Arithmetic Functions that Remain Constant on Runs of Consecutive Integers

Noah Lebowitz-Lockard and Joseph Vandehey
Department of Mathematics
University of Texas at Tyler
Tyler, TX 75799
USA
nlebowitzlockard@uttyler.edu
jvandehey@uttyler.edu

Abstract

We bound from above the length of the longest sequence of consecutive numbers less than or equal to x with the same number of divisors. We also bound the length of the longest sequence of consecutive numbers less than or equal to x for which the number of divisors is decreasing. Finally, we consider variants of this problem such as the corresponding sequences for the sum-of-proper-divisors function and the Carmichael function. In particular, we show that it is impossible for the sum-of-proper-divisors function to be equal on six consecutive integers.

1 Introduction

Let $d(n)$ be the number of divisors of n. In 1952, Erdős and Mirsky [4] defined the function $F(x)$ as the largest number k for which there exists some $n \leq x-k$ such that $d(n+1)=$ $d(n+2)=\cdots=d(n+k)$. Unfortunately, they did not obtain any non-trivial bounds.

Over the years, multiple people have investigated whether $d(n)=d(n+k)$ for infinitely many values of n for a given k. Spiro [18] proved this statement for $k=5040$. Heath-Brown [11] then solved the $k=1$ case. Finally, Pinner [15] showed that $d(n)=d(n+k)$ has infinitely many solutions for all k. (For further discussion of this problem, see Guy [9, §B18]. For bounds on the number of solutions to the equation $d(n)=d(n+1)$ with $n \leq x$, see Erdős, Pomerance, and Sárközy [5] and Hildebrand [12].)

Schinzel's hypothesis H implies that $d(n+1)=d(n+2)=\cdots=d(n+k)$ has infinitely many solutions for all k. However, there is no unconditional proof of this result. Last year, Letsko found a solution to this equation with $k=20$, which implies that $F(x) \geq 20$ for all sufficiently large x. (For examples of runs of integers with the same number of divisors, see A006558.)

Spătaru [17] recently made the first substantial improvement on Erdős and Mirsky's original question. (From here on, $\log _{k}$ is the k th iterate of the logarithm.)

Theorem 1. As $x \rightarrow \infty$, we have

$$
F(x)=\exp \left(O\left(\sqrt[3]{\log x \log _{2} x}\right)\right)
$$

In this note, we derive an alternate proof of Theorem 1, which we independently obtained before Spătaru [17] appeared in print. Later on, we derive a substantially stronger conditional bound.

We also consider a related function. Let $G(x)$ be the largest k for which the inequality $d(n+1) \geq d(n+2) \geq \cdots \geq d(n+k)$ holds for some $n \leq x-k$. (The bounds we obtain also hold for increasing, decreasing, and non-decreasing sequences.) We modify Spătaru's proof to bound $G(x)$ as well.

Theorem 2. We have

$$
G(x)=\exp \left(O\left(\sqrt{\log x \log _{2} x}\right)\right)
$$

We can generalize these functions. For a given arithmetic function f, let $F_{f}(x)$ (resp., $\left.G_{f}(x)\right)$ be the largest k for which $f(n+1), f(n+2), \ldots, f(n+k)$ is constant (resp., decreasing). Note that $F_{f}(x) \leq G_{f}(x)$ for all f, x. Pollack, Pomerance, and Treviño [16] showed that $F_{\varphi}(x) \sim \log _{3} x / \log _{6} x$, where φ is the totient function. (For recent research on the equation $\varphi(n)=\varphi(n+1)$, see Bayless and Kinlaw [2] or Kinlaw, Kobayashi, and Pomerance [13]. Though Erdős [3] conjectured that $\varphi(n+1)=\varphi(n+2)=\cdots=\varphi(n+k)$ has infinitely many solutions for all k, the only known solution to $\varphi(n+1)=\varphi(n+2)=\varphi(n+3)$ is $n=5185$ [14]. For the non-consecutive case, see Tao [19].)

Let $\omega(n)$ (resp., $\Omega(n)$) be the number of distinct (resp., not necessarily distinct) prime factors of n. Erdős, Pomerance, and Sárközy [6, Thm. 5] proved that

$$
F_{\omega}(x) \leq \exp \left((1 / \sqrt{2}+o(1)) \sqrt{\log x \log _{2} x}\right)
$$

and

$$
F_{\Omega}(x) \leq \exp ((\sqrt{\log 2}+o(1)) \sqrt{\log x})
$$

using a variation of the arguments that we use here. They also bounded the largest k for which there exists a number $n \leq x-k$ such that $\omega(n+1), \ldots, \omega(n+k)$ (resp., $\Omega(n+$ 1), $\ldots, \Omega(n+k))$ are all distinct.

Erdős [3] also conjectured that $F_{\sigma}(x) \rightarrow \infty$ as $x \rightarrow \infty$ as well, where σ is the sum-ofdivisors function. A slight modification to Pollack et al.'s argument implies that $F_{\sigma}(x) \ll$
$\log _{3} x / \log _{6} x$. Weingartner [21] proved that $\sigma(n)=\sigma(n+k)$ has infinitely many solutions for all even k, conditional on Schinzel's hypothesis H. He also showed that if $k \leq 10^{10^{7}}$ is even, then $\sigma(n)=\sigma(n+k)$ has infinitely many solutions unconditionally. (For further discussion of the equation $\sigma(n)=\sigma(n+1)$, see Guy [9, §B13].) By modifying our proof of Theorem 1, we derive an alternate proof of the following result.

Theorem 3. We have

$$
F_{\sigma}(x)=\exp \left(O\left(\sqrt{\log x \log _{2} x}\right)\right) .
$$

Let s be the sum-of-proper-divisors function. Surprisingly, we can prove a much stronger upper bound on $F_{s}(x)$.

Theorem 4. For all x, we have $F_{s}(x) \leq 5$. In other words, the equation $s(n+1)=s(n+2)=$ $\cdots=s(n+6)$ has no solutions.

Though we are unaware of any papers on the equation $s(n)=s(n+1)$, there is a MathOverflow post [8] on this problem. Frank asked whether $n=2$ is the only solution to $s(n)=s(n+1)$. Poonen then responded that there are no other solutions up to 10^{16}. (Note that $s(n)=s(n+1)$ is equivalent to the statement $\sigma(n)+\sigma(1)=\sigma(n+1)$. Guy [9, §B15] discusses the more general equation $\sigma(m)+\sigma(n)=\sigma(m+n)$.)

Finally, we prove the following upper bound for the Carmichael λ function. We define $\lambda(n)$ as the smallest integer m such that $a^{m} \equiv 1(\bmod n)$ for all a coprime to n.

Theorem 5. We have $F_{\lambda}(x) \ll\left(\log x \log _{2} x\right)^{2}$.

2 The divisor function

In this section, we prove our main result. From here on, we let $v_{p}(m)$ be the order of p in m, i.e., the largest a for which $p^{a} \mid m$. For a given x, let $k=F(x)$ and $K=\log k / \log 2$. By assumption, there exists some $n \leq x-k$ such that $d(n+1)=d(n+2)=\cdots=d(n+k)$. Let $D=d(n+i)$ for all $i \leq k$. Spătaru [17] proved the following result.

Lemma 6. The number D is a multiple of every prime $\leq K$.
Using the prime factorization of D, we can bound $F(x)$ from above.
Proof of Theorem 1. Recall that we wish to show that as $x \rightarrow \infty$, we have

$$
F(x)=\exp \left(O\left(\sqrt[3]{\log x \log _{2} x}\right)\right)
$$

We may assume that $k>\exp \left(C \sqrt[3]{\log x \log _{2} x}\right)$ for some positive constant C.
Fix $\epsilon<1-(\log 2 / \log 3)$ and let \mathcal{S} be the set of primes in $((1-\epsilon) K, K]$. Let q_{1}, q_{2}, and q_{3} be three distinct elements of \mathcal{S}. For all i, we have $q_{1} q_{2} q_{3} \mid d(n+i)$ by Lemma 6 . Because $d\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=\left(a_{1}+1\right) \cdots\left(a_{r}+1\right)$, there are three possibilities:

1. We have $v_{p}(n+i)=a q_{1} q_{2} q_{3}-1$ for some prime p and positive a,
2. We have $v_{p_{1}}(n+i)=a_{1} q_{1} q_{2}-1$ and $v_{p_{2}}(n+i)=a_{2} q_{3}-1$ for some prime p_{1}, p_{2} and positive a_{1}, a_{2},
3. We have $v_{p_{j}}(n+i)=a_{j} q_{j}-1$ for all $j \leq 3$, where each p_{j} is prime and each a_{j} is positive.

Suppose $n+i$ satisfies Condition (1) for some $q_{1}, q_{2}, q_{3} \in \mathcal{S}$. Then, we can bound p from above. In this case, we have

$$
\begin{aligned}
x & \geq p^{a q_{1} q_{2} q_{3}-1} \\
& \geq 2^{q_{1} q_{2} q_{3}-1} \\
& \geq 2^{(1-\epsilon)^{3} K^{3}-1} \\
& \geq 2^{((1-\epsilon) C / \log 2)^{3} \log x \log _{2} x-1} \\
& \geq x^{(1+o(1))((1-\epsilon) C)^{3} /(\log 2)^{2} \log _{2} x} .
\end{aligned}
$$

However, this is impossible for x sufficiently large. Therefore, $n+i$ does not satisfy (1) for $q_{1}, q_{2}, q_{3} \in \mathcal{S}$.

Let $r=\# \mathcal{S}$. Fix $i \leq k$. Because $n+i$ does not satisfy (1), it is possible to partition \mathcal{S} into two disjoint subsets \mathcal{S}_{1} and \mathcal{S}_{2} with the following properties. Let $\mathcal{S}_{1}=\left\{q_{1}, q_{2}, \ldots, q_{\# \mathcal{S}_{1}}\right\}$ and $\mathcal{S}_{2}=\left\{q_{\# \mathcal{S}_{1}+1}, \ldots, q_{r}\right\}$. We may write

$$
\prod_{j=1}^{\left\lfloor \# \mathcal{S}_{1} / 2\right\rfloor} p_{j}^{a_{j} q_{2 j-1} q_{2 j}-1} \prod_{j=\# \mathcal{S}_{1}+1}^{r} p_{j}^{a_{j} q_{j}-1} \mid n+i
$$

where each p_{j} is prime and each a_{j} is a positive integer. Note that each exponent is \geq $\lfloor(1-\epsilon) K\rfloor-1$ and that there are at least $r / 2$ distinct prime factors in the product above. Hence, $n+i \geq\left(p_{i, 1} p_{i, 2} \cdots p_{i,\lfloor r / 2\rfloor}\right)^{\lfloor(1-\epsilon) K\rfloor-1}$ for some primes $p_{i, 1}, p_{i, 2}, \ldots, p_{i,\lfloor r / 2\rfloor}$.

From here on, we assume that $n+i$ and $n+j$ are both odd. We can show that $p_{i, a} \neq p_{j, b}$ for all a and b. For every odd prime p, we have

$$
p^{\lfloor(1-\epsilon) K\rfloor-1} \geq 3^{(((1-\epsilon) / \log 2) \log k)-2}=(1 / 9) k^{(1-\epsilon)(\log 3) / \log 2} .
$$

However, this quantity is greater than k when k is sufficiently large. So, $p^{\lfloor(1-\epsilon) K\rfloor-1}$ cannot divide both $n+i$ and $n+j$ for distinct i and j.

If we multiply all of these $n+i$ together, we obtain a multiple of

$$
\left(\prod_{\substack{i: n+i \text { is odd } \\ m \leq r / 2}} p_{i, m}\right)^{\lfloor(1-\epsilon) K\rfloor-1}
$$

Let p_{m} be the m th prime and let

$$
\theta(x)=\sum_{p \leq x} \log p
$$

De la Vallée Poussin [20, p. 54] showed that $|\pi(x)-\operatorname{Li}(x)|$ and $|\theta(x)-x|$ are both $O(x \exp (-c \sqrt{\log x}))$ for some positive constant c. Therefore,

$$
x^{k}>(n+1)(n+2) \cdots(n+k) \geq\left(p_{1} p_{2} \cdots p_{C_{1} r k}\right)^{\lfloor(1-\epsilon) K\rfloor-1}=\exp \left(\left(C_{2}+o(1)\right) r k K \log (r k)\right)
$$

for some positive constants C_{1}, C_{2}. So, we have

$$
r k K \log (r k) \ll \log \left(x^{k}\right)=k \log x
$$

which implies that

$$
r K \log (r k) \ll \log x
$$

Recall that $K \asymp \log k$ and $r \asymp \log k / \log \log k$. Therefore, we have

$$
k=\exp (O(\sqrt[3]{\log x \log \log x}))
$$

3 Decreasing sequences

Rather than considering sequences for which $d(n+i)$ is constant, we can consider sequences for which it is increasing or decreasing. Pollack et al. found a precise asymptotic formula for the analogous problem for the totient function.

Theorem 7 ([16, Thm. 1.5]). The largest k for which there exists some $n \leq x-k$ such that $\varphi(n+1) \geq \varphi(n+2) \geq \cdots \geq \varphi(n+k)$ is asymptotic to $\log _{3} x / \log _{6} x$.

We modify their argument to obtain an upper bound for the divisor function. To do so, we make use of the following result of Spătaru.

Lemma 8 ([17, Lemma 4.2]). Let n be an integer with smallest prime factor p. Then,

$$
\frac{\log n}{\log p} \geq \sum_{q}(q-1) v_{q}(d(n))
$$

Rather than using this lemma directly, we rewrite the righthand side using the following result.

Corollary 9. For all m, we have

$$
\sum_{q}(q-1) v_{q}(m) \geq \frac{\log m}{\log 2}
$$

Proof. By definition, m is the product of $q^{v_{q}(m)}$ over all q. Therefore, we have

$$
\log m=\sum_{q}(\log q) v_{q}(m)
$$

which implies that

$$
\frac{1}{\log m} \sum_{q}(q-1) v_{q}(m)=\left(\sum_{q}(q-1) v_{q}(m)\right)\left(\sum_{q}(\log q) v_{q}(m)\right)^{-1}
$$

Let

$$
M=\min _{q \mid m}\left(\frac{q-1}{\log q}\right) .
$$

Then, we have

$$
\sum_{q}(q-1) v_{q}(m) \geq \sum_{q} M(\log q) v_{q}(m)=M \sum_{q}(\log q) v_{q}(m)
$$

giving us

$$
\frac{1}{\log m} \sum_{q}(q-1) v_{q}(m) \geq M \geq \frac{1}{\log 2} .
$$

Recall that $G(x)$ is the largest k for which there exists some $n \leq x-k$ such that $d(n+1) \geq d(n+2) \geq \cdots \geq d(n+k)$.

Proof of Theorem 2. A classic theorem [10, Thm. 317] states that there exists some $m \leq k / 2$ such that

$$
d(m)=2^{(1+o(1)) \log (k / 2) / \log _{2}(k / 2)}=2^{(1+o(1)) \log k / \log _{2} k}
$$

Let $n+k=a m+b$ with $0<b<m$. Note that $k-b>k / 2$ because $m \leq k / 2$. Consider the subsequence $n+1, n+2, \ldots, n+(k-b)$. By assumption, $m \mid n+(k-b)$. So $d(m) \leq d(n+k-b)$, which implies that $d(m) \leq d(n+i)$ for all $i \leq k-b$. So,

$$
d(n+i) \geq \exp \left((\log 2+o(1)) \frac{\log k}{\log _{2} k}\right)
$$

for all $i \leq k-b$.
Spătaru $[17, \S 4]$ also observed that in a sequence of $k-b$ consecutive numbers, at least one of those numbers consists entirely of prime factors p satisfying $\log p \gg \log (k-b) \gg \log k$. Select $i \leq k-b$ so that $n+i$ satisfies this property. The previous lemma and corollary imply that

$$
\frac{\log x}{\log k} \geq \frac{\log (n+i)}{\log k} \gg \sum_{q}(q-1) v_{q}(d(n+i)) \gg \log d(n+i) \gg \frac{\log k}{\log _{2} k}
$$

From this inequality, we obtain $(\log k)^{2} / \log _{2} k \ll \log x$, giving us our desired bound.

The function $G(x)$ has a much stronger conditional bound. Suppose the sequence $n+$ $1, n+2, \ldots, n+k$ contains two primes $n+i, n+j>3$. Then, $d(n+i)=d(n+j)=2$, but $d(n+k)>2$ for every $k \in(i, j)$ with $n+k$ composite. Therefore, $G(x)$ is at most as large as the largest gap between two consecutive primes $\leq x$. Cramér's conjecture states that this gap is $O\left((\log x)^{2}\right)$. Assuming this conjecture, $G(x)=O\left((\log x)^{2}\right)$ as well. (Unfortunately, the best unconditional upper bound on the gap between two consecutive primes $\leq x$ is $x^{0.525+o(1)}[1]$. The best lower bound is $\gg \log x \log _{2} x \log _{4} x / \log _{3} x$ [7].)

4 Sums of divisors

Let $F_{\sigma}(x)$ be the largest k for which there exists some $n \leq x-k$ such that $\sigma(n+1)=$ $\sigma(n+2)=\cdots=\sigma(n+k)$. By modifying the techniques of Section 2, we bound $F_{\sigma}(x)$ from above. Let $T=\sigma(n+1)=\cdots=\sigma(n+k)$. Once again, we let $K=\log k / \log 2$.

Lemma 10. We have

$$
T \geq \prod_{p \leq K}\left(2^{p}-1\right)
$$

Proof. Let $p \leq K$. Because $2^{p} \leq k$, there exists some $i \leq k$ such that $n+i \equiv 2^{p-1}(\bmod$ $\left.2^{p}\right)$. For this particular i, we have $\sigma\left(2^{p-1}\right)=2^{p}-1 \mid \sigma(n+i)$. Therefore, $2^{p}-1 \mid T$ as well. In particular, $2^{p}-1 \mid T$ for all $p \leq K$. However, if p and q are distinct primes, then $2^{p}-1$ and $2^{q}-1$ are relatively prime. Therefore, T is a multiple of

$$
\prod_{p \leq K}\left(2^{p}-1\right) .
$$

Proof of Theorem 3. By the previous lemma, there exists a constant C such that

$$
T \geq \prod_{p \leq K} C^{p}=\exp \left((\log C) \sum_{p \leq K} p\right)=\exp \left((1+o(1)) \frac{\log C}{2} \frac{K^{2}}{\log K}\right)
$$

However, Mertens' theorem implies that $T=\sigma(n+i) \ll x \log \log x$. Hence,

$$
\frac{K^{2}}{\log K} \ll \log T \ll \log x
$$

which implies that

$$
\log k \ll K \ll \sqrt{\log x \log _{2} x}
$$

If we replace σ with the sum-of-proper-divisors function $s(n)$, we get a completely different result. To prove this result, we use the following fact about σ.

Lemma 11. The quantity $\sigma(n)$ is odd if and only if $n=m^{2}$ or $n=2 m^{2}$ for some m.

Proof. Suppose $\sigma(n)$ is odd. By definition,

$$
\sigma(n)=\prod_{p}\left(1+p+p^{2}+\cdots+p^{v_{p}(n)}\right) .
$$

] If p and $v_{p}(n)$ are both odd, then $1+p+p^{2}+\cdots+p^{v_{p}(n)}$ is even because it is the sum of an even number of odd terms. Because $\sigma(n)$ is odd, $v_{p}(n)$ must be even for all odd p. So, $n=m^{2}$ or $2 m^{2}$, depending on the parity of $v_{2}(n)$.

We now prove the converse. If $v_{p}(n)$ is even for all odd p, then

$$
\prod_{p>2}\left(1+p+\cdots+p^{v_{p}(n)}\right)
$$

is odd. In addition, $1+2+\cdots+2^{v_{2}(n)}$ is always odd because every term except 1 is even.
Proof of Theorem 4. Suppose that $s(n+1)=s(n+2)=\cdots=s(n+6)$ for some integer n. Let $S=s(n+i)$ for all $i \leq 6$. Suppose S is even. Choose $i \leq 2$ so that $n+i$ is odd. Because $s(n+i)$ is even, we have that $\sigma(n+i)$ is odd, which implies that $n+i$ is a square. By a similar argument, the number $n+i+2$ is also a square, which is impossible. Therefore, S is odd.

The sequence $n+1, n+2, \ldots, n+6$ contains three even numbers $m, m+2$, and $m+4$. Because $s(m), s(m+2)$, and $s(m+4)$ are odd, the numbers $\sigma(m), \sigma(m+2)$, and $\sigma(m+4)$ must all be odd as well. There are two possibilities. Either two elements of $\{m, m+2, m+4\}$ are squares or two of them are double a square. However, the difference between two positive squares cannot be 2 or 4 . If two elements of $\{m, m+2, m+4\}$ have the form $2 r^{2}$ for some r, then two elements of $\{m / 2,(m / 2)+1,(m / 2)+2\}$ are squares. But the difference between two positive squares cannot be 1 or 2 , giving us a contradiction.

5 The Carmichael function

Let λ be the Carmichael function. Though λ is an arithmetic function, it is neither additive nor multiplicative. Instead, for a given number $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, we have

$$
\lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{a_{1}}\right), \ldots, \lambda\left(p_{r}^{a_{r}}\right)\right) .
$$

Let p^{a} be a prime power. Then,

$$
\lambda\left(p^{a}\right)= \begin{cases}\varphi\left(p^{a}\right) / 2, & \text { if } p=2 \text { and } a \geq 3 \\ \varphi\left(p^{a}\right), & \text { otherwise }\end{cases}
$$

We prove an upper bound on F_{λ} in a matter analogous to our previous functions.

Proof of Theorem 5. Let $L=\lambda(n+1)=\cdots=\lambda(n+k)$. We bound L from above. For each prime p, there exists an $i \leq k$ such that $p^{\lfloor\log k / \log p\rfloor} \mid n+i$. For this i, we have

$$
p^{\lfloor\log k / \log p\rfloor-1} \mid \lambda(n+i)=L .
$$

Hence, we have

$$
L \geq \frac{1}{2} \prod_{p \leq \sqrt{k}} p^{\left.p \frac{\log k}{\log p}\right\rfloor-1} \gg \prod_{p \leq \sqrt{k}} p^{\frac{\log k}{\log p}-2}=\prod_{p \leq \sqrt{k}} \frac{k}{p^{2}} .
$$

We now bound the numerator and denominator in our product. We have

$$
\prod_{p \leq \sqrt{k}} k=k^{\pi(\sqrt{k})}=\exp ((\log k) \pi(\sqrt{k}))=\exp \left(2 \sqrt{k}+(4+o(1)) \frac{\sqrt{k}}{\log k}\right)
$$

and

$$
\prod_{p \leq \sqrt{k}} p^{2}=\exp \left(2 \sum_{p \leq \sqrt{k}} \log p\right) \leq \exp \left(2 \sqrt{k}+o\left(\frac{\sqrt{k}}{\log k}\right)\right) .
$$

Therefore, we have

$$
L \geq \exp \left((4+o(1)) \frac{\sqrt{k}}{\log k}\right)
$$

However, we have $L \leq x$ because $\lambda(n+i) \leq n+i$ for all i. So, $\sqrt{k} / \log k \ll \log x$, which implies that $k \ll\left(\log x \log _{2} x\right)^{2}$.

References

[1] R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes, II, Proc. Lond. Math. Soc. 83 (2001), 532-562.
[2] J. Bayless and P. Kinlaw, Consecutive coincidences of Euler's function, Int. J. Number Theory 12 (2016), 1011-1026.
[3] P. Erdős, Some remarks on Euler's ϕ function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540-544.
[4] P. Erdős and L. Mirsky, The distribution of values of the divisor function d(n), Proc. Lond. Math. Soc. 1 (1952), 257-271.
[5] P. Erdős, C. Pomerance, and A. Sárközy, On locally repeated values of certain arithmetic functions, III, Proc. Amer. Math. Soc. 101 (1987), 1-7.
[6] P. Erdős, C. Pomerance, and A. Sárközy, On locally repeated values of certain arithmetic functions, IV, Ramanujan J. 1 (1997), 227-241.
[7] K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao, Long gaps between primes, J. Amer. Math. Soc. 31 (2018), 65-105.
[8] A. Frank, Are there pairs of consecutive integers with the same sum of factors?, https://mathoverflow.net/q/14459.
[9] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, 1994.
[10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, 2008.
[11] D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), 141-149.
[12] A. Hildebrand, The divisor function at consecutive integers, Pacific J. Math. 129 (1987), 307-319.
[13] P. Kinlaw, M. Kobayashi, and C. Pomerance, On the equation $\varphi(n)=\varphi(n+1)$, Acta Arith. 196 (2020), 69-92.
[14] M. Lal and P. Gillard, On the equation $\phi(n)=\phi(n+k)$, Math. Comp. 26 (1972), 579-583.
[15] C. G. Pinner, Repeated values of the divisor function, Q. J. Math. 48 (1997), 499-502.
[16] P. Pollack, C. Pomerance, and E. Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), 379-398.
[17] V.-T. Spătaru, Runs of consecutive integers having the same number of divisors, PUMP J. Undergrad. Res. 6 (2023), 96-101.
[18] C. A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n, University of Illinois at Urbana-Champaign, PhD Dissertation (1981).
[19] T. Tao, Monotone non-decreasing sequences of the Euler totient function, arxiv preprint arXiv:2309.02325 [math.NT], 2023. Available at https://arxiv.org/abs/2309.02325.
[20] C.-J. de la Vallée Poussin, Sur la fonction $\zeta(s)$ de Riemann et le nombre des nombre premiers inferieurs á une limite donnée, Mem. Couronnés de l'Acad. Roy. Sci. Bruxelles 59 (1899), 1-74.
[21] A. Weingartner, On the solutions of $\sigma(n)=\sigma(n+k)$, J. Integer Sequences 14 (2011), Article 11.5.5.

2020 Mathematics Subject Classification: Primary 11A25, Secondary 11N64.
Keywords: arithmetic function, divisor function, sum-of-proper-divisors function.
(Concerned with sequence A006558.)

Received February 24 2023; revised versions received April 13 2023; September 122023. Published in Journal of Integer Sequences, October 32023.

Return to Journal of Integer Sequences home page.

