Journal of Integer Sequences, Vol. 26 (2023), Article 23.2.2

On Tribonacci Numbers that are Products of Factorials

Adel Alahmadi
Research Group in Algebraic Structures and Applications King Abdulaziz University
Jeddah
Saudi Arabia
analahmadi@kau.edu.sa
Florian Luca
School of Mathematics University of the Witwatersrand
1 Jan Smuts Avenue
Braamfontein 2050
Johannesburg
South Africa
and
Research Group in Algebraic Structures and Applications
King Abdulaziz University
Jeddah
Saudi Arabia
and
Centro de Ciencias Matemáticas UNAM
Morelia
México
florian.luca@wits.ac.za

Abstract

We determine all Tribonacci numbers of positive or negative indices that are products of factorials.

1 Introduction

The Tribonacci numbers $\left\{T_{n}\right\}_{n \geq 0}$ are given by $T_{0}=0, T_{1}=T_{2}=1$ and $T_{n+3}=T_{n+2}+$ $T_{n+1}+T_{n}$ for $n \geq 0$. In [5], Marques and Lengyel determined all Tribonacci numbers T_{n} that are factorials. They showed that if $T_{n}=m$! then $n \in\{1,2,3,7\}$. Here we take this a couple of steps further.
Theorem 1. If $n \geq 1$ and

$$
T_{n}=m_{1}!m_{2}!\cdots m_{k}!
$$

for some positive integers $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$, then $n \in\{1,2,3,4,7\}$.
Next, one can extend the sequence of Tribonacci numbers in the negative direction using the recurrence relation. Namely, since $T_{0}=0, T_{1}=T_{2}=1$, one computes that $T_{-1}=$ $0, T_{-2}=1$ and for $n \geq 3$, we have

$$
T_{-n}=-T_{-(n-1)}-T_{-(n-2)}+T_{-(n-3)}
$$

The Tribonacci numbers with negative indices change signs infinitely often. Nevertheless, we can still ask what about the equation $\left|T_{n}\right|=m_{1}!\cdots m_{k}!$. Here is our result.
Theorem 2. If $n \in \mathbb{Z}$ and $\left|T_{n}\right|=m_{1}!m_{2}!\cdots m_{k}!$ then

$$
n \in\{-9,-8,-7,-5,-3,-2,1,2,3,4,7\} .
$$

Note the near miss $T_{-32}=-2^{4} \cdot 3 \cdot 5^{2} \cdot 7=7!\cdot(5 / 3)$.

2 Preliminaries

The main ingredient is an exact formula for the exponent of 2 in T_{n}. Let $\nu_{p}(m)$ be the exponent of the prime p in the factorization of the integer m with convention that $\nu_{p}(0)=\infty$. Here is Theorem 1 in [5].
Theorem 3. For $n \geq 1$, we have

$$
\nu_{2}\left(T_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 4) ; \\ 1, & \text { if } n \equiv 3,11 \quad(\bmod 16) ; \\ 2, & \text { if } n \equiv 4,8 \quad(\bmod 16) ; \\ \nu_{2}(n)-1, & \text { if } n \equiv 0 \quad(\bmod 16) ; \\ \nu_{2}(n+4)-1 & \text { if } n \equiv 12 \quad(\bmod 16) ; \\ \nu_{2}(n+17)+1 & \text { if } n \equiv 15 \quad(\bmod 32) ; \\ \nu_{2}(n+1)+1 & \text { if } n \equiv 31 \quad(\bmod 32)\end{cases}
$$

A similar theorem is proved for the prime $p=3$ in [1].
Theorem 4. For $n \geq 1$, we have

$$
\nu_{3}\left(T_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2,3,4,5,6,8,10,11 \quad(\bmod 13) ; \\ 1, & \text { if } n \equiv 7 \quad(\bmod 13) ; \\ \nu_{3}(n)+2, & \text { if } n \equiv 0 \quad(\bmod 13) ; \\ \nu_{3}(n+1)+2, & \text { if } n \equiv 12 \quad(\bmod 13) ; \\ 4, & \text { if } n \equiv 9 \quad(\bmod 39) ; \\ \nu_{3}(n+17)+4, & \text { if } n \equiv 22 \quad(\bmod 39) ; \\ \nu_{3}(n+4)+4, & \text { if } n \equiv 35 \quad(\bmod 39)\end{cases}
$$

2.1 The proof of Theorem 1

Assume $k \geq 1, n \geq 3$ and

$$
T_{n}=m_{1}!\cdots m_{k}!
$$

We may assume that $2 \leq m_{1} \leq \cdots \leq m_{k}$. It is well-known that letting α be real root of $x^{3}-x^{2}-x-1=0$, then $\alpha>1.83$ and $T_{n} \geq \alpha^{n-2}$ holds for all $n \geq 1$. Thus,

$$
\alpha^{n-2} \leq T_{n}=m_{1}!\cdots m_{k}!<m_{1}^{m_{1}} \cdots m_{k}^{m_{k}}
$$

so

$$
\begin{equation*}
n<2+\frac{m_{1} \log m_{1}+\cdots+m_{k} \log m_{k}}{\log (1.83)} \tag{1}
\end{equation*}
$$

Note that

$$
\nu_{2}(m!)=\lfloor m / 2\rfloor+\lfloor m / 4\rfloor+\cdots \geq m / 2
$$

holds for all $m \geq 2$, except when $m=3$, when $\nu_{2}(3!)=(3-1) / 2 \geq 3 / 3$. Hence, the inequality $\nu_{2}(m!) \geq m / 3$ holds for all $m \geq 2$. Next, by Theorem 3 , we see that

$$
\begin{aligned}
\nu_{2}\left(T_{n}\right) & \leq \max \left\{2, \nu_{2}(n)-1, \nu_{2}(n+4)-1, \nu_{2}(n+1)+1, \nu_{2}(n+17)+1\right\} \\
& \leq \frac{\log (n+17)}{\log 2}+1
\end{aligned}
$$

This gives

$$
\frac{\log (n+17)}{\log 2}+1 \geq \nu_{2}\left(T_{n}\right)=\nu_{2}\left(m_{1}!\right)+\cdots+\nu_{2}\left(m_{k}!\right)
$$

Thus, putting

$$
x:=\nu_{2}\left(m_{1}!\right)+\cdots+\nu_{2}\left(m_{k}!\right),
$$

we have

$$
\begin{equation*}
n>2^{x-1}-17, \tag{2}
\end{equation*}
$$

and since $m_{i} \leq 3 \nu_{2}\left(m_{i}!\right)$ for $i=1, \ldots, k$, we have

$$
\begin{aligned}
m_{1} \log m_{1}+\cdots+m_{k} \log m_{k} & <\left(m_{1}+\cdots+m_{k}\right) \log \left(m_{1}+\cdots+m_{k}\right) \\
& \leq 3 x \log (3 x)
\end{aligned}
$$

so (1) yields

$$
\begin{equation*}
n<2+\frac{3 x \log (3 x)}{\log (1.83)} \tag{3}
\end{equation*}
$$

Combining (2) and (3), we get

$$
2^{x-1}-17<2+\frac{3 x \log (3 x)}{\log (1.83)}
$$

giving $x \leq 8$. Since $\nu_{2}(11!)=8$, we conclude that either $T_{n}=11$! and $k=1$, or $m_{k} \leq 10$, in which case $P\left(T_{n}\right) \leq 7$, where $P(m)$ is the largest prime factor of m. Since $T_{n}=11$! is not possible, we conclude that $P\left(T_{n}\right) \leq 7$. All Tribonacci numbers whose largest prime factor is at most 7 have been determined in [2] and they are $T_{1}=T_{2}=1, T_{2}=2, T_{3}=4, T_{5}=$ $7, T_{7}=2^{3} \cdot 3, T_{9}=3^{4}, T_{12}=2^{3} \cdot 3^{2} \cdot 7, T_{15}=2^{6} \cdot 7^{2}$, and the only numbers from the previous list that are products of factorials correspond to $n \in\{1,2,3,4,7\}$.

3 The proof of Theorem 2

This is trickier, since the lower bounds on $\left|T_{-n}\right|$ are quite weak. However, we can follow the arguments from [3] and [4]. Namely, we put $\Lambda:=\{\alpha, \beta, \gamma\}$ for the set of roots of $P(X)=X^{3}-X^{2}-X-1$. We assume $\beta=\alpha^{-1 / 2} e^{i \theta}$ where $\theta \in(0, \pi)$ and $\gamma=\alpha^{-1 / 2} e^{-i \theta}$. So, β is the complex nonreal root of $P(X)$ in the upper half-plane. Then

$$
T_{n}=c_{\alpha} \alpha^{n}+c_{\beta} \beta^{n}+c_{\gamma} \gamma^{n} \quad \text { holds for all } \quad n \in \mathbb{Z}
$$

Here

$$
c_{\lambda}=\frac{\lambda}{P^{\prime}(\lambda)} \quad \text { for } \quad \lambda \in \Lambda
$$

The Tribonacci sequence $\left\{T_{n}\right\}_{n \in \mathbb{Z}}$ is periodic modulo 2^{k} with period 2^{k+2} for all $k \geq 1$. To see this, it is easier to work with

$$
22 T_{n}=\left(22 c_{\alpha}\right) \alpha^{n}+\left(22 c_{\beta}\right) \beta^{n}+\left(22 c_{\gamma}\right) \gamma^{n} .
$$

The numbers c_{λ} are not algebraic integers, but $22 c_{\lambda}$ are algebraic integers of minimal polynomial $X^{3}-22 X-242$ for $\lambda \in \Lambda$. Since $X^{3}-X^{2}-X-1$ divides $X^{4}-2 X+1$, it follows that $\lambda^{4} \equiv 1(\bmod 2)$ for $\lambda \in \Lambda$. Here, for algebraic integers γ, δ and an integer $m \geq 1$, we write $\gamma \equiv \delta(\bmod m)$ if $(\gamma-\delta) / m$ is an algebraic integer. By induction we get $\lambda^{2^{\overline{k+1}}} \equiv 1$ $\left(\bmod 2^{k}\right)$ for all $k \geq 1$. In particular, for all $n \in \mathbb{Z}$, we have

$$
22 T_{n+2^{k+1}}=\sum_{\lambda \in \Lambda}\left(22 c_{\lambda}\right) \lambda^{n+2^{k+1}} \equiv \sum_{\lambda \in \Lambda}\left(22 c_{\lambda}\right) \lambda^{n} \equiv 22 T_{n} \quad\left(\bmod 2^{k}\right)
$$

The above congruence implies that $T_{n+2^{k+1}} \equiv T_{n}\left(\bmod 2^{k-1}\right)$ holds for all $k \geq 2$. Hence, $\left\{T_{n}\right\}_{n \in \mathbb{Z}}$ is periodic modulo 2^{k} with period 2^{k+2} for all $k \geq 1$. In particular, the MarquesLengyel formulas from Theorem 3 hold for all integers n, not only for the positive ones. Let us see why.

Assume $n \neq 0,1,4,17$, since for these values of b we have $T_{-n}=0$, so the formula from Theorem 3 holds with both sides equal ∞. Let k be large $(k \geq n+10)$. Then $T_{-n} \equiv T_{2^{k}-n}$ $\left(\bmod 2^{k-2}\right)$ and $2^{k}-n$ is positive. Unless $-n \equiv 0,1,4,17(\bmod 16)$, the formulas from Theorem 3 show that $\nu_{2}\left(2^{k}-n\right) \in\{0,1,2\}$ and $16 \mid 2^{k}$. It then follows that $\nu_{2}\left(T_{2^{k}-n}\right)=0,1,2$ and since $T_{2^{k}-n} \equiv T_{-n}\left(\bmod 2^{k-2}\right)$, it follows that $\nu_{2}\left(T_{-n}\right)=\nu_{2}\left(T_{2^{k}-n}\right)$. Hence, the formula from Theorem 3 holds for the residue classes for $-n$ modulo 16 that are not one of $0,1,4,17$. For the rest of the residue classes, $\nu_{2}\left(T_{2^{k}-n}\right)=\nu_{2}\left(2^{k}-n+a\right)+b$ for some $a \in\{0,1,4,17\}$ and $b \in\{-1,1\}$. But

$$
\left.\nu_{2}\left(2^{k}-n+a\right)\right)=\nu_{2}\left(2^{k}-(n-a)\right)=\nu_{2}(n-a) \quad \text { for large } \quad k \quad \text { since } \quad n-a \neq 0 .
$$

Since $T_{-n} \equiv T_{2^{k}-n}\left(\bmod 2^{k-2}\right)$ and $\nu_{2}\left(T_{-n}\right)=\nu_{2}\left(T_{2^{k}-n}\right)=\nu_{2}(-n+a)+b$, the formula from Theorem 3 holds for $-n$ that are congruent to one of $\{0,1,4,17\}$ modulo 16. Similar (and in fact easier) considerations modulo $13 \cdot 3^{k}$ show that the sequence $\left\{T_{n}\right\}_{n \in \mathbb{Z}}$ is periodic modulo 3^{k+1} with period $13 \cdot 3^{k}$ and that the formula from Theorem 4 holds for all integers n not only for the positive ones.

We next assume that $n \geq 18$. Then [3, Inequality (2.3)] (also see [4, Inequality (4.2)]) shows that

$$
T_{-n}>\alpha^{n / 2-1.2 \times 10^{16} \log n}
$$

The condition $n \geq 18$ is needed since $T_{-17}=0$. Thus, the analogue of inequality (1) when $\left|T_{-n}\right|=m_{1}!\cdots m_{k}!$ for $n \geq 18$ is

$$
\begin{equation*}
n / 2-1.2 \times 10^{16} \log n<\frac{m_{1} \log m_{1}+\cdots+m_{k} \log m_{k}}{\log (1.83)} \tag{4}
\end{equation*}
$$

Further, using that Theorem 3 holds for $n \in \mathbb{Z}$, we get that

$$
\begin{aligned}
\nu_{2}\left(T_{-n}\right) & \leq \max \left\{2, \nu_{2}(n)-1, \nu_{2}(n-4)-1, \nu_{2}(n-1)+3, \nu_{2}(n-17)+3\right\} \\
& \leq \frac{\log (n-1)}{\log 2}+3
\end{aligned}
$$

so the analogue of inequality (2) is

$$
\begin{equation*}
n \geq 2^{x-3}+1 \tag{5}
\end{equation*}
$$

The function $y \mapsto y / 2-1.2 \times 10^{16} \log y$ is increasing for $y>2.4 \times 10^{16}$, so if $x \geq 58$, then $2^{x-3}+1 \geq 2^{55}+1>2.4 \times 10^{16}$, so

$$
\begin{equation*}
n / 2-1.2 \times 10^{16} \log n \geq 2^{x-4}+0.5-1.2 \times 10^{16}(x-3) \log 2 . \tag{6}
\end{equation*}
$$

We thus get

$$
2^{x-4}+0.5-1.2 \times 10^{16}(x-3) \log 2<\frac{3 x \log (3 x)}{\log (1.83)}
$$

which gives $x \leq 62$. Hence, $x \leq 62$, so $m_{1}+m_{2}+\cdots+m_{k} \leq 3 x \leq 186$. Thus,

$$
m_{1}!m_{2}!\cdots m_{k}!\left|\left(m_{1}+\cdots+m_{k}\right)!\right| 186!
$$

Further, from (4) we get

$$
n / 2-1.2 \times 10^{16} \log n<\frac{3 x \log (3 x)}{\log (1.83)}<\frac{186 \log 186}{\log (1.83)}
$$

so $n<10^{18}$. We are ready to do some Baker-Davenport reduction. This has been explained and used in many places. For our application, we refer the reader to [4, Lemma 5.1] and [3, Eqs. (3.4), (3.5)]. We write

$$
c_{\beta} \beta^{-n}+c_{\gamma} \gamma^{-n}= \pm m_{1}!\cdots m_{k}!-c_{\alpha} \alpha^{-n}
$$

Thus, assuming $n>6000$, we get

$$
\left|\left(-\frac{c_{\gamma}}{c_{\beta}}\right)\left(\frac{\beta}{\gamma}\right)^{n}-1\right|=\frac{\left| \pm m_{1}!\cdots m_{k}!-c_{\alpha} \alpha^{-n}\right|}{\alpha^{n / 2}}<\frac{186!+1}{\alpha^{n / 2}}<\frac{1}{\alpha^{n / 4}} .
$$

The last inequality holds for $n>6000$. Writing $\beta / \gamma=e^{2 i \theta}$ and also $-c_{\gamma} / c_{\beta}=-e^{2 i \omega}$ for some $\omega \in(0,2 \pi)$, we get

$$
\left|e^{i(2 n \theta+\pi-2 \omega)}-1\right|<\frac{1}{\alpha^{n / 4}}
$$

The argument from $[3]((3.2)-(3.4))$ shows that if $l:=\lfloor(2 n \theta+\pi-2 \omega) / \pi\rceil$, then the left-hand side above is at least

$$
2\left|n\left(\frac{2 \theta}{\pi}\right)-(l-1)-\frac{2 \omega}{\pi}\right| .
$$

Thus, we get

$$
\left|n\left(\frac{2 \theta}{\pi}\right)-(l-1)-\frac{2 \omega}{\pi}\right|<\frac{2}{\alpha^{n / 4}} .
$$

The left-hand side above is $n \tau-m+\mu$, where $\tau=2 \theta / \pi, \mu=-2 \omega / \pi, m=l-1$ and the right-hand side above is of the form A / B^{k}, with the parameters $A=2, B=\alpha, k=n / 4$. The continued fraction of τ starts as follows:

$$
\begin{aligned}
& {[1,2,1,1,2,6,1,5,1,1,1,11,25,2,21,1,2,1,5,4,60,8,2,1,2,8,2,1,1,60} \\
& 1,5,3,1,4,29,2,24,19,1, \ldots]
\end{aligned}
$$

We take $M:=10^{18}$, which is an upper bound on n. We take the 39 th convergent p_{39} / q_{39} and with $q:=q_{39}$, calculate $\varepsilon:=\|q \mu\|-M\|q \tau\|>0.4$, and we get by the Baker-Davenport reduction method that

$$
n / 4=k<\frac{\log (A q / \varepsilon)}{\log B}<\frac{\log \left(2 q_{39} / 0.4\right)}{\log (1.83)}
$$

which gives $n \leq 361$, contradicting our assumption that $n>6000$. So, $n \leq 6000$.
Now inequality (5) gives $x \leq 16$. Since $\nu_{2}(20!)=17>x$, it follows that $m_{k} \leq 19$. But we can do better. Assume that $m_{k} \geq 12$. Then $\nu_{2}\left(T_{-n}\right) \geq \nu_{2}(12!)=11$ and $\nu_{3}\left(T_{-n}\right) \geq$ $\nu_{3}(12!) \geq 5$. Theorems 3 and 4 show that n is congruent to one of $0,1,4,17$ modulo 2^{10} and also modulo $13 \cdot 3$. Solving the above 4^{2} possibilities with the Chinese remainder lemma we get that the only possibility for which $n<6000$ is $n \equiv 4096\left(\bmod 2^{10} \cdot 3 \cdot 13\right)$, so $n=4096$, but $\nu_{3}\left(T_{-4096}\right)=4($ not 5$)$. This shows that $m_{k} \leq 11$.

Finally, let us note that $\nu_{3}\left(T_{-n}\right) \leq 9$. Indeed, if $\nu_{3}\left(T_{-n}\right) \geq 10$, then Theorem 4 shows that $n \equiv 0,1,4,17\left(\bmod 13 \cdot 3^{6}\right)$ and $13 \cdot 3^{6}>6000($ certainly n cannot be one of $0,1,4,17$ since then $T_{-n}=0$). So,

$$
m_{1}!\cdots m_{k}!=2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d} \cdot 11^{e},
$$

where $a \leq 16, b \leq 9, c \leq 5, d \leq 4, e \leq 2$. To see the upper bounds on the exponents of the primes larger than 3 above, note that if $c \geq 6$, then $5!^{6} \mid m_{1}!\cdots m_{k}$!, which makes $\nu_{2}\left(T_{-n}\right) \geq 18$, a contradiction. The rest are proved in the same way. We created the list of all the numbers of the above form and intersected it with the list of absolute values $\left\{\left|T_{-n}\right|\right\}_{1 \leq n \leq 6000}$, obtaining some values in the intersection with the largest index $n=33$ for which $\left|T_{-33}\right|=2^{6} \cdot 7^{2}$. From here, we recovered the solutions n for which $\left|T_{-n}\right|$ is a product of factorials namely $T_{-2}=1, T_{-3}=-1, T_{-5}=2, T_{-7}=1, T_{-8}=2^{2}, T_{-9}=-2^{3}$. This finishes the proof.

4 Acknowledgments

We thank the anonymous referee for a careful reading of the paper and for comments that improved the quality of our manuscript. F. L. worked on this paper during a visit to the Max Planck Institute for Software Systems in Saarbrücken, Germany in 2022. This author thanks Professor J. Ouaknine for the invitation and the MPI-SWS for hospitality and support.

References

[1] Y. Bilu, F. Luca, J. Nieuwveld, J. Ouaknine, and J. B. Worrell, On the p-adic zeros of the Tribonacci sequence, arxiv preprint arXiv:2210.16959 [math.NT], 2022. Available at https://arxiv.org/abs/2210.16959.
[2] J. J. Bravo and F. Luca, On the largest prime factor of the k-Fibonacci numbers, Int. J. Number Theory 9 (2013), 1351-1366.
[3] E. Bravo, C. A. Gómez, and F. Luca, Total multiplicity of the tribonacci sequence, Colloq. Math. 159 (2020), 71-76.
[4] E. Bravo, C. A. Gómez, B. Kafle, F. Luca, and A. Togbé, On a conjecture concerning the multiplicity of the tribonacci sequence, Colloq. Math. 159 (2020), 61-69.
[5] D. Marques and T. Lengyel, On the 2-adic order of Tribonacci numbers and the equation $T_{n}=m!$, J. Integer Sequences 17 (2014), Article 14.10.1.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11A07, 11B50, 11D61. Keywords: Tribonacci number, factorial, Baker-Davenport reduction method.
(Concerned with sequence $\underline{\text { A000073.) }}$

Received November 3 2022; revised versions received February 3 2023; February 182023. Published in Journal of Integer Sequences, February 182023.

Return to Journal of Integer Sequences home page.

