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Abstract

We bound from above the length of the longest sequence of consecutive numbers less
than or equal to z with the same number of divisors. We also bound the length of the
longest sequence of consecutive numbers less than or equal to = for which the number
of divisors is decreasing. Finally, we consider variants of this problem such as the
corresponding sequences for the sum-of-proper-divisors function and the Carmichael
function. In particular, we show that it is impossible for the sum-of-proper-divisors
function to be equal on six consecutive integers.

1 Introduction

Let d(n) be the number of divisors of n. In 1952, Erdés and Mirsky [4] defined the function
F(z) as the largest number k for which there exists some n < x — k such that d(n + 1) =
d(n+2) =---=d(n+ k). Unfortunately, they did not obtain any non-trivial bounds.
Over the years, multiple people have investigated whether d(n) = d(n + k) for infinitely
many values of n for a given k. Spiro [18] proved this statement for k£ = 5040. Heath-Brown
[11] then solved the k = 1 case. Finally, Pinner [15] showed that d(n) = d(n + k) has
infinitely many solutions for all k. (For further discussion of this problem, see Guy [9, §B18].
For bounds on the number of solutions to the equation d(n) = d(n + 1) with n < x, see
Erdés, Pomerance, and Sarkézy [5] and Hildebrand [12].)
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Schinzel’s hypothesis H implies that d(n + 1) = d(n + 2) = --- = d(n + k) has infinitely
many solutions for all k. However, there is no unconditional proof of this result. Last year,
Letsko found a solution to this equation with & = 20, which implies that F(x) > 20 for all
sufficiently large x. (For examples of runs of integers with the same number of divisors, see
A006558.)

Spataru [17] recently made the first substantial improvement on Erdés and Mirsky’s
original question. (From here on, log, is the kth iterate of the logarithm.)

Theorem 1. As x — oo, we have

F(z) = exp(O(y/log xlog, x)).

In this note, we derive an alternate proof of Theorem 1, which we independently obtained
before Spataru [17] appeared in print. Later on, we derive a substantially stronger conditional
bound.

We also consider a related function. Let G(x) be the largest k for which the inequality
dn+1)>d(n+2)>--->d(n+k) holds for some n <z — k. (The bounds we obtain also
hold for increasing, decreasing, and non-decreasing sequences.) We modify Spataru’s proof
to bound G(z) as well.

Theorem 2. We have

G(z) = exp(O(y/log x log, )).

We can generalize these functions. For a given arithmetic function f, let Fy(z) (resp.,
Gy (z)) be the largest k for which f(n+1), f(n+2),..., f(n+k) is constant (resp., decreasing).
Note that Fy(z) < Gg(x) for all f,z. Pollack, Pomerance, and Trevifio [16] showed that
F,(x) ~ logs x/logg x, where ¢ is the totient function. (For recent research on the equation
o(n) = ¢(n + 1), see Bayless and Kinlaw [2] or Kinlaw, Kobayashi, and Pomerance [13].
Though Erd6s [3] conjectured that ¢(n+1) = ¢(n+2) = - -+ = p(n+ k) has infinitely many
solutions for all k, the only known solution to p(n + 1) = ¢(n + 2) = ¢(n + 3) is n = 5185
[14]. For the non-consecutive case, see Tao [19].)

Let w(n) (resp., 2(n)) be the number of distinct (resp., not necessarily distinct) prime
factors of n. Erdés, Pomerance, and Sarkézy [6, Thm. 5] proved that

Fu(z) < exp((1/v2 4 o(1))y/log z log, x)

and
Fo(z) < exp((y/log2 + o(1))4/log z)

using a variation of the arguments that we use here. They also bounded the largest k for
which there exists a number n < x — k such that w(n + 1),,...,w(n + k) (resp., Q(n +
1),...,Q(n+k)) are all distinct.

Erdés [3] also conjectured that F,(x) — oo as @ — oo as well, where o is the sum-of-
divisors function. A slight modification to Pollack et al.’s argument implies that F,(z) <
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log, x/logg . Weingartner [21] proved that o(n) = o(n+ k) has infinitely many solutions for
all even k, conditional on Schinzel’s hypothesis H. He also showed that if £ < 10107 is even,
then o(n) = o(n + k) has infinitely many solutions unconditionally. (For further discussion
of the equation o(n) = o(n + 1), see Guy [9, §B13].) By modifying our proof of Theorem 1,
we derive an alternate proof of the following result.

Theorem 3. We have

F,(z) = exp(O(+/log x log, )).

Let s be the sum-of-proper-divisors function. Surprisingly, we can prove a much stronger
upper bound on Fy(z).

Theorem 4. For all x, we have Fy(x) < 5. In other words, the equation s(n+1) = s(n+2) =
.-+ = 8(n+6) has no solutions.

Though we are unaware of any papers on the equation s(n) = s(n + 1), there is a
MathOverflow post [8] on this problem. Frank asked whether n = 2 is the only solution to
s(n) = s(n+1). Poonen then responded that there are no other solutions up to 10'¢. (Note
that s(n) = s(n + 1) is equivalent to the statement o(n) + o(1) = o(n + 1). Guy [9, §B15]
discusses the more general equation o(m) + o(n) = o(m +n).)

Finally, we prove the following upper bound for the Carmichael A function. We define
A(n) as the smallest integer m such that ¢™ =1 (mod n) for all a coprime to n.

Theorem 5. We have F\(z) < (log x log, x)?.

2 The divisor function

In this section, we prove our main result. From here on, we let v,(m) be the order of p in
m, i.e., the largest a for which p*|m. For a given z, let k = F(z) and K = logk/log2. By
assumption, there exists some n < x — k such that din+1) =d(n+2) =--- =d(n+ k).
Let D = d(n+ 1) for all ¢« < k. Spataru [17] proved the following result.

Lemma 6. The number D is a multiple of every prime < K.
Using the prime factorization of D, we can bound F(z) from above.

Proof of Theorem 1. Recall that we wish to show that as z — oo, we have

F(z) = exp(O(y/log x1log, 7)).

We may assume that k > exp(C'{/log xlog, x) for some positive constant C'.

Fix e <1 — (log2/log3) and let S be the set of primes in ((1 — €)K, K|. Let ¢, g2, and
g3 be three distinct elements of S. For all i, we have ¢1q2q3|d(n + i) by Lemma 6. Because
d(pi*---p?) =(ay +1)---(a, + 1), there are three possibilities:



1. We have v,(n + i) = aqi1g2qg3 — 1 for some prime p and positive a,

2. We have vy, (n + 1) = a1q1g2 — 1 and v,,(n + i) = asqs — 1 for some prime py, po and
positive ay, as,

3. We have v, (n + i) = a;q; — 1 for all j < 3, where each p; is prime and each a; is
positive.

Suppose n + i satisfies Condition (1) for some ¢y, ¢2,q3 € S. Then, we can bound p from
above. In this case, we have

x> paqwm?ﬁl

> 94142q3—1
> 2(1—6)31{3—1
> 2((1—6)6’/ log 2)3 log x logy z—1

> 2 (1Ho(M)((1-€)C)?/(log 2)* logz =

However, this is impossible for x sufficiently large. Therefore, n + i does not satisfy (1) for
q1,q2,43 € S.

Let r = #S. Fix i < k. Because n + ¢ does not satisfy (1), it is possible to partition S
into two disjoint subsets &; and Sy with the following properties. Let Sy = {q1, 2, - - ., qus, }
and Sy = {qus,+1,- - -, ¢ }. We may write

[#S51/2]

r

ajqe;—1q2;—1 a;jq;—1 ;
H p] H p] |TL + L,
Jj=1 J=#S1+1

where each p; is prime and each a; is a positive integer. Note that each exponent is >
(1 —¢€)K| — 1 and that there are at least r/2 distinct prime factors in the product above.
Hence, n 41 > (pi1pi2 - - -pi,Lr/zj)L(lfﬁ)KJ’l for some primes p; 1, Di2, - -, Pi|r/2)-

From here on, we assume that n+4 and n+ j are both odd. We can show that p; , # p;;
for all @ and b. For every odd prime p, we have

pL(lfe)Kjfl > 3(((176)/log2) logk)—2 _ (1/9)k(176)(10g3)/10g2.

1=O)K]=1 cannot

However, this quantity is greater than k& when k is sufficiently large. So, pl(
divide both n 44 and n + j for distinct ¢ and j.

If we multiply all of these n + ¢ together, we obtain a multiple of

[(I—e) K] -1

i:n-+1 is odd
m<r/2



Let p,, be the mth prime and let

O(x) = Z log p.

p<w

De la Vallée Poussin [20, p. 54] showed that |7 (x)—Li(z)| and |0(x)—z| are both O(z exp(—cy/log x))
for some positive constant c. Therefore,

2>+ Dn+2) - (n+k)> (s poyr) T = exp ((Cy + o(1)) kK log(rk))
for some positive constants C7, Cy. So, we have
rkK log(rk) < log(z*) = klogz,

which implies that
rKlog(rk) < log .

Recall that K =< logk and r < log k/loglog k. Therefore, we have

k = exp(O(+/log zloglog x)). O

3 Decreasing sequences

Rather than considering sequences for which d(n + ) is constant, we can consider sequences
for which it is increasing or decreasing. Pollack et al. found a precise asymptotic formula for
the analogous problem for the totient function.

Theorem 7 ([16, Thm. 1.5]). The largest k for which there exists some n < x —k such that
en+1) > pn+2)>--- > pn+ k) is asymptotic to logs x/logg x.

We modify their argument to obtain an upper bound for the divisor function. To do so,
we make use of the following result of Spataru.

Lemma 8 ([17, Lemma 4.2]). Let n be an integer with smallest prime factor p. Then,

Rather than using this lemma directly, we rewrite the righthand side using the following
result.

Corollary 9. For all m, we have




Proof. By definition, m is the product of ¢“«(™) over all gq. Therefore, we have
logm = Z(log q)vg(m),
q

which implies that

1

Tog zq:(q — Dug(m) = (Z(q — 1)vq(m)) (Z(log q)vq(m)> 71.

q q

Let

Then, we have

q q q
giving us
1 1
-1 > M . [l
10gm ;(q )UQ(m) - - 10g2

Recall that G(x) is the largest k for which there exists some n < x — k such that
dn+1)>dn+2)>--->dn+k).

Proof of Theorem 2. A classic theorem [10, Thm. 317] states that there exists some m < k/2

such that
d(m) = 9(1+o(1)) log(k/2)/ logy(k/2) _ o(1+0(1))logk/logy k

Let n+k = am+ b with 0 < b < m. Note that k —b > k/2 because m < k/2. Consider the
subsequence n+1,n+2,...,n+(k—0b). By assumption, m|n+(k—>b). So d(m) < d(n+k—0),
which implies that d(m) < d(n + i) for all i < k — b. So,

log k
d(n+i) > exp<(1og2 + 0(1))1552 k)
for all 1 < k —b.
Spataru [17, §4] also observed that in a sequence of k — b consecutive numbers, at least
one of those numbers consists entirely of prime factors p satisfying log p > log(k—b) > log k.

Select 1 < k — b so that n+ i satisfies this property. The previous lemma and corollary imply

that
log x < log(n + 1) log k

logk = logk

> (g = D)v(d(n + 1)) > logd(n + i) > g b
q

From this inequality, we obtain (log k)?/log, k < log z, giving us our desired bound. O
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The function G(x) has a much stronger conditional bound. Suppose the sequence n +
1,nm+2,...,n+ k contains two primes n + i,n + j > 3. Then, d(n +1i) =d(n + j) = 2, but
d(n + k) > 2 for every k € (i,7) with n + k composite. Therefore, G(z) is at most as large
as the largest gap between two consecutive primes < x. Cramér’s conjecture states that this
gap is O((logx)?). Assuming this conjecture, G(z) = O((logx)?) as well. (Unfortunately,
the best unconditional upper bound on the gap between two consecutive primes < x is
29-525+0() (1], The best lower bound is > log z log, = log, =/ logs = [7].)

4 Sums of divisors

Let F,(x) be the largest k for which there exists some n < x — k such that o(n + 1) =
o(n+2)=---=o0(n+k). By modifying the techniques of Section 2, we bound F,(z) from
above. Let T'=o0(n+1) =--- = o(n+ k). Once again, we let K = logk/log?2.

Lemma 10. We have

7> ][ -1.

p<K

Proof. Let p < K. Because 2P < k, there exists some ¢ < k such that n +i = 2P~} (mod
2P). For this particular i, we have o(2°') = 27 — 1|o(n + ). Therefore, 27 — 1|T as well. In
particular, 2?7 — 1|T for all p < K. However, if p and ¢ are distinct primes, then 2?7 — 1 and
29 — 1 are relatively prime. Therefore, T" is a multiple of

[Je-1. 0

p<K

Proof of Theorem 3. By the previous lemma, there exists a constant C' such that

T> H CP = exp((log ) Zp) = exp ((1 + 0(1))102010[;[().

p<K p<K

However, Mertens’ theorem implies that T'= o(n + i) < xloglog x. Hence,

2

log K

< logT < logz,

which implies that

logh < K < +/logxlog, x. O

If we replace o with the sum-of-proper-divisors function s(n), we get a completely different
result. To prove this result, we use the following fact about o.

2

Lemma 11. The quantity o(n) is odd if and only if n = m? or n = 2m? for some m.



Proof. Suppose o(n) is odd. By definition,

on)=[JA+p+p+-- +p>™).
p

] If p and v,(n) are both odd, then 1+ p+ p? + - -+ + p™ is even because it is the sum of
an even number of odd terms. Because o(n) is odd, v,(n) must be even for all odd p. So,
n =m? or 2m?, depending on the parity of vs(n).

We now prove the converse. If v,(n) is even for all odd p, then

H(l +p+.,,+pvp(n))

p>2

is odd. In addition, 142+ --+2"(™ is always odd because every term except 1 is even. [J

Proof of Theorem 4. Suppose that s(n+ 1) = s(n +2) = --- = s(n + 6) for some integer n.
Let S = s(n+1) for all i < 6. Suppose S is even. Choose ¢ < 2 so that n+1 is odd. Because
s(n +1) is even, we have that o(n + i) is odd, which implies that n + ¢ is a square. By a
similar argument, the number n + i + 2 is also a square, which is impossible. Therefore, S
is odd.

The sequence n 4+ 1,n + 2,...,n + 6 contains three even numbers m, m + 2, and m + 4.
Because s(m), s(m +2), and s(m + 4) are odd, the numbers o(m), o(m + 2), and o(m + 4)
must all be odd as well. There are two possibilities. Either two elements of {m,m+2, m+4}
are squares or two of them are double a square. However, the difference between two positive
squares cannot be 2 or 4. If two elements of {m, m + 2, m + 4} have the form 2r? for some r,
then two elements of {m/2,(m/2) + 1,(m/2) + 2} are squares. But the difference between
two positive squares cannot be 1 or 2, giving us a contradiction. ]

5 The Carmichael function

Let A be the Carmichael function. Though A is an arithmetic function, it is neither additive
nor multiplicative. Instead, for a given number n = p{* - - - p?, we have

A(n) = lem(A(py!), .., A(py7))-
Let p* be a prime power. Then,

u p*)/2, ifp=2anda>3;
A(p):{ﬂ )/

o(p*), otherwise.

We prove an upper bound on F) in a matter analogous to our previous functions.



Proof of Theorem 5. Let L= A(n+1)=---= A(n+ k). We bound L from above. For each
prime p, there exists an i < k such that pl°e#/1°¢Pl|pn 4. For this i, we have

pUng/logPJ_lM(n +1i)=L.

Hence, we have

log k k
> — H leong 1 > H plogp = H E
p<\f p<Vk p<Vk

We now bound the numerator and denominator in our product. We have

1ofk>

H k= k"V® = exp((log k)m(Vk)) = exp <2\/E + (4 +0o(1))

p<Vk

and

I ( 5 ) < exp(2vi o )

p<Vk

Therefore, we have

L> exp((4 + 0(1))1()@) .

However, we have L < 2 because A(n +i) < n +i for all i. So, vk/logk < logz, which
implies that k < (log z log, ). O
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