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Abstract

We determine all Tribonacci numbers of positive or negative indices that are prod-

ucts of factorials.

1 Introduction

The Tribonacci numbers {Tn}n≥0 are given by T0 = 0, T1 = T2 = 1 and Tn+3 = Tn+2 +
Tn+1+Tn for n ≥ 0. In [5], Marques and Lengyel determined all Tribonacci numbers Tn that
are factorials. They showed that if Tn = m! then n ∈ {1, 2, 3, 7}. Here we take this a couple
of steps further.

Theorem 1. If n ≥ 1 and

Tn = m1!m2! · · · mk!

for some positive integers m1 ≤ m2 ≤ · · · ≤ mk, then n ∈ {1, 2, 3, 4, 7}.

Next, one can extend the sequence of Tribonacci numbers in the negative direction using
the recurrence relation. Namely, since T0 = 0, T1 = T2 = 1, one computes that T−1 =
0, T−2 = 1 and for n ≥ 3, we have

T−n = −T−(n−1) − T−(n−2) + T−(n−3).

The Tribonacci numbers with negative indices change signs infinitely often. Nevertheless,
we can still ask what about the equation |Tn| = m1! · · ·mk!. Here is our result.

Theorem 2. If n ∈ Z and |Tn| = m1!m2! · · · mk! then

n ∈ {−9,−8,−7,−5,−3,−2, 1, 2, 3, 4, 7}.

Note the near miss T−32 = −24 · 3 · 52 · 7 = 7! · (5/3).

2 Preliminaries

The main ingredient is an exact formula for the exponent of 2 in Tn. Let νp(m) be the
exponent of the prime p in the factorization of the integerm with convention that νp(0) = ∞.
Here is Theorem 1 in [5].

Theorem 3. For n ≥ 1, we have

ν2(Tn) =



















































0, if n ≡ 1, 2 (mod 4);

1, if n ≡ 3, 11 (mod 16);

2, if n ≡ 4, 8 (mod 16);

ν2(n)− 1, if n ≡ 0 (mod 16);

ν2(n+ 4)− 1 if n ≡ 12 (mod 16);

ν2(n+ 17) + 1 if n ≡ 15 (mod 32);

ν2(n+ 1) + 1 if n ≡ 31 (mod 32).
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A similar theorem is proved for the prime p = 3 in [1].

Theorem 4. For n ≥ 1, we have

ν3(Tn) =



















































0, if n ≡ 1, 2, 3, 4, 5, 6, 8, 10, 11 (mod 13);

1, if n ≡ 7 (mod 13);

ν3(n) + 2, if n ≡ 0 (mod 13);

ν3(n+ 1) + 2, if n ≡ 12 (mod 13);

4, if n ≡ 9 (mod 39);

ν3(n+ 17) + 4, if n ≡ 22 (mod 39);

ν3(n+ 4) + 4, if n ≡ 35 (mod 39).

2.1 The proof of Theorem 1

Assume k ≥ 1, n ≥ 3 and
Tn = m1! · · ·mk!.

We may assume that 2 ≤ m1 ≤ · · · ≤ mk. It is well-known that letting α be real root of
x3 − x2 − x− 1 = 0, then α > 1.83 and Tn ≥ αn−2 holds for all n ≥ 1. Thus,

αn−2 ≤ Tn = m1! · · ·mk! < mm1

1 · · ·mmk

k ,

so

n < 2 +
m1 logm1 + · · ·+mk logmk

log(1.83)
. (1)

Note that
ν2(m!) = ⌊m/2⌋+ ⌊m/4⌋+ · · · ≥ m/2

holds for all m ≥ 2, except when m = 3, when ν2(3!) = (3 − 1)/2 ≥ 3/3. Hence, the
inequality ν2(m!) ≥ m/3 holds for all m ≥ 2. Next, by Theorem 3, we see that

ν2(Tn) ≤ max{2, ν2(n)− 1, ν2(n+ 4)− 1, ν2(n+ 1) + 1, ν2(n+ 17) + 1}

≤
log(n+ 17)

log 2
+ 1.

This gives
log(n+ 17)

log 2
+ 1 ≥ ν2(Tn) = ν2(m1!) + · · ·+ ν2(mk!).

Thus, putting
x := ν2(m1!) + · · ·+ ν2(mk!),

we have
n > 2x−1 − 17, (2)
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and since mi ≤ 3ν2(mi!) for i = 1, . . . , k, we have

m1 logm1 + · · ·+mk logmk < (m1 + · · ·+mk) log(m1 + · · ·+mk)

≤ 3x log(3x),

so (1) yields

n < 2 +
3x log(3x)

log(1.83)
. (3)

Combining (2) and (3), we get

2x−1 − 17 < 2 +
3x log(3x)

log(1.83)
,

giving x ≤ 8. Since ν2(11!) = 8, we conclude that either Tn = 11! and k = 1, or mk ≤ 10, in
which case P (Tn) ≤ 7, where P (m) is the largest prime factor of m. Since Tn = 11! is not
possible, we conclude that P (Tn) ≤ 7. All Tribonacci numbers whose largest prime factor
is at most 7 have been determined in [2] and they are T1 = T2 = 1, T2 = 2, T3 = 4, T5 =
7, T7 = 23 ·3, T9 = 34, T12 = 23 ·32 ·7, T15 = 26 ·72, and the only numbers from the previous
list that are products of factorials correspond to n ∈ {1, 2, 3, 4, 7}.

3 The proof of Theorem 2

This is trickier, since the lower bounds on |T−n| are quite weak. However, we can follow
the arguments from [3] and [4]. Namely, we put Λ := {α, β, γ} for the set of roots of
P (X) = X3 −X2 −X − 1. We assume β = α−1/2eiθ where θ ∈ (0, π) and γ = α−1/2e−iθ. So,
β is the complex nonreal root of P (X) in the upper half-plane. Then

Tn = cαα
n + cββ

n + cγγ
n holds for all n ∈ Z.

Here

cλ =
λ

P ′(λ)
for λ ∈ Λ.

The Tribonacci sequence {Tn}n∈Z is periodic modulo 2k with period 2k+2 for all k ≥ 1. To
see this, it is easier to work with

22Tn = (22cα)α
n + (22cβ)β

n + (22cγ)γ
n.

The numbers cλ are not algebraic integers, but 22cλ are algebraic integers of minimal poly-
nomial X3 − 22X − 242 for λ ∈ Λ. Since X3 −X2 −X − 1 divides X4 − 2X + 1, it follows
that λ4 ≡ 1 (mod 2) for λ ∈ Λ. Here, for algebraic integers γ, δ and an integer m ≥ 1, we
write γ ≡ δ (mod m) if (γ − δ)/m is an algebraic integer. By induction we get λ2k+1

≡ 1
(mod 2k) for all k ≥ 1. In particular, for all n ∈ Z, we have

22Tn+2k+1 =
∑

λ∈Λ

(22cλ)λ
n+2k+1

≡
∑

λ∈Λ

(22cλ)λ
n ≡ 22Tn (mod 2k).
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The above congruence implies that Tn+2k+1 ≡ Tn (mod 2k−1) holds for all k ≥ 2. Hence,
{Tn}n∈Z is periodic modulo 2k with period 2k+2 for all k ≥ 1. In particular, the Marques–
Lengyel formulas from Theorem 3 hold for all integers n, not only for the positive ones. Let
us see why.

Assume n 6= 0, 1, 4, 17, since for these values of b we have T−n = 0, so the formula from
Theorem 3 holds with both sides equal ∞. Let k be large (k ≥ n+ 10). Then T−n ≡ T2k−n

(mod 2k−2) and 2k − n is positive. Unless −n ≡ 0, 1, 4, 17 (mod 16), the formulas from
Theorem 3 show that ν2(2

k−n) ∈ {0, 1, 2} and 16 | 2k. It then follows that ν2(T2k−n) = 0, 1, 2
and since T2k−n ≡ T−n (mod 2k−2), it follows that ν2(T−n) = ν2(T2k−n). Hence, the formula
from Theorem 3 holds for the residue classes for −n modulo 16 that are not one of 0, 1, 4, 17.
For the rest of the residue classes, ν2(T2k−n) = ν2(2

k − n + a) + b for some a ∈ {0, 1, 4, 17}
and b ∈ {−1, 1}. But

ν2(2
k − n+ a)) = ν2(2

k − (n− a)) = ν2(n− a) for large k since n− a 6= 0.

Since T−n ≡ T2k−n (mod 2k−2) and ν2(T−n) = ν2(T2k−n) = ν2(−n+ a) + b, the formula from
Theorem 3 holds for −n that are congruent to one of {0, 1, 4, 17} modulo 16. Similar (and in
fact easier) considerations modulo 13 ·3k show that the sequence {Tn}n∈Z is periodic modulo
3k+1 with period 13 · 3k and that the formula from Theorem 4 holds for all integers n not
only for the positive ones.

We next assume that n ≥ 18. Then [3, Inequality (2.3)] (also see [4, Inequality (4.2)])
shows that

T−n > αn/2−1.2×1016 log n.

The condition n ≥ 18 is needed since T−17 = 0. Thus, the analogue of inequality (1) when
|T−n| = m1! · · ·mk! for n ≥ 18 is

n/2− 1.2× 1016 log n <
m1 logm1 + · · ·+mk logmk

log(1.83)
. (4)

Further, using that Theorem 3 holds for n ∈ Z, we get that

ν2(T−n) ≤ max{2, ν2(n)− 1, ν2(n− 4)− 1, ν2(n− 1) + 3, ν2(n− 17) + 3}

≤
log(n− 1)

log 2
+ 3,

so the analogue of inequality (2) is

n ≥ 2x−3 + 1. (5)

The function y 7→ y/2 − 1.2 × 1016 log y is increasing for y > 2.4 × 1016, so if x ≥ 58, then
2x−3 + 1 ≥ 255 + 1 > 2.4× 1016, so

n/2− 1.2× 1016 log n ≥ 2x−4 + 0.5− 1.2× 1016(x− 3) log 2. (6)
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We thus get

2x−4 + 0.5− 1.2× 1016(x− 3) log 2 <
3x log(3x)

log(1.83)
,

which gives x ≤ 62. Hence, x ≤ 62, so m1 +m2 + · · ·+mk ≤ 3x ≤ 186. Thus,

m1!m2! · · · mk! | (m1 + · · ·+mk)! | 186!.

Further, from (4) we get

n/2− 1.2× 1016 log n <
3x log(3x)

log(1.83)
<

186 log 186

log(1.83)
,

so n < 1018. We are ready to do some Baker-Davenport reduction. This has been explained
and used in many places. For our application, we refer the reader to [4, Lemma 5.1] and [3,
Eqs. (3.4), (3.5)]. We write

cββ
−n + cγγ

−n = ±m1! · · ·mk!− cαα
−n.

Thus, assuming n > 6000, we get
∣

∣

∣

∣

(

−
cγ
cβ

)(

β

γ

)n

− 1

∣

∣

∣

∣

=
| ±m1! · · ·mk!− cαα

−n|

αn/2
<

186! + 1

αn/2
<

1

αn/4
.

The last inequality holds for n > 6000. Writing β/γ = e2iθ and also −cγ/cβ = −e2iω for
some ω ∈ (0, 2π), we get

|ei(2nθ+π−2ω) − 1| <
1

αn/4
.

The argument from [3] ((3.2)–(3.4)) shows that if l := ⌊(2nθ+π−2ω)/π⌉, then the left-hand
side above is at least

2

∣

∣

∣

∣

n

(

2θ

π

)

− (l − 1)−
2ω

π

∣

∣

∣

∣

.

Thus, we get
∣

∣

∣

∣

n

(

2θ

π

)

− (l − 1)−
2ω

π

∣

∣

∣

∣

<
2

αn/4
.

The left-hand side above is nτ −m + µ, where τ = 2θ/π, µ = −2ω/π, m = l − 1 and the
right-hand side above is of the form A/Bk, with the parameters A = 2, B = α, k = n/4.
The continued fraction of τ starts as follows:

[1, 2, 1, 1, 2, 6, 1, 5, 1, 1, 1, 11, 25, 2, 21, 1, 2, 1, 5, 4, 60, 8, 2, 1, 2, 8, 2, 1, 1, 60,

1, 5, 3, 1, 4, 29, 2, 24, 19, 1, . . .]

We take M := 1018, which is an upper bound on n. We take the 39th convergent p39/q39
and with q := q39, calculate ε := ‖qµ‖ −M‖qτ‖ > 0.4, and we get by the Baker–Davenport
reduction method that

n/4 = k <
log(Aq/ε)

logB
<

log(2q39/0.4)

log(1.83)
,
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which gives n ≤ 361, contradicting our assumption that n > 6000. So, n ≤ 6000.
Now inequality (5) gives x ≤ 16. Since ν2(20!) = 17 > x, it follows that mk ≤ 19. But

we can do better. Assume that mk ≥ 12. Then ν2(T−n) ≥ ν2(12!) = 11 and ν3(T−n) ≥
ν3(12!) ≥ 5. Theorems 3 and 4 show that n is congruent to one of 0, 1, 4, 17 modulo 210 and
also modulo 13 · 3. Solving the above 42 possibilities with the Chinese remainder lemma we
get that the only possibility for which n < 6000 is n ≡ 4096 (mod 210 · 3 · 13), so n = 4096,
but ν3(T−4096) = 4 (not 5). This shows that mk ≤ 11.

Finally, let us note that ν3(T−n) ≤ 9. Indeed, if ν3(T−n) ≥ 10, then Theorem 4 shows
that n ≡ 0, 1, 4, 17 (mod 13 · 36) and 13 · 36 > 6000 (certainly n cannot be one of 0, 1, 4, 17
since then T−n = 0). So,

m1! · · ·mk! = 2a · 3b · 5c · 7d · 11e,

where a ≤ 16, b ≤ 9, c ≤ 5, d ≤ 4, e ≤ 2. To see the upper bounds on the exponents
of the primes larger than 3 above, note that if c ≥ 6, then 5!6 | m1! · · ·mk!, which makes
ν2(T−n) ≥ 18, a contradiction. The rest are proved in the same way. We created the list
of all the numbers of the above form and intersected it with the list of absolute values
{|T−n|}1≤n≤6000, obtaining some values in the intersection with the largest index n = 33 for
which |T−33| = 26 · 72. From here, we recovered the solutions n for which |T−n| is a product
of factorials namely T−2 = 1, T−3 = −1, T−5 = 2, T−7 = 1, T−8 = 22, T−9 = −23. This
finishes the proof.
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