
23 11

Article 23.8.4
Journal of Integer Sequences, Vol. 26 (2023),2

3

6

1

47

Arithmetic Functions that Remain Constant
on Runs of Consecutive Integers

Noah Lebowitz-Lockard and Joseph Vandehey
Department of Mathematics
University of Texas at Tyler

Tyler, TX 75799
USA

nlebowitzlockard@uttyler.edu

jvandehey@uttyler.edu

Abstract

We bound from above the length of the longest sequence of consecutive numbers less

than or equal to x with the same number of divisors. We also bound the length of the

longest sequence of consecutive numbers less than or equal to x for which the number

of divisors is decreasing. Finally, we consider variants of this problem such as the

corresponding sequences for the sum-of-proper-divisors function and the Carmichael

function. In particular, we show that it is impossible for the sum-of-proper-divisors

function to be equal on six consecutive integers.

1 Introduction

Let d(n) be the number of divisors of n. In 1952, Erdős and Mirsky [4] defined the function
F (x) as the largest number k for which there exists some n ≤ x − k such that d(n + 1) =
d(n+ 2) = · · · = d(n+ k). Unfortunately, they did not obtain any non-trivial bounds.

Over the years, multiple people have investigated whether d(n) = d(n+ k) for infinitely
many values of n for a given k. Spiro [18] proved this statement for k = 5040. Heath-Brown
[11] then solved the k = 1 case. Finally, Pinner [15] showed that d(n) = d(n + k) has
infinitely many solutions for all k. (For further discussion of this problem, see Guy [9, §B18].
For bounds on the number of solutions to the equation d(n) = d(n + 1) with n ≤ x, see
Erdős, Pomerance, and Sárközy [5] and Hildebrand [12].)
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Schinzel’s hypothesis H implies that d(n + 1) = d(n + 2) = · · · = d(n + k) has infinitely
many solutions for all k. However, there is no unconditional proof of this result. Last year,
Letsko found a solution to this equation with k = 20, which implies that F (x) ≥ 20 for all
sufficiently large x. (For examples of runs of integers with the same number of divisors, see
A006558.)

Spătaru [17] recently made the first substantial improvement on Erdős and Mirsky’s
original question. (From here on, logk is the kth iterate of the logarithm.)

Theorem 1. As x → ∞, we have

F (x) = exp(O( 3
√

log x log2 x)).

In this note, we derive an alternate proof of Theorem 1, which we independently obtained
before Spătaru [17] appeared in print. Later on, we derive a substantially stronger conditional
bound.

We also consider a related function. Let G(x) be the largest k for which the inequality
d(n+1) ≥ d(n+2) ≥ · · · ≥ d(n+ k) holds for some n ≤ x− k. (The bounds we obtain also
hold for increasing, decreasing, and non-decreasing sequences.) We modify Spătaru’s proof
to bound G(x) as well.

Theorem 2. We have

G(x) = exp(O(
√

log x log2 x)).

We can generalize these functions. For a given arithmetic function f , let Ff (x) (resp.,
Gf (x)) be the largest k for which f(n+1), f(n+2), . . . , f(n+k) is constant (resp., decreasing).
Note that Ff (x) ≤ Gf (x) for all f, x. Pollack, Pomerance, and Treviño [16] showed that
Fϕ(x) ∼ log3 x/ log6 x, where ϕ is the totient function. (For recent research on the equation
ϕ(n) = ϕ(n + 1), see Bayless and Kinlaw [2] or Kinlaw, Kobayashi, and Pomerance [13].
Though Erdős [3] conjectured that ϕ(n+1) = ϕ(n+2) = · · · = ϕ(n+k) has infinitely many
solutions for all k, the only known solution to ϕ(n + 1) = ϕ(n + 2) = ϕ(n + 3) is n = 5185
[14]. For the non-consecutive case, see Tao [19].)

Let ω(n) (resp., Ω(n)) be the number of distinct (resp., not necessarily distinct) prime
factors of n. Erdős, Pomerance, and Sárközy [6, Thm. 5] proved that

Fω(x) ≤ exp((1/
√
2 + o(1))

√

log x log2 x)

and
FΩ(x) ≤ exp((

√

log 2 + o(1))
√

log x)

using a variation of the arguments that we use here. They also bounded the largest k for
which there exists a number n ≤ x − k such that ω(n + 1), , . . . , ω(n + k) (resp., Ω(n +
1), . . . ,Ω(n+ k)) are all distinct.

Erdős [3] also conjectured that Fσ(x) → ∞ as x → ∞ as well, where σ is the sum-of-
divisors function. A slight modification to Pollack et al.’s argument implies that Fσ(x) ≪
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log3 x/ log6 x. Weingartner [21] proved that σ(n) = σ(n+k) has infinitely many solutions for
all even k, conditional on Schinzel’s hypothesis H. He also showed that if k ≤ 1010

7

is even,
then σ(n) = σ(n+ k) has infinitely many solutions unconditionally. (For further discussion
of the equation σ(n) = σ(n+ 1), see Guy [9, §B13].) By modifying our proof of Theorem 1,
we derive an alternate proof of the following result.

Theorem 3. We have

Fσ(x) = exp(O(
√

log x log2 x)).

Let s be the sum-of-proper-divisors function. Surprisingly, we can prove a much stronger
upper bound on Fs(x).

Theorem 4. For all x, we have Fs(x) ≤ 5. In other words, the equation s(n+1) = s(n+2) =
· · · = s(n+ 6) has no solutions.

Though we are unaware of any papers on the equation s(n) = s(n + 1), there is a
MathOverflow post [8] on this problem. Frank asked whether n = 2 is the only solution to
s(n) = s(n+1). Poonen then responded that there are no other solutions up to 1016. (Note
that s(n) = s(n + 1) is equivalent to the statement σ(n) + σ(1) = σ(n + 1). Guy [9, §B15]
discusses the more general equation σ(m) + σ(n) = σ(m+ n).)

Finally, we prove the following upper bound for the Carmichael λ function. We define
λ(n) as the smallest integer m such that am ≡ 1 (mod n) for all a coprime to n.

Theorem 5. We have Fλ(x) ≪ (log x log2 x)
2.

2 The divisor function

In this section, we prove our main result. From here on, we let vp(m) be the order of p in
m, i.e., the largest a for which pa|m. For a given x, let k = F (x) and K = log k/ log 2. By
assumption, there exists some n ≤ x − k such that d(n + 1) = d(n + 2) = · · · = d(n + k).
Let D = d(n+ i) for all i ≤ k. Spătaru [17] proved the following result.

Lemma 6. The number D is a multiple of every prime ≤ K.

Using the prime factorization of D, we can bound F (x) from above.

Proof of Theorem 1. Recall that we wish to show that as x → ∞, we have

F (x) = exp(O( 3
√

log x log2 x)).

We may assume that k > exp(C 3
√

log x log2 x) for some positive constant C.
Fix ǫ < 1− (log 2/ log 3) and let S be the set of primes in ((1− ǫ)K,K]. Let q1, q2, and

q3 be three distinct elements of S. For all i, we have q1q2q3|d(n + i) by Lemma 6. Because
d(pa11 · · · parr ) = (a1 + 1) · · · (ar + 1), there are three possibilities:
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1. We have vp(n+ i) = aq1q2q3 − 1 for some prime p and positive a,

2. We have vp1(n + i) = a1q1q2 − 1 and vp2(n + i) = a2q3 − 1 for some prime p1, p2 and
positive a1, a2,

3. We have vpj(n + i) = ajqj − 1 for all j ≤ 3, where each pj is prime and each aj is
positive.

Suppose n+ i satisfies Condition (1) for some q1, q2, q3 ∈ S. Then, we can bound p from
above. In this case, we have

x ≥ paq1q2q3−1

≥ 2q1q2q3−1

≥ 2(1−ǫ)3K3−1

≥ 2((1−ǫ)C/ log 2)3 log x log2 x−1

≥ x(1+o(1))((1−ǫ)C)3/(log 2)2 log2 x.

However, this is impossible for x sufficiently large. Therefore, n + i does not satisfy (1) for
q1, q2, q3 ∈ S.

Let r = #S. Fix i ≤ k. Because n + i does not satisfy (1), it is possible to partition S
into two disjoint subsets S1 and S2 with the following properties. Let S1 = {q1, q2, . . . , q#S1

}
and S2 = {q#S1+1, . . . , qr}. We may write

⌊#S1/2⌋
∏

j=1

p
ajq2j−1q2j−1
j

r
∏

j=#S1+1

p
ajqj−1
j |n+ i,

where each pj is prime and each aj is a positive integer. Note that each exponent is ≥
⌊(1 − ǫ)K⌋ − 1 and that there are at least r/2 distinct prime factors in the product above.
Hence, n+ i ≥ (pi,1pi,2 · · · pi,⌊r/2⌋)⌊(1−ǫ)K⌋−1 for some primes pi,1, pi,2, . . . , pi,⌊r/2⌋.

From here on, we assume that n+ i and n+ j are both odd. We can show that pi,a 6= pj,b
for all a and b. For every odd prime p, we have

p⌊(1−ǫ)K⌋−1 ≥ 3(((1−ǫ)/ log 2) log k)−2 = (1/9)k(1−ǫ)(log 3)/ log 2.

However, this quantity is greater than k when k is sufficiently large. So, p⌊(1−ǫ)K⌋−1 cannot
divide both n+ i and n+ j for distinct i and j.

If we multiply all of these n+ i together, we obtain a multiple of

(

∏

i:n+i is odd
m≤r/2

pi,m

)⌊(1−ǫ)K⌋−1

.
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Let pm be the mth prime and let

θ(x) =
∑

p≤x

log p.

De la Vallée Poussin [20, p. 54] showed that |π(x)−Li(x)| and |θ(x)−x| are bothO(x exp(−c
√
log x))

for some positive constant c. Therefore,

xk > (n+ 1)(n+ 2) · · · (n+ k) ≥ (p1p2 · · · pC1rk)
⌊(1−ǫ)K⌋−1 = exp ((C2 + o(1))rkK log(rk))

for some positive constants C1, C2. So, we have

rkK log(rk) ≪ log(xk) = k log x,

which implies that
rK log(rk) ≪ log x.

Recall that K ≍ log k and r ≍ log k/ log log k. Therefore, we have

k = exp(O( 3
√

log x log log x)).

3 Decreasing sequences

Rather than considering sequences for which d(n+ i) is constant, we can consider sequences
for which it is increasing or decreasing. Pollack et al. found a precise asymptotic formula for
the analogous problem for the totient function.

Theorem 7 ([16, Thm. 1.5]). The largest k for which there exists some n ≤ x− k such that

ϕ(n+ 1) ≥ ϕ(n+ 2) ≥ · · · ≥ ϕ(n+ k) is asymptotic to log3 x/ log6 x.

We modify their argument to obtain an upper bound for the divisor function. To do so,
we make use of the following result of Spătaru.

Lemma 8 ([17, Lemma 4.2]). Let n be an integer with smallest prime factor p. Then,

log n

log p
≥
∑

q

(q − 1)vq(d(n)).

Rather than using this lemma directly, we rewrite the righthand side using the following
result.

Corollary 9. For all m, we have

∑

q

(q − 1)vq(m) ≥ logm

log 2
.
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Proof. By definition, m is the product of qvq(m) over all q. Therefore, we have

logm =
∑

q

(log q)vq(m),

which implies that

1

logm

∑

q

(q − 1)vq(m) =

(

∑

q

(q − 1)vq(m)

)(

∑

q

(log q)vq(m)

)−1

.

Let

M = min
q|m

(q − 1

log q

)

.

Then, we have

∑

q

(q − 1)vq(m) ≥
∑

q

M(log q)vq(m) = M
∑

q

(log q)vq(m),

giving us
1

logm

∑

q

(q − 1)vq(m) ≥ M ≥ 1

log 2
.

Recall that G(x) is the largest k for which there exists some n ≤ x − k such that
d(n+ 1) ≥ d(n+ 2) ≥ · · · ≥ d(n+ k).

Proof of Theorem 2. A classic theorem [10, Thm. 317] states that there exists some m ≤ k/2
such that

d(m) = 2(1+o(1)) log(k/2)/ log2(k/2) = 2(1+o(1)) log k/ log2 k.

Let n+ k = am+ b with 0 < b < m. Note that k − b > k/2 because m ≤ k/2. Consider the
subsequence n+1, n+2, . . . , n+(k−b). By assumption, m|n+(k−b). So d(m) ≤ d(n+k−b),
which implies that d(m) ≤ d(n+ i) for all i ≤ k − b. So,

d(n+ i) ≥ exp

(

(log 2 + o(1))
log k

log2 k

)

for all i ≤ k − b.
Spătaru [17, §4] also observed that in a sequence of k − b consecutive numbers, at least

one of those numbers consists entirely of prime factors p satisfying log p ≫ log(k−b) ≫ log k.
Select i ≤ k− b so that n+ i satisfies this property. The previous lemma and corollary imply
that

log x

log k
≥ log(n+ i)

log k
≫
∑

q

(q − 1)vq(d(n+ i)) ≫ log d(n+ i) ≫ log k

log2 k
.

From this inequality, we obtain (log k)2/ log2 k ≪ log x, giving us our desired bound.
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The function G(x) has a much stronger conditional bound. Suppose the sequence n +
1, n+ 2, . . . , n+ k contains two primes n+ i, n+ j > 3. Then, d(n+ i) = d(n+ j) = 2, but
d(n + k) > 2 for every k ∈ (i, j) with n + k composite. Therefore, G(x) is at most as large
as the largest gap between two consecutive primes ≤ x. Cramér’s conjecture states that this
gap is O((log x)2). Assuming this conjecture, G(x) = O((log x)2) as well. (Unfortunately,
the best unconditional upper bound on the gap between two consecutive primes ≤ x is
x0.525+o(1) [1]. The best lower bound is ≫ log x log2 x log4 x/ log3 x [7].)

4 Sums of divisors

Let Fσ(x) be the largest k for which there exists some n ≤ x − k such that σ(n + 1) =
σ(n+ 2) = · · · = σ(n+ k). By modifying the techniques of Section 2, we bound Fσ(x) from
above. Let T = σ(n+ 1) = · · · = σ(n+ k). Once again, we let K = log k/ log 2.

Lemma 10. We have

T ≥
∏

p≤K

(2p − 1).

Proof. Let p ≤ K. Because 2p ≤ k, there exists some i ≤ k such that n + i ≡ 2p−1 (mod
2p). For this particular i, we have σ(2p−1) = 2p − 1|σ(n+ i). Therefore, 2p − 1|T as well. In
particular, 2p − 1|T for all p ≤ K. However, if p and q are distinct primes, then 2p − 1 and
2q − 1 are relatively prime. Therefore, T is a multiple of

∏

p≤K

(2p − 1).

Proof of Theorem 3. By the previous lemma, there exists a constant C such that

T ≥
∏

p≤K

Cp = exp

(

(logC)
∑

p≤K

p

)

= exp

(

(1 + o(1))
logC

2

K2

logK

)

.

However, Mertens’ theorem implies that T = σ(n+ i) ≪ x log log x. Hence,

K2

logK
≪ log T ≪ log x,

which implies that
log k ≪ K ≪

√

log x log2 x.

If we replace σ with the sum-of-proper-divisors function s(n), we get a completely different
result. To prove this result, we use the following fact about σ.

Lemma 11. The quantity σ(n) is odd if and only if n = m2 or n = 2m2 for some m.

7



Proof. Suppose σ(n) is odd. By definition,

σ(n) =
∏

p

(1 + p+ p2 + · · ·+ pvp(n)).

] If p and vp(n) are both odd, then 1 + p+ p2 + · · · + pvp(n) is even because it is the sum of
an even number of odd terms. Because σ(n) is odd, vp(n) must be even for all odd p. So,
n = m2 or 2m2, depending on the parity of v2(n).

We now prove the converse. If vp(n) is even for all odd p, then

∏

p>2

(1 + p+ · · ·+ pvp(n))

is odd. In addition, 1+2+ · · ·+2v2(n) is always odd because every term except 1 is even.

Proof of Theorem 4. Suppose that s(n+ 1) = s(n+ 2) = · · · = s(n+ 6) for some integer n.
Let S = s(n+ i) for all i ≤ 6. Suppose S is even. Choose i ≤ 2 so that n+ i is odd. Because
s(n + i) is even, we have that σ(n + i) is odd, which implies that n + i is a square. By a
similar argument, the number n + i + 2 is also a square, which is impossible. Therefore, S
is odd.

The sequence n+ 1, n+ 2, . . . , n+ 6 contains three even numbers m, m+ 2, and m+ 4.
Because s(m), s(m+ 2), and s(m+ 4) are odd, the numbers σ(m), σ(m+ 2), and σ(m+ 4)
must all be odd as well. There are two possibilities. Either two elements of {m,m+2,m+4}
are squares or two of them are double a square. However, the difference between two positive
squares cannot be 2 or 4. If two elements of {m,m+2,m+4} have the form 2r2 for some r,
then two elements of {m/2, (m/2) + 1, (m/2) + 2} are squares. But the difference between
two positive squares cannot be 1 or 2, giving us a contradiction.

5 The Carmichael function

Let λ be the Carmichael function. Though λ is an arithmetic function, it is neither additive
nor multiplicative. Instead, for a given number n = pa11 · · · parr , we have

λ(n) = lcm(λ(pa11 ), . . . , λ(parr )).

Let pa be a prime power. Then,

λ(pa) =

{

ϕ(pa)/2, if p = 2 and a ≥ 3;

ϕ(pa), otherwise.

We prove an upper bound on Fλ in a matter analogous to our previous functions.
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Proof of Theorem 5. Let L = λ(n+1) = · · · = λ(n+ k). We bound L from above. For each
prime p, there exists an i ≤ k such that p⌊log k/ log p⌋|n+ i. For this i, we have

p⌊log k/ log p⌋−1|λ(n+ i) = L.

Hence, we have

L ≥ 1

2

∏

p≤
√
k

p⌊
log k

log p
⌋−1 ≫

∏

p≤
√
k

p
log k

log p
−2 =

∏

p≤
√
k

k

p2
.

We now bound the numerator and denominator in our product. We have

∏

p≤
√
k

k = kπ(
√
k) = exp((log k)π(

√
k)) = exp

(

2
√
k + (4 + o(1))

√
k

log k

)

and
∏

p≤
√
k

p2 = exp

(

2
∑

p≤
√
k

log p

)

≤ exp

(

2
√
k + o

(

√
k

log k

))

.

Therefore, we have

L ≥ exp

(

(4 + o(1))

√
k

log k

)

.

However, we have L ≤ x because λ(n + i) ≤ n + i for all i. So,
√
k/ log k ≪ log x, which

implies that k ≪ (log x log2 x)
2.
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