no Growth 33 yes SB* 30
SA(n, k0) yes FM 46 yes FM 46
LahA(n) = LQA(n) no Growth 35 yes SB* 30
LahA(n, k0) no Growth 35 yes SB* 30

Table 2: With ultimately periodic A only.

Sequence C- Proof Theorem MC- Proof Theorem
finite finite

Sr(n) = Br(n) no Growth 33 yes SB* 37
Sr(n, k0) yes FM 46 yes FM 46

Lahr(n, k0) no Growth 35 yes SB* 37

Table 3: With hard-wired constants only.

Sequence C- Proof Theorem MC- Proof Theorem
finite finite

SA,r(n) = BA,r(n) no Growth 31 yes SB* 37
SA,r(n, k0) yes FM 46 yes FM 46
LahA,r(n, k0) no Growth 31 yes SB* 37

Table 4: With ultimately periodic A and hard-wired constants.
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Sequence C- Proof Theorem MC- Proof Theorem
finite finite

B(n)B no NH [4] ??? ??? —
B(n)nc = C(n) no NH [51] no [51] [4]

Table 5: With global positional restrictions.

7 Proofs for the restricted cases

For the analysis of MC-finiteness in the restricted cases we need some additional tools.

7.1 An explicit computation of SA(n, k)

Let A ⊆ N. The sequence SA(n, k) counts the number of partitions of [n] into k sets with
cardinalities in A.

We shall compute SA(n, k) explicitly. For A = N+ this will give also an alternative way
of computing S(n, k), the Stirling numbers of the second kind. Charalambides uses this
method in his monograph [16, Theorem 8.6]. Stanley proves it in very different notation in
[55, Chapter 1, Exercise 45].

We introduce some suitable notation. Let A ⊆ N. Then SA(n, k) counts the number
of partitions of [n] into k sets with cardinalities in A. Let V (A, k) be the set of k-tuples
(L1, . . . , Lk) of elements of A ordered in non-decreasing order, with

∑k
i=1 = n, i.e.,

V (A, k) = {(l1, l2, . . . , lk) ∈ Ak : 0 < l1 ≤ l2 ≤ · · · ≤ lk,

k
∑

i=1

li = n}.

For (l1, l2, . . . , lk) ∈ V (A, k) define g(m; l1, l2, . . . , lk) to be the number of times m appears
in the k-tuple (l1, l2, . . . , lk), and

f(l1, l2, . . . , lk) =
∏

m∈(l1,l2,...,lk)

g(m; l1, l2, . . . , lk)!.

Next we define the sequence (ci) inductively as follows:

c1 = n and ci+1 = ci − li.

Hence ci = n−
∑i−1

j=1 lj .

Theorem 28. Let A ⊆ N. Then

SA(n, k) =
∑

(l1,l2,...,lk)∈V (A,k)

1

f(l1, l2, . . . , lk)

k
∏

i=1

(

ci
li

)

.
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Proof. To partition [n] into k sets with cardinalities in A, we proceed as follows: first we
select the cardinalities of the k sets. This corresponds to picking an element (l1, l2, . . . , lk) ∈
V (A, k). To construct a partition of n, we choose l1 elements from [n], then l2 elements from
[n − l1] etc. Finally, we divide by f(l1, l2, . . . , lk) to account for double counting of tuples
with equal entries.

7.2 Ultimate periodicity of A

Recall that a formula with a modular counting quantifier Cb,mxφ(x) is true in a structure B

if the cardinality of the set of elements in B that satisfy φ(x), satisfies

|{a ∈ B : φ(a)}| ≡ b (mod m).

CMSOL is the logic obtained from MSOL by extending it with all the modular counting
quantifiers Cb,m. In [22] the Specker-Blatter theorem was extended to hold for CMSOL, as
already stated in Theorem 10. CMSOL is also needed to prove the following lemma:

Lemma 29. Let A be ultimately periodic and ψ(x) be a formula of CMSOL. Then there is
a sentence ψA ∈ CMSOL such that in every finite structure B we have

B |= ψA iff |{b ∈ B : ψ(b)}| ∈ A.

Proof. If
A = Aa,m = {n ∈ N : n ≡ a (mod m)}

the formula ψA is the sentence Ca,mxψ(x).
Next we observe that if A is ultimately periodic, then there are finitely many a1, . . . , ak

and q such that A =
⋃k

i=0Ai with A0 ⊆ [q] and

Ai = {n > q : n ≡ ai (mod m)}.

We proceed in steps:

(i) ∃≥kxψ(x) := ∃x1, . . . , xk
∧k

i=1 ψ(xi) ∧
∧

1≤i<j≤k(xi 6= xj) says that there are at least k
elements that satisfy ψ(x).

(ii) ∃=kxψ(x) := ∃≥kxψ(x) ∧ ¬∃≥k+1xψ(x) says that there are exactly k such elements.

(iii) ψA0
:= (∃<qxψ(x) →

∨

j∈A0
∃=jxψ(x)) says that if the number of elements satisfying

ψ(x) is at most q then the number of such elements has exactly one of the cardinalities
in A0.

(iv) ψAi
:= ∃≥q+1xψ(x) ∧Ca,mxψ(x) says that, if the number of elements satisfying ψ(x) is

bigger or equal than q, then the number such elements equals ai (mod m).

(v) ψA(x) :=
∨k

i=0 ψAi
(x) is the required formula.
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Theorem 10 together with Lemma 29 immediately gives the following result:

Theorem 30. Assume that A is ultimately periodic. Then the sequences BA(n) = SA(n),
LahA(n), and LahA(n, k0) are MC-finite.

7.3 Growth arguments

We first discuss growth arguments for BA(n) = SA(n), LahA(n), and LahA(n, k0).

Theorem 31. Let A ⊆ N be infinite and ultimately periodic. Then the sequences BA(n) =
SA(n), LahA(n), and LahA(n, k0) are not C-finite.

Proof. First we prove it for BA(n) and

A = Am = {n ∈ N : n ≡ 0 (mod m)}.

Let P1, . . . , Pk be a partition of [n]. We replace in each Pi every element by m elements.
This gives us a partition of [mn] with each block of size in Am. Hence

PA(mn) ≥ P (n) ≥
( n

e lnn

)n

or, equivalently,
PA(n) ≥ P (⌊n/m⌋) ≥ (⌊n/m⌋e ln⌊n/m⌋)⌊n/m⌋ ,

which still grows superexponentially.
Next we assume that

A = Ak,a,m = {n ∈ N : n ≡ a (mod m) for n ≥ k}.

We proceed as before, but additionally add mr+a elements to each block, for r large enough.
Finally, we note that for every infinite (ultimately) periodic set A there is a set Ak,a,m for
some k, a,m ∈ N+ such that Ak,a,m ⊆ A.

For LahA(n) and LahA(n, k0) we proceed similarly using Proposition 25.

Next we discuss growth for Lah(n, k0), Lah(n) =
∑

k Lah(n, k) and Lahr(n, k0). We have
seen in Proposition 18 that

( n

e lnn

)n

≤ B(n) ≤
( n

e1−o(1) lnn

)n

.

We now prove a lemma.

Lemma 32. Br(n) ≥ B(n).

Proof. Every partition of [n] gives rise to at least one partition of [n + r] where the first r
elements are in distinct blocks containing only one element.
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From Propositions 1, 21, and 32, we get the following result:

Theorem 33. The sequences B(n) and Br(n) are not C-finite.

Lemma 34. For k0, r fixed, the Lah number Lah(n, k0) satisfies the following:

(i) Lah(n, k0) =
(

n−1
k0−1

)

n!
k0!

,

(ii) Lah(n) ≥ Lah(n, k0), and

(iii) Lahr(n, k0) ≥ Lah(n, k0).

Proof. (i) is from [37]. (ii) follows from (i), and (iii) is proved like Lemma 32.

This immediately gives

Theorem 35. Let k0 be fixed. The sequences Lah(n, k0), Lahr(n, k0), and Lah(n) =
∑

k Lah(n, k)
are not C-finite.

7.4 Hard-wired constants

Recall that a constant is hard-wired on [n] if its interpretation is fixed.
The Specker-Blatter theorem is originally proved for classes of structures with a finite

number of binary relations. Fischer showed in 2002 that it is false for one quaternary relation
[20]. Fischer and Makowsky announced recently that it is also false for one ternary relation
[24].

The Specker-Blatter theorem remains true when adding a finite number of unary relations.
This is so because a unary relation U(x) can be expressed as a binary relation R(x, x) that
is false for R(x, y) when x 6= y.

Adding constants comes in two flavors, with variable interpretations, or hard-wired. As-
sume we want to count the number of unary predicates P over [n] that contain the in-
terpretation of a constant symbol c. There are n possible interpretations for c and 2n−1

interpretations for sets not containing c, hence n2n−1 many such sets. However, if c is
hard-wired to be interpreted as 1 ∈ [n], there are only 2n−1 many such sets.

Constants can be represented as unary predicates where their interpretation is a singleton.
If we do this, the Specker-Blatter theorem holds, but we cannot model the r-Bell numbers
like this. To prove that the r-Bell numbers are MC-finite one has to deal with r many
hard-wired constants. Adding a finite number of hard-wired constants needs some work. In
Section 7.5 we show how to eliminate a finite number of hard-wired constants for the case of
Sr(n). The proof generalizes. Fischer and Makowsky [24] proved the most general version.

Theorem 36. Let τr be a vocabulary with finitely many binary and unary relation symbols,
and r hard-wired constants. Let φ be a formula of CMSOL(τr). Then Sφ(n) is MC-finite.

Corollary 37. The sequences Sr(n) = Br(n), SA,r(n) = BA,r(n), Lahr(n, k0), and LahA,r(n, k0)
are MC-finite.
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7.5 Eliminating hard-wired constants

Let Sr(n) = ([r + n], a1, . . . , ar, E) be the structures over [r + n] where E is an equivalence
relation and the r elements a1, . . . , ar are in different equivalence classes. The number Sr(n)
counts the number of such structures on [r + n].

Let Er(n) be a structure over [n] that consists of the following:

(i) The relation E(x, y) is an equivalence relation over [n];

(ii) There are r unary relations U1, . . . , Ur on [n];

(iii) The sets Ui(x) are disjoint;

(iv) Each Ui(x) is either empty or consists of exactly one equivalence class of E;

Let Er(n) be the number of such structures over [n].

Lemma 38. For every r, n ∈ N+ there is a bijection f between the structures Er(n) over [n]
and the structures Sr(n) over [r + n], hence we have Er(n) = Sr(n).

Proof. Given a structure Sr(n) we define f(Sr(n)) as follows:

(i) The universe of f(Sr(n)) is {r + 1, . . . , r + n}.

(ii) If for i ≤ r the set {i} is a singleton equivalence class, we put Ui = ∅. If there is an
equivalence class Ei that strictly contains {i}, we define Ui = E ′

i = Ei \ {i}.

(iii) E ′ is the equivalence relation induced by E over {r + 1, . . . , r + n}.

Conversely, given a structure Er(n) = ([n], E, U1, . . . , Ur) we define g(Er(n)) as follows:

(i) The universe of g(Er(n)) is [n+r] and the equivalence relation E ′ is defined by defining
its equivalence classes.

(ii) If Ui is empty for some i ∈ [r] the singleton {i} is an equivalence class of E ′. If Ui is
not empty, then the equivalence class of E ′ that contains i is Ui ∪ {i}.

(iii) If C is an equivalence class of E such that Ui 6= C for all i ∈ [r], then C is an equivalence
class for E ′.

It is now easy to check that f, g are bijections and inverses of each other.

Remark 39.

(i) Clearly the class of structures Er(n) as defined here is FOL-definable. Hence we can
apply the Specker-Blatter theorem and conclude that Sr(n) is MC-finite.
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(ii) If A is ultimately periodic then SA,r(n) is also MC-finite. To see this we note that for
SA,r(n) all the equivalence classes C satisfy |C| ∈ A. This means that in a structure
EA,r(n) the equivalence classes C satisfy |C| ∈ A, if they do not contain a Ui. Otherwise
they satisfy |C| ∈ A′ where A′ = {a − 1 : a ∈ A}. If A is ultimately periodic, so is A′

and both are definable in CMSOL.

(iii) For the Lah numbers Lr(n) and LA,r(n) we proceed likewise by replacing the equivalence
relation by a linear quasi-order. For every i we add two further unary relations and
the appropriate conditions in order to take care of the ordering of the special elements.
Hence both Lr(n) and LA,r(n) are MC-finite.

8 Proving C-finiteness

In this section we explain a special case of the method used by Fischer and Makowsky in
[23] to prove C-finiteness. It is based on counting partitions of graphs satisfying additional
properties and computing these partitions for iteratively constructed graphs.

8.1 Counting partitions with a fixed number of blocks

Let G = (V (G), E(G)) be a graph, and k0 ∈ N. We look at partitions P1, . . . , Pk0 ⊆ V (G) of
V (G) that can be described in the logic CMSOL. The following are three typical examples:

Example 40.

(i) The underlying sets of G[Pi(G)] form a partition of V (G) without further restrictions.

(ii) For each i ≤ k0 the induced graph G[Pi(G)] is edgeless (proper coloring).

(iii) Let C be a graph property. For each i ≤ k0 the set G[Pi(G)] is in C (C-coloring).

We look at the counting function

fφ(G) = |{P1, . . . , Pk0 ⊆ V (G) : φ(P1, . . . , Pk0)}|,

defined using an CMSOL-formula φ.
Let A ⊆ N be an ultimately periodic set. We also look at the restricted counting function

fφ,A(G) = |{P1, . . . , Pk0 : φ(P1, . . . , Pk0) and |Pi| ∈ A}|.

Finally, we also allow graphs with a fixed number of distinct vertices, which may appear
in the formula φ.
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8.2 Iteratively constructed graphs

Definition 41.

(i) A k-colored graph is a graph G together with subsets Vi ⊆ V (G), i ∈ [k] such that
Vi ∩ Vj = ∅ for i 6= j.

(ii) A basic operation on k-colored graphs is one of the following:

• Addi: add a new vertex of color i to G.

• Recolori,j: recolor all vertices with color i to color j in G.

• Uncolori: remove the color of all vertices with color i. Uncolored vertices cannot
be recolored again.

• AddEdgesi,j: add an edge between every vertex with color i and every vertex with
color j in G.

• DeleteEdgesi,j : delete all edges between vertices with color i and vertices with
color j from G.

(iii) A unary operation F on graphs is elementary if F is a finite composition of basic
operations on k-colored graphs (with k fixed).

(iv) We say that a sequence of graphs {Gn} is iteratively constructed if it can be defined by
fixing a graph G0 and defining Gn+1 = F (Gn) for an elementary operation F .

Example 42. The following sequences are iteratively constructed:

(i) The complete graphs Kn can be constructed using two colors: Fix G0 to be the empty
graph. Given a graph Gn, the operation F adds a vertex with color 2, adds edges
between all vertices with color 2 and color 1, and recolors all vertices with color 2 to
color 1.

(ii) The paths Pn can be constructed using three colors: Fix G0 to be the empty graph.
Given a graph Gn, the operation F adds a vertex with color 3, adds edges between all
vertices with colors 2 and 3, recolors all vertices with color 2 to color 1, and recolors
all vertices with color 3 to color 2.

(iii) The cycles Cn, n ≥ 3 can be constructed by first constructing a path Pn where the first
and the last element have colors 1 and 2 different from the remaining vertices. Then
we connect the first and last element of Pn by an edge. This needs 5 colors, but is not
iterative. To make it an iterative construction we proceed as follows. Given a cycle
Cn with with two neighboring vertices of color 1 and 2, uncolor all the other vertices
and remove the edge (1, 2). Then add a new vertex with color 3, make edges (1, 3) and
(3, 2), uncolor the old vertices colored by 1, and then recolor 3 to have color 1.
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Remark 43. In Fischer and Makowsky [23] there was an additional operation allowed:

• Duplicate: Add a disjoint copy of G to G.

It was assumed erroneously that Duplicate behaves like a unary operation on graphs. Al-
though it looks like a unary operation on graphs, the sequence of graphs

G0 = E1, Gn+1 = Duplicate(Gn)

grows too fast and does not fit the framework that the authors have envisaged in [23].

8.3 The FM method

In this framework Fischer and Makowsky [23] proved the following result.

Theorem 44 (The FM-theorem). Let Gn be an iteratively constructed sequence of graphs,
A ⊆ N be ultimately periodic, and define

fφ(Gn) = |{P1, . . . , Pk0 ⊆ V (Gn) : φ(P1, . . . , Pk0)}|

=
∑

P1,...,Pk0
⊆V (Gn):

φ(P1,...,Pk0
)

1;

fφ,A(Gn) = |{P1, . . . , Pk0 ⊆ V (Gn) : φ(P1, . . . , Pk0) and |Pi| ∈ A}|

=
∑

P1,...,Pk0
⊆V (Gn):

φ(P1,...,Pk0
) and |Pi|∈A

1,

where φ ∈ CMSOL. Then the sequences fφ(Gn) and fφ,A(Gn) are C-finite.

Remark 45. We use unary predicates for the partition, to make sure that the formula φ is in
CMSOL. Let k1 be the number of unary predicates that are not tied to hard-wired elements.
If we want to disregard the labeling of the unary predicates that are not tied to hard-wired
constants, we divide by (k1)!. This does not affect C-finiteness, since k1 is a constant. In the
proof of Theorem 46 below we have k1 = k0 − r.

We now use Theorem 44 to prove the following result:

Theorem 46. Let A be ultimately periodic, r, k0 ∈ N. Then S(n, k0), SA(n, k0), Sr(n, k0)
and SA,r(n, k0) are C-finite.

Proof. It suffices to prove it for SA,r(n, k0). The other cases can be obtained by setting r = 0
and/or A = N.

We have to show that SA,r(n, k0) is of the form fφ,A(Gn). We define an iteratively
constructed sequence of graphs G = (V (G), E(G), v1, . . . , vr) with r distinct vertices as
follows. G0 = (Kr, v1, . . . , vr). Gn+1 = Gn ⊔K1.

Now take φ(P1, . . . , Pk0 , v1, . . . , vr), which says that the Pi’s form a partition and for each
i ≤ r the distinguished vertex vi belongs to Pi(G).

Further details are given in Section 9.
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9 Proof of Theorem 44 and its applications

In order to prove Theorem 44 we use Theorem 49 below. For this we have to introduce the
definition of CMSOL-definable graph polynomials.

9.1 CMSOL-definable graph polynomials

Definition 47. Let Z be the ring of integers. We consider polynomials over Z[x̄]. For a
CMSOL-formula for graphs φ(v̄) with v̄ = (v1, . . . , vs), define cardG(φ) to be the cardinality
of subsets of V (G)s defined by φ. The extended CMSOL graph polynomials are defined
recursively. We first define the extended CMSOL-monomials. Let φ(v̄) ∈ CMSOL. An
extended CMSOL-monomial is a term of one of the following possible forms:

• xcardG(φ) where x is one of the variables of x̄.

• x(cardG(φ)) i.e., the falling factorial of x.

•

(

x
cardG(φ)

)

.

•

∏

v̄∈V (G)s:φ(v) t(x̄)

Here v̄ ranges over tuples of vertices of G, t(x̄) is a term in Z[x̄], and x̄ are indetermi-
nates of the polynomial.

The extended CMSOL graph polynomials are obtained from the monomials by closing under
finite addition and multiplication. Furthermore, they are closed under summation over
subsets of V (G) of the form

∑

U :φ(U)

t(x̄),

where φ is a CMSOL-formula with free set variables U , and t(x̄) is a term in the indetermi-
nates x̄. They are also closed under multiplication over elements of V (G)s of the form

∏

v̄∈V (G)s:φ(v)

t(x̄).

Lemma 48. The counting functions from Theorem 44, namely,

fφ(Gn) = |{P1, . . . , Pk0 ⊆ V (Gn) : φ(P1, . . . , Pk0)}|

=
∑

P1,...,Pk0
⊆V (Gn):

φ(P1,...,Pk0
)

1,

fφ,A(Gn) = |{P1, . . . , Pk0 ⊆ V (Gn) : φ(P1, . . . , Pk0) and |Pi| ∈ A}|

=
∑

P1,...,Pk0
⊆V (Gn):

φ(P1,...,Pk0
) and |Pi|∈A

1
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are CMSOL-definable graph polynomials without indeterminates, provided φ ∈ CMSOL and
A is ultimately periodic.

We first state a theorem from Fischer and Makowsky [23, Theorem 1]:

Theorem 49. Let F be an elementary operation on graphs, {Gn : n ∈ N} an F -iterated se-
quence of graphs, and P an extended CMSOL-definable graph polynomial. Then the sequence
P (Gn) is C-finite, i.e., there exist polynomials p1, p2, . . . , pk ∈ Z[x̄] such that for sufficiently
large n,

P (Gn+k+1) =
k

∑

i=1

piP (Gn+i).

Proof of Theorem 44. Take for P the counting functions from Lemma 48 and apply Theorem
49.

9.2 Proofs of C-Finiteness

Now we give the details for the proof of Theorem 46. However, instead of using Theorem 44,
we use Theorem 49 directly by exhibiting an appropriate iteratively constructible sequence
of graphs.

Proposition 50. Fix k0 ∈ N. Then S(n, k0) is a C-finite sequence.

Proof. Let P be the graph property P = {Kn : n ≥ 1} of cliques with at least one vertex
and define Gn = Kn. Note that a P-coloring of Gn with k0 colors is a partition of V (Gn)
into exactly k0 non-empty color classes, so HP(Gn, k0) = S(n, k0). We want to apply the
FM-theorem. First we note that the sequence Gn is iteratively constructible in the sense of
Example 42 or Fischer and Makowsky [23, Proposition 2]. Hence HP is an extended CMSOL
graph polynomial and we can use Theorem 49.

Proposition 51. Fix k0 ∈ N. Then Sr(n, k0) is a C-finite sequence.

Proof. Let P be the graph property of edgeless graphs with at least one vertex, i.e., P =
{K̄n : n ≥ 1}, and define Gn = Kr ∪ K̄n. Note that a P-coloring of Gn with k0 + r colors
is a partition of V (Gn) into exactly k0 + r non empty color classes, such that every vertex
in V (Kr) ⊆ V (Gn) is in a different color class, so HP(Gn, k0 + r) = Sr(n, k0). We want to
apply the FM-theorem. First we note that the sequence Gn is iteratively constructible: put
G0 = Kr. Now given Gn, we construct Gn+1 by adding a disjoint vertex. Hence HP is again
an extended CMSOL graph polynomial and we can use Theorem 49.

Proposition 52. Let A ⊆ N, and k0 ∈ N. Then SA(n, k0) is a C-finite sequence if and only
if A is ultimately periodic.
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Proof. First we note that SA(n, 1) = 1 iff n ∈ A. Therefore, if A is not ultimately periodic,
SA(n, 1) is not C-finite. On the other hand, assume that A is ultimately periodic. Let P
be the graph property of cliques with vertex size in A, i.e., P = {Kn : n ∈ A}, and define
Gn = Kn. Note that a P-coloring of Gn with k0 colors is a partition of V (Gn) into exactly
k0 non empty color classes, with each color class with size in A. so HP(Gn, k0) = SA(n, k0).
We want to apply the FM-theorem. As before, the sequence Gn is iteratively constructible.
Hence HP is again an extended CMSOL graph polynomial and we can use Theorem 49.

Proposition 53. Let A ⊆ N, and k0 ∈ N. Then SA,r(n, k0) is a C-finite sequence if and
only if A is ultimately periodic.

Proof. We note that SA(n, 1) = 1 iff n ∈ A. If A is not ultimately periodic, then also
SA(n, 1) is not C-finite. Assume that A is ultimately periodic. Let P be the graph property
of edgeless graphs with vertex size in A, i.e., P = {K̄n : n ∈ A}, and define Gn = Kr ∪ K̄n.
Note that a P-coloring of Gn with k0 + r colors is a partition of V (Gn) into exactly k0 + r
non empty color classes with sizes in A, such that every vertex in V (Kr) ⊆ V (Gn) is in a
different color class, so HP(Gn, k0 + r) = Sr(n, k0). We want to apply the FM-theorem. As
before, the sequence Gn is iteratively constructible. Hence HP is again an extended CMSOL
graph polynomial and we can use Theorem 49.

10 Conclusions and further research

In the first part of the paper we introduced MC-finiteness as a worthwhile topic in the study of
integer sequences. We surveyed two methods of establishing MC-finiteness of such sequences.
In Theorem 6, MC-finiteness follows from the existence of polynomial recurrence relations
with coefficients in Z. In Theorem 10, MC-finiteness follows from a logical definability
assumption in monadic second-order logic augmented with modular counting quantifiers
CMSOL. We have compared the advantages and disadvantages of the methods, and we have
used the model theoretic method of Theorem 10 to give quick and transparent proofs of
MC-finiteness.

In the second part of the paper, we got similar results for locally restricted set partition
functions like BA,r. For this purpose the Specker-Blatter theorem had to be extended in
order to count labeled structures where a fixed number of special (hard-wired) elements are
in a certain configuration. In the case of BA,r(n), A is a set of natural numbers and r is
a natural number. The sequence BA,r counts the number of set partitions of [n] where the
first r elements are in different blocks and A indicates the possible cardinalities of the blocks
of the partition. The extension of the Specker-Blatter theorem needed is given in Theorem
36. A proof of a special case of this theorem is given in Section 7. The general case can be
found in [24]. Our new results are summarized in Tables 2–5.

We did not investigate in depth whether MC-finiteness of the examples in Tables 2–5
can be established directly or, alternatively, by exhibiting suitable polynomial recurrence
schemes in order to apply Theorem 6.
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Problem 54. Are the Bessel numbers B(n)B MC-finite?

Problem 55. Find systems of mutual polynomial recurrences for all the examples in Tables
2–4.

Instead of set partition functions we can also count the number of, say, partial orders
where

(i) the set of r special elements are in a particular CMSOL definable configuration, such
as prescribed comparability and incomparability, and

(ii) the set of integers A indicates the possible cardinalities of certain definable sets, such
as antichains or maximal linearly ordered sets.

Our techniques allow us to show that counting such partial orders over [n] results in MC-finite
sequences.

Finally, some words on the complexity of computing Sφ(n). The reader not familiar with
complexity of computation should consulta Arora and Barak [2] or Papadimitriou [45]. For
a complete picture there is always the Complexity Zoo [1].

Clearly, Sφ(n) is computable by brute force, given φ and n. In fact, for φ ∈ FOL the
problem is in ♯P. For φ ∈ CMSOL it is in ♯PH, the analogue of ♯P for problems definable in
second-order logic, or equivalently, in the polynomial hierarchy. As noted in Makowsky and
Pnueli [40, Proposition 11], there are arbitrarily complex problems in PH already definable
in MSOL. However, Sm

φ (n) is in MODmP, respectively in MODmPH, the corresponding
modular counting classes introduced by Beigel and Gill in [6]. It is still open how exactly
MODmP is related to ♯P. Green et al. [32] introduced a counting complexity class MP ⊆ P♯P

and showed that for each m the complexity classes MODmP are low for MP. A complexity
class B is low for a complexity class A if AB ⊆ A. In other words, using B as an oracle for
A does not yield more computational power. The reader further interested in details about
complexity classes can consult the Complexity Zoo [1] as a guide to the literature.

Specker [54] mentions that Sm
φ (n) ≡ Sφ(n) (mod m) can be computed more efficiently,

but no details are given. Only the special case of Qm(n) is given, where Q(n) is the number
of quasi-orders over [n].

Problem 56. Given φ ∈ FOL and m, find algorithms for computing Sφ(n) and Sm
φ (n) and

determine upper and lower bounds for them. One may assume that n is encoded in unary.

Problem 57. Same as Problem 56 for φ ∈ CMSOL.

Problem 58. Inspired by the remarks above, the following might be a worthwhile project:
Investigate the complexity classes ♯PH and MODmPH and their mutual relationships.
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