Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem

Jiří Klaška
Institute of Mathematics
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2
CZ - 61669 Brno
Czech Republic
klaska@fme.vutbr.cz

Abstract

Recently Skula published an interesting article on the divisibility of Mersenne numbers $2^{n}-1$ by powers of primes. His main result is closely related to Jakóbczyk's hypothesis. We generalize Skula's result for the numbers $a^{n} \pm 1$ where $a \in \mathbb{N}, a \geq 2$.

1 Introduction

In 1951, Polish priest and mathematician Franciszek Jakóbczyk [9, p. 127] published two remarkable hypotheses concerning Mersenne [23, A000225] and Fermat [23, A000215] numbers. These hypotheses can be formulated as follows.

Hypothesis 1. Every Mersenne number $M_{n}=2^{n}-1$ with a prime exponent n is of the form $M_{n}=p_{1} \cdots p_{k}$ where p_{1}, \ldots, p_{k} are distinct odd primes and $k \geq 1$.

Hypothesis 2. Every Fermat number $F_{n}=2^{2^{n}}+1$ with $n \in \mathbb{N} \cup\{0\}$ is of the form $F_{n}=p_{1} \cdots p_{k}$ where p_{1}, \ldots, p_{k} are distinct odd primes and $k \geq 1$.

Hypotheses 1 and 2 are currently among the well-known unresolved number theory problems. See, for example, [21, p. 92], [5, pp. 14-16] and, [13, p. 160]. A more detailed examination of the divisibility of Mersenne and Fermat numbers led to the discovery of a link between Jakóbczyk's hypotheses and the Wieferich primes [23, A001220]. Recall that
a prime p is called Wieferich if $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Wieferich primes were first introduced in 1909 in relation to the first case of Fermat's last theorem. In the paper [27] Wieferich proved that, if p is an odd prime and $x^{p}+y^{p}+z^{p}=0$ has a solution in integers x, y, z with $p \nmid x y z$, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Only two Wieferich primes have been discovered so far. The first Wieferich prime, 1093, was found by Meissner [17] in 1913 and the second Wieferich prime, 3511, was found by Beeger [2] in 1922. Whether the set W of all Wieferich primes is a finite or infinite set is another unanswered question. Recent calculations (March 2021) made under the PrimeGrid project [19] have shown that, if a third Wieferich prime exists, then its value must be greater than 3.15×10^{18}. In the following section, we give a summary of all known results related to Wieferich primes and Jakóbczyk's hypotheses. Details of the life and work of Franciszek Jakóbczyk (1905-1992) can be found in [18].

2 Jakóbczyk's hypotheses and Wieferich primes

In 1964, Schinzel [21, p. 102] posed the following problem: Do there exist infinitely many natural numbers n for which the number $M_{n}=2^{n}-1$ is not divisible by any square of natural number > 1? A partial answer to Schinzel's question is a result proved by Rotkiewicz [20, p. 79].

Theorem 3. (Rotkiewicz, 1965) If there are infinitely many square-free Mersenne numbers, then there are infinitely many primes p satisfying $2^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.

In 1967, Warren and Bray [24, p. 563] proved the following implications:
Theorem 4. (Warren and Bray, 1967) Let $n \in \mathbb{N}, n \neq 1$ and let p, q be odd primes. Then
(i) If $p \mid M_{q}$, then $2^{(p-1) / 2} \equiv 1\left(\bmod M_{q}\right)$.
(ii) If $p \mid F_{n}$, then $2^{(p-1) / 2} \equiv 1\left(\bmod F_{n}\right)$.

The below corollary can be obtained easily from Theorem 4.
Corollary 5. Let $n \in \mathbb{N}$ and let p, q be odd primes. Then (i) and (ii) hold.
(i) If $p^{2} \mid M_{q}$, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
(ii) If $p^{2} \mid F_{n}$, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

The results presented by Warren and Bray can be extended as follows.
Theorem 6. Let $n \in \mathbb{N}$ and let p, q be odd primes. Then (i) and (ii) hold.
(i) If $p \mid M_{q}$, then $p^{2} \mid M_{q}$ if and only if $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
(ii) If $p \mid F_{n}$, then $p^{2} \mid F_{n}$ if and only if $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

See [13, p. 68] and, [13, p. 217]. Theorem 6 provides the basic link between Jakóbczyk's hypotheses and Wieferich primes. Finally, part (i) of Theorem 6 was generalized by Skula [22] in 2019. Before formulating Skula's result, it may be appropriate to recall some concepts and definitions. Let $k \in \mathbb{N}$ and let p be a Wieferich prime. By Definition 1.4 in the paper [22], p is called a Wieferich prime of order k if $q\left(2, p^{k}\right) \equiv 0\left(\bmod p^{k}\right)$ or, equivalently, $2^{p^{k-1}(p-1)} \equiv 1\left(\bmod p^{2 k}\right)$. Here, $q\left(2, p^{k}\right)$ means the Euler quotient of p^{k} with base 2. See $[1$, Definition 1.2]. Hence, a prime p is Wieferich if and only if p is a Wieferich prime of order 1. Furthermore, note that, by [1, Definition 1.3], p is a Wieferich prime of order k if and only if p^{k} is a Wieferich number with base 2. See also [23, A077816]. Finally, let $a, m \in \mathbb{N}$, $m \geq 2$ and let $\operatorname{gcd}(a, m)=1$. The smallest positive integer h for which $a^{h} \equiv 1(\bmod m)$ is called the multiplicative order of a modulo m, which we write as $h=\operatorname{ord}_{m}(a)$. See [15, p. $55]$ or [13, p. 17]. It is clear from Euler's theorem [1, p. 55] that $\operatorname{ord}_{p^{k}}(2)$ exists for every odd prime p and $k \in \mathbb{N}$.

Now we can formulate the main result proved in [22].
Theorem 7. (Skula, 2019) Let $k \in \mathbb{N}$ and let p, q be odd primes. If $p^{k} \mid M_{q}$, then the following statements (i), (ii) and (iii) are equivalent:
(i) $p^{k+1} \mid M_{q}$.
(ii) p is a Wieferich prime of order k.
(iii) $\operatorname{ord}_{p^{k+1}}(2)=q$.

For an alternative proof of Theorem 7 see [12]. We conclude this section by recalling some known properties of $\operatorname{ord}_{m}(a)$ needed for proving our results.

Proposition 8. Let $a, m \in \mathbb{N}, m \geq 2$ and let $\operatorname{gcd}(a, m)=1$. Then (i) - (vii) hold.
(i) Let $k \in \mathbb{N}$. Then $a^{k} \equiv 1(\bmod m)$ if and only if $\operatorname{ord}_{m}(a) \mid k$.
(ii) $\operatorname{ord}_{m}(a) \mid \varphi(m)$. Consequently, if p is an odd prime, then $\operatorname{ord}_{p}(2) \mid p-1$. Here, φ means the Euler function.
(iii) Let $m=p_{1}^{k_{1}} \cdots p_{s}^{k_{s}}$ be a prime factorization of m. Then

$$
\operatorname{ord}_{m}(a)=\operatorname{lcm}\left(\operatorname{ord}_{p_{1}^{k_{1}}}(a), \ldots, \operatorname{ord}_{p_{s}^{k_{s}}}(a)\right)
$$

(iv) Let $a, k, s \in \mathbb{N}$ and let p be an odd prime satisfying $p \nmid a$. Further, let $\operatorname{ord}_{p}(a)=h$ and let $p^{s} \| a^{h}-1$. Then

$$
\operatorname{ord}_{p^{k}}(a)= \begin{cases}h, & \text { for } k \leq s \\ p^{k-s} h, & \text { for } k>s\end{cases}
$$

Here, $p^{s} \| a^{h}-1$ means that $p^{s} \mid a^{h}-1$ but $p^{s+1} \nmid a^{h}-1$.
(v) Let $a, k \in \mathbb{N}$ and let p be an odd prime satisfying $p \nmid a$. If $\operatorname{ord}_{p^{k}}(a)=h$, then $\operatorname{ord}_{p^{k+1}}(a) \in\{h, p h\}$. Consequently, $\operatorname{ord}_{p^{k}}(a) \mid \operatorname{ord}_{p^{k+1}}(a)$.
(vi) Let $k \in \mathbb{N}$, p be an odd prime and let $p \nmid a$. Then $\operatorname{ord}_{p^{k+1}}(a)=p^{s} \operatorname{ord}_{p}(a)$ for some $s \in\{0, \ldots, k\}$.
(vii) Let $k, s \in \mathbb{N}$, p be an odd prime and let $p \nmid a$. If $\operatorname{ord}_{p}(a)=\cdots=\operatorname{ord}_{p^{k}}(a) \neq \operatorname{ord}_{p^{k+1}}(a)$, then $\operatorname{ord}_{p^{k+s}}(a)=p^{s} \operatorname{ord}_{p}(a)$.
The proof of (i) and (ii) can be found in [16, p. 43]. For (iii) see [4, p. 30]. Part (iv) is Theorem 4.4 proved by LeVeque in [15, pp. 80-81]. See also [16, pp. 52-53]. Finally, (v), (vi) and (vii) immediately follow from (iv).

3 Some arithmetic properties of the numbers $a^{n} \pm 1$

In this section, we will study in more detail the arithmetic properties of the numbers $M_{n}(a)=$ $a^{n}-1$ and $L_{n}(a)=a^{n}+1$ where $a \in \mathbb{N}, a \geq 2, n \in \mathbb{N} \cup\{0\}$. First, we can observe that the sequences $\left(M_{n}(a)\right)_{n=0}^{\infty}$ and $\left(L_{n}(a)\right)_{n=0}^{\infty}$ are determined by the same linear second-order recurrence formula

$$
\begin{equation*}
H_{n+2}=(a+1) H_{n+1}-a H_{n} \tag{1}
\end{equation*}
$$

with suitable initial conditions $H_{0}, H_{1} \in \mathbb{N} \cup\{0\}$. To see this, consider the characteristic equation (1). We have $x^{2}-(a+1) x+a=(x-1)(x-a)=0$. Hence, it follows that Binet's formula for H_{n} has the form $H_{n}=c_{1}+c_{2} a^{n}$ where $H_{0}=c_{1}+c_{2}$ and $H_{1}=c_{1}+a c_{2}$. After short calculation, we obtain

$$
\begin{equation*}
H_{n}=\frac{a H_{0}-H_{1}}{a-1}+\frac{H_{1}-H_{0}}{a-1} a^{n} . \tag{2}
\end{equation*}
$$

If $\left[H_{0}, H_{1}\right]=[0, a-1]$, then $H_{n}=M_{n}(a)$ by (2). If $\left[H_{0}, H_{1}\right]=[2, a+1]$, then $H_{n}=L_{n}(a)$. Let $m \in \mathbb{N}, m \geq 2$ and let $\operatorname{gcd}(a, m)=1$. We define

$$
\begin{aligned}
M(a, m) & =\min \left\{n \in \mathbb{N}:\left[M_{n}(a), M_{n+1}(a)\right] \equiv[0, a-1](\bmod m)\right\} \\
L(a, m) & =\min \left\{n \in \mathbb{N}:\left[L_{n}(a), L_{n+1}(a)\right] \equiv[2, a+1](\bmod m)\right\} \\
\mu(a, m) & =\min \left\{n \in \mathbb{N}: M_{n}(a) \equiv 0(\bmod m)\right\} \\
\lambda(a, m) & =\min \left\{n \in \mathbb{N}: L_{n}(a) \equiv 0(\bmod m)\right\}
\end{aligned}
$$

Following the customary notation of the theory of linear recurrences, we call the numbers $M(a, m)$ and $L(a, m)$ primitive periods of the sequences

$$
\left(M_{n}(a) \bmod m\right)_{n=0}^{\infty} \text { and }\left(L_{n}(a) \bmod m\right)_{n=0}^{\infty}
$$

The numbers $\mu(a, m)$ and $\lambda(a, m)$ will then be called the rank of appearance of m in $\left(M_{n}(a)\right)_{n=0}^{\infty}$ and $\left(L_{n}(a)\right)_{n=0}^{\infty}$ respectively. In the following Theorem 9, the basic properties of the numbers $M(a, m), L(a, m), \mu(a, m)$ and $\lambda(a, m)$ will be given.

Theorem 9. Let $a, m \in \mathbb{N}, a, m \geq 2$ and let $\operatorname{gcd}(a, m)=1$. Then
(A) The numbers $M(a, m), L(a, m)$ and $\mu(a, m)$ exist and we have

$$
\begin{equation*}
M(a, m)=L(a, m)=\mu(a, m)=\operatorname{ord}_{m}(a) \tag{3}
\end{equation*}
$$

(B) Let $m \neq 2$ and let $\operatorname{ord}_{m}(a)$ be odd. Then $\lambda(a, m)$ does not exist.

Let $m=2$. Then $\lambda(a, 2)=1$.
(C) Let $m \neq 2$ and let $\operatorname{ord}_{m}(a)=2 t$ for some $t \in \mathbb{N}$. If $\lambda(a, m)$ exists, then

$$
\begin{equation*}
\lambda(a, m)=\frac{\operatorname{ord}_{m}(a)}{2}=t . \tag{4}
\end{equation*}
$$

(D) Let $k, t \in \mathbb{N}, p$ be an odd prime and let $p \nmid a$. Then

$$
\operatorname{ord}_{p^{k}}(a)=2 t \text { if and only if } \lambda\left(a, p^{k}\right)=t .
$$

Proof. We prove (A). First, observe that $\operatorname{ord}_{m}(a)$ exists. Next, it is clear that $\mu(a, m)=$ $\min \left\{n \in \mathbb{N}: a^{n} \equiv 1(\bmod m)\right\}=\operatorname{ord}_{m}(a)$, which means that $\mu(a, m)$ exists. Let $r=$ $\mu(a, m)$. Applying $\operatorname{gcd}(a, m)=1$, we obtain $a^{r}-1 \equiv 0(\bmod m)$ if and only if $a^{r+1}-1 \equiv$ $a-1(\bmod m)$. Hence, $M(a, m)=r$ and, thus, $M(a, m)=\mu(a, m)=\operatorname{ord}_{m}(a)$. Finally, $\left[a^{r}-1, a^{r+1}-1\right] \equiv[0, a-1](\bmod m)$ if and only if $\left[a^{r}+1, a^{r+1}+1\right] \equiv[2, a+1](\bmod m)$. Hence, $M(a, m)=L(a, m)$. This proves (3).

We prove (B). Let $m \neq 2$ and suppose that $\lambda(a, m)=s$ for some $s \in \mathbb{N}$. Then $a^{s} \equiv$ $-1(\bmod m)$ and, $a^{2 s} \equiv 1(\bmod m)$ follows. Hence, $\operatorname{ord}_{m}(a) \mid 2 s$. Since $\operatorname{ord}_{m}(a)$ is odd, there exists a $t \in \mathbb{N} \cup\{0\}$ satisfying $\operatorname{ord}_{m}(a)=2 t+1$. This means that $2 t+1 \mid 2 s$. Thus, there exists an $u \in \mathbb{N}, u \neq 1$ such that $2 s=u(2 t+1)$. Hence, we see that $u=2 v$ for some $v \in \mathbb{N}$ and, thus, $s=v(2 t+1)$. Therefore, $a^{s}=\left(a^{2 t+1}\right)^{v} \equiv 1^{v} \equiv 1(\bmod m)$. Since $a^{s} \equiv-1(\bmod m)$, we have $2 \equiv 0(\bmod m)$. Hence, $m=2$, a contradiction.

Let $m=2$. Then, it follows from $\operatorname{gcd}(a, 2)=1$ that a is odd and, thus, $2 \mid a^{n}+1$ for every $n \in \mathbb{N} \cup\{0\}$. Hence, $\lambda(a, m)=1$. This proves (B).

We prove (C). Assume that $\lambda(a, m)$ exists and that $\lambda(a, m)=s$ for some $s \in \mathbb{N}$. Then $a^{s} \equiv-1(\bmod m)$ and $a^{2 s} \equiv 1(\bmod m)$ follows. Hence, $\operatorname{ord}_{m}(a) \mid 2 s$. Since, $\operatorname{ord}_{m}(a)=2 t$ we get $t \mid s$. Suppose that $t<s$. Then there is a $u \in \mathbb{N}, u \neq 1$ such that $s=t u$. First, suppose that u be even. Then we have $u=2 v$ for some $v \in \mathbb{N}$. Hence, $a^{s}=\left(a^{2 t}\right)^{v} \equiv 1^{v} \equiv 1(\bmod m)$. On the other hand, $a^{s} \equiv-1(\bmod m)$. Hence, $2 \equiv 0(\bmod m)$. Since $m \neq 2$, we have a contradiction. Next, suppose that u be odd. Then $u=2 v+1$ for some $v \in \mathbb{N} \cup\{0\}$. Hence, $a^{s}=a^{t(2 v+1)}=\left(a^{2 t}\right)^{v} a^{t} \equiv a^{t}(\bmod m)$. This, together with $a^{s} \equiv-1(\bmod m)$, yields $a^{t} \equiv-1(\bmod m)$. Since $s=\min \left\{n \in \mathbb{N}: a^{n} \equiv-1(\bmod m)\right\}$, we get $t \geq s$, which is a contradiction with $t<s$. Hence, $s=t$ and (4) follows.

We prove (D). (i) First, assume that $\operatorname{ord}_{p^{k}}(a)=2 t$. Therefore,

$$
\begin{equation*}
a^{2 t}-1=\left(a^{t}-1\right)\left(a^{t}+1\right) \equiv 0\left(\bmod p^{k}\right) \tag{5}
\end{equation*}
$$

Let $k>1$. Suppose that $a^{t}-1 \equiv 0(\bmod p)$ and $a^{t}+1 \equiv 0(\bmod p)$. Then $2 \equiv 0(\bmod p)$. As $p \neq 2$, we get a contradiction. Consequently, we have either $a^{t}-1 \equiv 0\left(\bmod p^{k}\right)$ or $a^{t}+1 \equiv 0\left(\bmod p^{k}\right)$. Since the case $a^{t}-1 \equiv 0\left(\bmod p^{k}\right)$ leads to a contradiction with $\operatorname{ord}_{p^{k}}(a)=2 t$, we have $a^{t}+1 \equiv 0\left(\bmod p^{k}\right)$. Similarly, if $k=1$, then (5) together with $\operatorname{ord}_{p}(a)=2 t$ yields $a^{t}+1 \equiv 0(\bmod p)$. Hence, $t \in\left\{n \in \mathbb{N}: a^{n}+1 \equiv 0\left(\bmod p^{k}\right)\right\}$ for every $k \in \mathbb{N}$. This means that $\lambda\left(a, p^{k}\right)$ exists. Applying part (C) of Theorem 9 , we now obtain $\lambda\left(a, p^{k}\right)=t$.
(ii) Conversely, assume that $\lambda\left(a, p^{k}\right)$ exists and that $\lambda\left(a, p^{k}\right)=t$. Then it follows from part (B) of Theorem 9 that $\operatorname{ord}_{p^{k}}(a)$ is even. Therefore, there is an $s \in \mathbb{N}$ such that $\operatorname{ord}_{p^{k}}(a)=2 s$. Hence, $a^{2 s} \equiv 1\left(\bmod p^{k}\right)$, which yields $\left(a^{s}-1\right)\left(a^{s}+1\right) \equiv 0\left(\bmod p^{k}\right)$. Using the same reasoning as in (i), we conclude that $a^{s} \equiv-1\left(\bmod p^{k}\right)$. Suppose that $s \neq t$. Since $\lambda\left(a, p^{k}\right)=t$, we have $s>t$. On the other hand, from $a^{t} \equiv-1\left(\bmod p^{k}\right)$, we get $a^{2 t} \equiv 1\left(\bmod p^{k}\right)$, which means that $\operatorname{ord}_{p^{k}}(a) \mid 2 t$. Since $\operatorname{ord}_{p^{k}}(a)=2 s$, we have $s \mid t$, which is a contradiction with $s>t$. Hence, $s=t$. This proves (D).

In the remaining part of this section, we will study the properties of the numbers $\lambda(a, m)$ in more detail.

Theorem 10. Let $a, m \in \mathbb{N}, a, m \geq 2,2 \nmid m$ and let $\operatorname{gcd}(a, m)=1$. Further, let $\operatorname{ord}_{m}(a)=$ $2 t$ for some $t \in \mathbb{N}$ and let $m=p_{1}^{k_{1}} \cdots p_{s}^{k_{s}}$ be a prime factorization of m. Then $\lambda(a, m)$ exists if and only if (i) and (ii) hold.
(i) $\lambda\left(a, p_{i}^{k_{i}}\right)$ exists for $i \in\{1, \ldots, s\}$.
(ii) For $i \in\{1, \ldots, s\}$, there is an odd $w_{i} \in \mathbb{N}$ satisfying $t=\lambda\left(a, p_{i}^{k_{i}}\right) w_{i}$.

In addition, if $\lambda(a, m)$ exists, then

$$
\begin{equation*}
\lambda(a, m)=\operatorname{lcm}\left(\lambda\left(a, p_{1}^{k_{1}}\right), \ldots, \lambda\left(a, p_{s}^{k_{s}}\right)\right)=t \tag{6}
\end{equation*}
$$

Proof. First, assume that $\lambda(a, m)$ exists. Then it follows that $\lambda\left(a, p_{i}^{k_{i}}\right)$ exists for every $i \in\{1, \ldots, s\}$. Let $t_{i}=\lambda\left(a, p_{i}^{k_{i}}\right)$. Applying part (D) of Theorem 9, we obtain $\operatorname{ord}_{p_{i}^{k_{i}}}(a)=2 t_{i}$. Next, using part (iii) of Proposition 8 , we get

$$
\begin{equation*}
2 t=\operatorname{ord}_{m}(a)=\operatorname{lcm}\left(\operatorname{ord}_{p_{1}^{k_{1}}}(a), \ldots, \operatorname{ord}_{p_{s}^{k_{s}}}(a)\right)=2 \operatorname{lcm}\left(t_{1}, \ldots, t_{s}\right) . \tag{7}
\end{equation*}
$$

Hence, $t_{i} \mid t$ for $i \in\{1, \ldots, s\}$. This means that $t=t_{i} w_{i}$ for some $w_{i} \in \mathbb{N}$.
Suppose that there is an $j \in\{1, \ldots, s\}$ such that $2 \mid w_{j}$. Using $a^{t_{j}} \equiv-1\left(\bmod p_{j}^{k_{j}}\right)$, we find $a^{t}=\left(a^{t_{j}}\right)^{w_{j}} \equiv(-1)^{w_{j}} \equiv 1\left(\bmod p_{j}^{k_{j}}\right)$. Suppose now that $p_{j}^{k_{j}} \mid a^{t}+1$. Then $a^{t} \equiv-1\left(\bmod p_{j}^{k_{j}}\right)$. This, together with $a^{t} \equiv 1\left(\bmod p_{j}^{k_{j}}\right)$, yields $2 \equiv 0\left(\bmod p_{j}^{k_{j}}\right)$. Since p_{j} is an odd prime, we have a contradiction. Hence $p_{j}^{k_{j}} \nmid a^{t}+1$, which implies $m \nmid a^{t}+1$. Therefore, $\lambda(a, m) \neq t$. Since $\operatorname{ord}_{m}(a)=2 t$, by part (C) of Theorem 9 , we conclude that $\lambda(a, m)$ does not exist, which is a contradiction.

For $i \in\{1, \ldots, s\}$, let w_{i} be odd. Then $a^{t}=\left(a^{t_{i}}\right)^{w_{i}} \equiv(-1)^{w_{i}} \equiv-1\left(\bmod p_{i}^{k_{i}}\right)$. Hence, $p_{i}^{k_{i}} \mid a^{t}+1$. If w_{i} is odd for $i \in\{1, \ldots, s\}$, then $m=p_{1}^{k_{1}} \cdots p_{s}^{k_{s}} \mid a^{t}+1$ and $t \in\{n \in \mathbb{N}$: $\left.a^{n}+1 \equiv 0(\bmod m)\right\}$. This means that $\lambda(a, m)$ exists, and, using part (C) of Theorem 9, we get $\lambda(a, m)=t$. This, together with (7), yields (6).

Conversely, assume that (i) and (ii) hold. If $t_{i}=\lambda\left(a, p_{i}^{k_{i}}\right)$, we have $a^{t_{i}} \equiv-1\left(\bmod p_{i}^{k_{i}}\right)$. Now we can find $a^{t}=\left(a^{t_{i}}\right)^{w_{i}} \equiv(-1)^{w_{i}} \equiv-1\left(\bmod p_{i}^{k_{i}}\right)$. We now see that $p_{i}^{k_{i}} \mid a^{t}+1$ for every $i \in\{1, \ldots, s\}$ and, thus, $m=p_{1}^{k_{1}} \cdots p_{s}^{k_{s}} \mid a^{t}+1$. Hence, $t \in\left\{n \in \mathbb{N}: a^{n}+1 \equiv 0(\bmod m)\right\}$, which means that $\lambda(a, m)$ exists. By part (C) of Theorem 9 , we obtain $\lambda(a, m)=t$. The proof is complete.

Remark 11. In [15, p. 57], LeVeque published the following Problem 19.

$$
\begin{equation*}
\text { Show that, if } m>1 \text { is odd and } \operatorname{ord}_{m}(a)=2 t \text {, then } a^{t} \equiv-1(\bmod m) . \tag{8}
\end{equation*}
$$

We now prove, using a counterexample, that LeVeque's implication is not true. Let $m=91=7 \cdot 13$ and let $a=5$. Then $\operatorname{ord}_{91}(5)=12$, which means, by (8), that $t=6$. Hence, $5^{6} \equiv 64 \not \equiv-1(\bmod 91)$. It is evident that LeVeque's erroneous claim is closely related to the existence of the numbers $\lambda(a, m)$. By part (iii) of Proposition 8, we have

$$
\operatorname{ord}_{91}(5)=\operatorname{lcm}\left(\operatorname{ord}_{7}(5), \operatorname{ord}_{13}(5)\right)=\operatorname{lcm}(6,4)=12
$$

Hence, using part (D) of Theorem 9, we obtain $\lambda(5,7)=\operatorname{ord}_{7}(5) / 2=3$ and $\lambda(5,13)=$ $\operatorname{ord}_{13}(5) / 2=2$. Next, applying Theorem 10, we get $w_{1}=6 / \lambda(5,7)=2$ and $w_{2}=$ $6 / \lambda(5,13)=3$. Because w_{1} is not odd, $\lambda(5,91)$ does not exist. In other words, $91 \nmid L_{6}(5)=$ $5^{6}+1=2 \cdot 13 \cdot 601$.

Let $a \in \mathbb{N}, a>1$ and let a be odd. Then $2 \mid a+1$ and thus $\left\{k \in \mathbb{N}: 2^{k} \mid a+1\right\} \neq \emptyset$. Put $\nu(a)=\max \left\{k \in \mathbb{N}: 2^{k} \mid a+1\right\}$. In the following Lemma 12, we show that there is a close connection between the numbers $\nu(a)$ and $\lambda\left(a, 2^{k}\right)$.

Lemma 12. Let $a, k, n \in \mathbb{N}, a>1$ and let a be odd. Then
(A) If $2 \mid n$, then $2 \| a^{n}+1$.
(B) If $2 \nmid n$, then $2^{\nu(a)} \| a^{n}+1$.
(C) $\lambda\left(a, 2^{k}\right)$ exist if and only if $k \leq \nu(a)$. In this case, $\lambda\left(a, 2^{k}\right)=1$.

Proof. We prove (A). Let $2 \mid n$. Since $a>1$ is odd, there is an $\alpha \in \mathbb{N}$ such that $a=2 \alpha+1$. Hence, using the assumption $2 \mid n$ and the binomial theorem, we get

$$
\begin{equation*}
a^{n}+1=(2 \alpha+1)^{n}+1 \equiv 2(\bmod 4) . \tag{9}
\end{equation*}
$$

By (9), $2 \| a^{n}+1$ for an even n.
We prove (B). Let $2 \nmid n$. Then $a^{n}+1=(a+1)\left(a^{n-1}-a^{n-2}+\cdots-a+1\right)$. Since a is odd, we have $2 \nmid\left(a^{n-1}-a^{n-2}+\cdots-a+1\right)$. Hence, $2^{s} \mid a^{n}+1$ if and only if $2^{s} \mid a+1$ for every $s \in \mathbb{N}$. This means that $2^{\nu(a)} \| a^{n}+1$ for any odd n.

Combining (A) and (B), (C) follows immediately.

Lemma 12 will be useful in proving Theorem 13.
Theorem 13. Let $a, M \in \mathbb{N}, a, M \geq 2, \operatorname{gcd}(a, M)=1$ and let $2 \nmid a, 2 \mid M$. Further, let $M=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ be a prime factorization of M and let $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$. Then (A) and (B) hold.
(A) Let $\alpha=1$. Then $\lambda(a, M)$ exists if and only if $\lambda(a, m)$ exists. Moreover, if $\lambda(a, M)$ exists, then $\lambda(a, M)=\lambda(a, m)$.
(B) Let $\alpha>1$. Then $\lambda(a, M)$ exists if and only if $\lambda\left(a, 2^{\alpha}\right)$ and $\lambda(a, m)$ exist and, $2 \nmid \lambda(a, m)$. Moreover, if $\lambda(a, M)$ exists, then $\lambda(a, M)=\lambda(a, m)$.

Proof. We prove (A). Assume that $\lambda(a, M)$ exists and that $\lambda(a, M)=U$. Then $M \mid a^{U}+1$. Since $M=2 m$ and $\operatorname{gcd}(2, m)=1$, we get $m \mid a^{U}+1$, which implies that $\lambda(a, m)$ exists and that $\lambda(a, m) \leq U=\lambda(a, M)$.

Conversely, assume that $\lambda(a, m)$ exists and that $\lambda(a, m)=u$. Then $m \mid a^{u}+1$. Since a is odd, we have $2 \mid a^{n}+1$ for every $n \in \mathbb{N}$. Hence and from $\operatorname{gcd}(2, m)=1$, we obtain $M=2 m \mid a^{u}+1$. This means that $\lambda(a, M)$ exists and that $\lambda(a, M) \leq u=\lambda(a, m)$. This proves (A).

We prove (B). Let $\alpha>1$. First, assume that $\lambda(a, M)$ exists and that $\lambda(a, M)=U$. Then $M=2^{\alpha} m \mid a^{U}+1$. Hence and from $\operatorname{gcd}\left(2^{\alpha}, m\right)=1$, we obtain $2^{\alpha} \mid a^{U}+1$ and $m \mid a^{U}+1$. This means that $\lambda\left(a, 2^{\alpha}\right)$ and $\lambda(a, m)$ exist. Next, by part (C) of Lemma 12, we have $\alpha \leq \nu(a)$ and, from $m \mid a^{U}+1$, we get $\lambda(a, m) \leq U=\lambda(a, M)$.

Let $\lambda(a, m)=u$. Suppose that $2 \mid u$. Then, by part (A) of Lemma 12, we have $2 \| a^{u}+1$. This means that $2^{\alpha} \nmid a^{u}+1$. Hence, $M=2^{\alpha} m \nmid a^{u}+1$ and, thus, $\lambda(a, M) \neq u=\lambda(a, m)$. This, together with $u=\lambda(a, m) \leq U$, yields $u<U$. Hence, $U=u+k$ for some $k \in \mathbb{N}$. From $2^{\alpha} m \mid a^{u+k}+1$ and $\operatorname{gcd}\left(2^{\alpha}, m\right)=1$, we can deduce that $m \mid a^{u+k}+1$, or equivalently, $a^{u} a^{k} \equiv-1(\bmod m)$. Using $a^{u} \equiv-1(\bmod m)$, we now obtain $a^{k} \equiv 1(\bmod m)$. Hence, $\operatorname{ord}_{m}(a) \mid k$. Suppose that $\operatorname{ord}_{m}(a)$ is odd. Then, by part (B) of Theorem $9, \lambda(a, m)$ does not exist, which is a contradiction. Hence, $2 \mid \operatorname{ord}_{m}(a)$ and, $2 \mid k$ follows. Therefore, $2 \mid u+k=U$. By part (A) of Lemma 12, we now obtain $2 \| a^{U}+1$. Hence and from $\alpha>1$, we get $2^{\alpha} \nmid a^{U}+1$, which means $2^{\alpha} m=M \nmid a^{U}+1$, a contradiction.

Let $2 \nmid u$. Then, by part (B) of Lemma 12, we have $2^{\nu(a)} \mid a^{u}+1$. As $\alpha \leq \nu(a)$, we also have $2^{\alpha} \mid a^{u}+1$. Hence and from $m \mid a^{u}+1$, we obtain $2^{\alpha} m=M \mid a^{u}+1$, and $U=\lambda(a, M) \leq u$ follows. This, together with $u=\lambda(a, m) \leq U$, yields $\lambda(a, M)=\lambda(a, m)$.

Conversely, assume that $\lambda\left(a, 2^{\alpha}\right)$ and $\lambda(a, m)$ exist and that $\lambda(a, m)$ is odd. First, observe that, if $\alpha>1$ and $\lambda\left(a, 2^{\alpha}\right)$ exists, then, by part (C) of Lemma 12, we have $\alpha \leq \nu(a)$ and, by part (B) of Lemma 12 , we have $2^{\alpha} \mid a^{n}+1$ for any odd $n \in \mathbb{N}$. Let $\lambda(a, m)=u$. Then $m \mid a^{u}+1$. Since u is odd, we get $2^{\alpha} \mid a^{u}+1$. Hence and from $\operatorname{gcd}\left(2^{\alpha}, m\right)=1$, we now obtain $M=2^{\alpha} m \mid a^{u}+1$, which means that $\lambda(a, M)$ exists and that $\lambda(a, M) \leq u$. Put $\lambda(a, M)=U$. Then we can write $M=2^{\alpha} m \mid a^{U}+1$. Since $\operatorname{gcd}\left(2^{\alpha}, m\right)=1$, we get $m \mid a^{U}+1$, which yields $\lambda(a, m) \leq U$. Finally, combining $U=\lambda(a, M) \leq u$ with $u=\lambda(a, m) \leq U$, we get $\lambda(a, M)=\lambda(a, m)$. This proves (B).

Remark 14. Let us note for completeness sake that the case of $\lambda(a, m)$, where $2 \mid a$ and $2 \mid m$, is trivial. Since $a^{n}+1$ is odd for all $n \in \mathbb{N}, \lambda(a, m)$ does not exist.

Let us conclude this section with an illustrative example.
Example 15. Let $a=11, m=1769=29 \cdot 61$ and let $M=7076=2^{2} m$. First, observe that $\operatorname{ord}_{29}(11)=28, \operatorname{ord}_{61}(11)=4$ and, $\operatorname{ord}_{1769}(11)=28$. Applying part (D) of Theorem 9, we obtain $\lambda(11,29)=\operatorname{ord}_{29}(11) / 2=14$ and, $\lambda(11,61)=\operatorname{ord}_{61}(11) / 2=2$. Next, using Theorem 10 , we get $t=\operatorname{ord}_{1769}(11) / 2=14, w_{1}=14 / \lambda(11,29)=1$ and, $w_{2}=14 / \lambda(11,61)=7$. Since w_{1} and w_{2} are odd numbers, $\lambda(11,1769)$ exists and, by (6), we have $\lambda(11,1769)=14$. Further, observe that $2^{2} \mid a+1=12$. Hence, by Lemma 12, $\lambda\left(11,2^{2}\right)$ exists and $\lambda\left(11,2^{2}\right)=1$. Because $\lambda(11,1769)$ is an even number, by Theorem 13 , we conclude that $\lambda(11,7076)$ does not exist.

4 Mersenne numbers with base a

In this section, we generalize Skula's result presented in Theorem 7. Let $a, k \in \mathbb{N}, a \geq 2$ and let p be a prime satisfying $p \nmid a$. We will call p a Wieferich prime of order k with base a if p^{k} is a Wieferich number with base a. That is, p is a Wieferich prime of order k with base a if and only if

$$
q\left(a, p^{k}\right) \equiv 0\left(\bmod p^{k}\right), \text { or equivalently, } a^{p^{p-1}(p-1)} \equiv 1\left(\bmod p^{2 k}\right)
$$

See [1, Definition 1.3].
Proposition 16. Let $a, k \in \mathbb{N}, a \geq 2$, p be a prime and let $p \nmid a$. Then
(A) $a^{p^{k-1}(p-1)} \equiv 1\left(\bmod p^{2 k}\right)$ if and only if $a^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$.
(B) $a^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$ if and only if $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)$.
(C) p is a Wieferich prime of order k with base a if and only if $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)$.

Proof. First, we prove (A). Assume that $a^{p^{k-1}(p-1)} \equiv 1\left(\bmod p^{2 k}\right)$. Then, by part (i) of Proposition 8,

$$
\begin{equation*}
\operatorname{ord}_{p^{2 k}}(a) \mid p^{k-1}(p-1) \tag{10}
\end{equation*}
$$

Suppose that $a^{p-1} \not \equiv 1\left(\bmod p^{k+1}\right)$. Then $\operatorname{ord}_{p^{k+1}}(a) \neq \operatorname{ord}_{p}(a)$ and, by part (vi) of Proposition 8 , there exists an $r \in\{1, \ldots, k\}$ such that $\operatorname{ord}_{p^{k+1}}(a)=p^{r} \operatorname{ord}_{p}(a)$. Hence, by part (vii) of Proposition 8, we have

$$
\begin{equation*}
\operatorname{ord}_{p^{2 k}}(a)=p^{k} \operatorname{ord}_{p^{k+1}}(a)=p^{k+r} \operatorname{ord}_{p}(a) \tag{11}
\end{equation*}
$$

Since $r \in\{1, \ldots, k\}$ and $\operatorname{ord}_{p}(a) \mid p-1$, we get a contradiction by relations (10) and (11).

Conversely, assume that $a^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$. Then $\operatorname{ord}_{p^{k+1}}(a) \mid p-1$, which yields $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p^{k+1}}(a)$. Hence, by part (vi) of Proposition 8, there exists an $s \in\{0, \ldots, k-$ 1\} such that $\operatorname{ord}_{p^{2 k}}(a)=p^{s} \operatorname{ord}_{p^{k+1}}(a)=p^{s} \operatorname{ord}_{p}(a)$. Since $s \leq k-1$, we get $\operatorname{ord}_{p^{2 k}}(a) \mid$ $p^{k-1} \operatorname{ord}_{p}(a)$, which, together with $\operatorname{ord}_{p}(a) \mid p-1$, yields $\operatorname{ord}_{p^{2 k}}(a) \mid p^{k-1}(p-1)$. Hence, $a^{p^{k-1}(p-1)} \equiv 1\left(\bmod p^{2 k}\right)$. This proves (A).

We prove (B). Let $a^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$. Then $\operatorname{ord}_{p^{k+1}}(a) \mid p-1$. Using part (vi) of Proposition 8, we obtain $\operatorname{ord}_{p^{k+1}}(a)=p^{t} \operatorname{ord}_{p}(a)$ for some $t \in\{0, \ldots, k\}$. If $t \neq 0$, then $p^{t} \operatorname{ord}_{p}(a) \mid p-1$, which is a contradiction. Hence, $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)$.

Conversely, let $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)=u$. Then $u \mid p-1$, which means that there exists a $v \in \mathbb{N}$ such that $p-1=u v$. Since $a^{u} \equiv 1\left(\bmod p^{k+1}\right)$, we have $a^{p-1}=a^{u v}=\left(a^{u}\right)^{v} \equiv$ $1\left(\bmod p^{k+1}\right)$ as required.

Finally, combining (A) and (B), we obtain (C). The proof is complete.

Remark 17. The conclusion (A) in Proposition 16 also holds if $p \mid a$. In this case, of course, we have $a^{p^{k-1}(p-1)} \not \equiv 1\left(\bmod p^{2 k}\right), a^{p-1} \not \equiv 1\left(\bmod p^{k+1}\right)$ for every $a, k \in \mathbb{N}, a \geq 2$. The conclusion (B) in Proposition 16 also holds for $k=0$.

Now we can to prove Theorem 18.
Theorem 18. Let $a, k \in \mathbb{N}, a \geq 2, p, q$ be odd primes and let $p \nmid a, p \nmid a-1$. If $p^{k} \mid M_{q}(a)$, then the following statements are equivalent:
(A) $p^{k+1} \mid M_{q}(a)$.
(B) p is a Wieferich prime with base a of order k.
(C) $\operatorname{ord}_{p^{k+1}}(a)=q$.

Proof. First, we show that (A) implies (B). Let $p^{k+1} \mid M_{q}(a)$. Then $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$, which yields $\operatorname{ord}_{p^{k+1}}(a) \mid q$. Since q is a prime, we have $\operatorname{ord}_{p^{k+1}}(a) \in\{1, q\}$. If $\operatorname{ord}_{p^{k+1}}(a)=1$, then $\operatorname{ord}_{p}(a)=1$, which means $p \mid a-1$, a contradiction. Hence, $\operatorname{ord}_{p^{k+1}}(a)=q$. Suppose that $p=q$. Then $\operatorname{ord}_{p^{k+1}}(a)=p$ and, using part (vi) of Proposition 8, we get $\operatorname{ord}_{p}(a)=1$. Hence, $p \mid a-1$, a contradiction. Let $p \neq q$. Then, by part(vi) of Proposition $8, \operatorname{ord}_{p^{k+1}}(a)=$ $p^{s} \operatorname{ord}_{p}(a)$ for some $s \in\{0, \ldots, k\}$. Since $p \neq q$, we get $s=0$ and $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)=q$. This means, by Proposition 16, that p is a Wieferich prime of order k with base a.

Next, we show that (B) implies (C). Assume that p is a Wieferich prime of order k with base a. Then, by Proposition 16, we have $2^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$ and, using part (i) of Proposition 8, we get $\operatorname{ord}_{p^{k+1}}(a) \mid p-1$. Next, from the basic assumption $p^{k} \mid M_{q}(a)$, we obtain $a^{q} \equiv 1\left(\bmod p^{k}\right)$ and $\operatorname{ord}_{p^{k}}(a) \mid q$ follows. Hence, $\operatorname{ord}_{p^{k}}(a) \in\{1, q\}$. Suppose that $\operatorname{ord}_{p^{k}}(a)=1$. Then $p^{k} \mid a-1$, which yields $p \mid a-1$, a contradiction. Hence, $\operatorname{ord}_{p^{k}}(a)=q$. Now, by part (v) of Proposition 8, we have $\operatorname{ord}_{p^{k+1}}(a)=p q$ or $\operatorname{ord}_{p^{k+1}}(a)=q$. Suppose that $\operatorname{ord}_{p^{k+1}}(a)=p q$. Since $\operatorname{ord}_{p^{k+1}}(a) \mid p-1$, we get $p q \mid p-1$, a contradiction. Hence, (C).

Finally, we show that (C) implies (A). If $\operatorname{ord}_{p^{k+1}}(a)=q$, then $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$, which yields $p^{k+1} \mid M_{q}(a)$. The proof is complete.

Another generalization of Theorem 7 provide Theorem 19.
Theorem 19. Let $a, k \in \mathbb{N}, a \geq 2, p, q$ be primes and let $p \nmid a$. Then we have $p^{k+1} \mid M_{q}(a)$ if and only if at least one of the below conditions (A), (B), (C) holds.
(A) $\operatorname{ord}_{p}(a)=1, \operatorname{ord}_{p^{k+1}}(a)=p, p=q$.
(B) $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p^{k+1}}(a)=1$.
(C) $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p^{k+1}}(a)=q$.

Proof. (i) If $p^{k+1} \mid M_{q}(a)$, then $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$, which yields $\operatorname{ord}_{p^{k+1}}(a) \mid q$. Since q is a prime, we have $\operatorname{ord}_{p^{k+1}}(a) \in\{1, q\}$. If $\operatorname{ord}_{p^{k+1}}(a)=1$, then $\operatorname{ord}_{p}(a)=1$ and (B) follows. If $\operatorname{ord}_{p^{k+1}}(a)=q$, then, by part (vi) of Proposition 8, we have $\operatorname{ord}_{p^{k+1}}(a)=p^{s} \operatorname{ord}_{p}(a)$ for some $s \in\{0, \ldots, k\}$. Hence, $p^{s} \operatorname{ord}_{p}(a)=q$. Since $\operatorname{ord}_{p}(a) \in \mathbb{N}$ and p, q are primes, only two following cases can occur.

Case 1: $s=1, \operatorname{ord}_{p}(a)=1, p=q$. Hence, (A).
Case 2: $s=0, \operatorname{ord}_{p}(a)=q$. Hence, (C).
(ii) The proof of a converse implication consists of three simple parts. Assume (A). Then $\operatorname{ord}_{p^{k+1}}(a)=p$ implies $a^{p} \equiv 1\left(\bmod p^{k+1}\right)$, which means $p^{k+1} \mid a^{p}-1$. Since $p=q$, we have $p^{k+1} \mid a^{q}-1=M_{q}(a)$. Assume (B). Then $\operatorname{ord}_{p^{k+1}}(a)=1$ implies $a \equiv 1\left(\bmod p^{k+1}\right)$, thus, $p^{k+1} \mid a-1$. Hence, $p^{k+1} \mid(a-1)\left(a^{q-1}+\cdots+a+1\right)=a^{q}-1=M_{q}(a)$. Assume (C). Then $\operatorname{ord}_{p^{k+1}}(a)=q$ implies $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$. Hence, $p^{k+1} \mid a^{q}-1=M_{q}(a)$.

Applying Theorem 19 for $a=2$, we obtain Corollary 20.
Corollary 20. Let $k \in \mathbb{N}, p, q$ be primes and let $p \neq 2$. Then $p^{k+1} \mid M_{q}$ if and only if $\operatorname{ord}_{p^{k+1}}(2)=\operatorname{ord}_{p}(2)=q$. Consequently,

$$
\begin{equation*}
p^{2} \mid M_{q} \text { if and only if } p \in W \text { and } \operatorname{ord}_{p}(2)=q . \tag{12}
\end{equation*}
$$

Proof. If p is a prime satisfying $\operatorname{ord}_{p}(2)=1$, then $2 \equiv 1(\bmod p)$, which is a contradiction. Hence, the cases (A) and (B) in Theorem 19 never occur. Part (C) in Theorem 19 yields $\operatorname{ord}_{p^{k+1}}(2)=\operatorname{ord}_{p}(2)=q$. If $k=1$, (12) follows immediately.

We now show some examples demonstrating part (C) of Theorem 19.
Example 21. (i) Let $k=1, a=53, p=47$. Then

$$
\operatorname{ord}_{47}(53)=\operatorname{ord}_{47^{2}}(53)=23 \text { and, } 47^{2} \mid M_{23}(53)=53^{23}-1 .
$$

(ii) Let $k=2, a=6619, p=383$. Then

$$
\operatorname{ord}_{383}(6619)=\operatorname{ord}_{383^{3}}(6619)=191 \text { and, } 383^{3} \mid M_{191}(6619)=6619^{191}-1
$$

(iii) Let $k=3, a=2819, p=19$. Then

$$
\operatorname{ord}_{19}(2819)=\operatorname{ord}_{19^{4}}(2819)=3 \text { and, } 19^{4} \mid M_{3}(2819)=2819^{3}-1
$$

(iv) Let $k=3, a=15384, p=71$. Then

$$
\operatorname{ord}_{71}(15384)=\operatorname{ord}_{71^{4}}(15384)=7 \text { and, } 71^{4} \mid M_{7}(15384)=15384^{7}-1
$$

5 Landry numbers with base a

In this section we will refer to Landry numbers with base a as the numbers

$$
L_{n}(a)=a^{n}+1 \text { where } a \in \mathbb{N}, a \geq 2, n \in \mathbb{N} \cup\{0\} .
$$

In particular, to numbers $L_{n}=L_{n}(2)=2^{n}+1$, we will refer as Landry numbers. The term of Landry numbers we will introduce in honor of the French mathematician Fortuné Landry (1799-1895), who successfully dealt with prime factorizations of the numbers $2^{n} \pm 1$. This designation has been inspired by a note presented by Williams [26, p. 463]. Here, Williams mentions that some of Landry's results have not received due attention being largely ignored. For details see [26].

The main aim of this section is to show that results analogous to Theorem 7 can also be proved for Landry numbers. The following Lemma 22 will be useful in proving Theorem 23.

Lemma 22. Let $k \in \mathbb{N}, p, q$ be primes and let $p \neq 2$. Then (i) - (iv) hold.
(i) $\operatorname{ord}_{p^{k}}(2) \neq 1$.
(ii) $\operatorname{ord}_{p^{k}}(2)=2$ if and only if $p=3$ and $k=1$.
(iii) $\operatorname{ord}_{p^{k+1}}(2) \neq 2$.
(iv) If $\operatorname{ord}_{p^{k+1}}(2)=2 q$ then, $\operatorname{ord}_{p}(2) \neq q$.

The proof of Lemma 22 can be left to the reader.
Theorem 23. Let $k \in \mathbb{N}, p, q$ be odd primes and let $p>3$. If $p^{k} \mid L_{q}$, then the following statements are equivalent:
(A) $p^{k+1} \mid L_{q}$.
(B) p is a Wieferich prime of order k.
(C) $\operatorname{ord}_{p^{k+1}}(2)=2 q$.

Proof. First, we prove that (A) implies (B). Let $p^{k+1} \mid L_{q}$. Then we have $2^{q} \equiv-1\left(\bmod p^{k+1}\right)$, which yields $2^{2 q} \equiv 1\left(\bmod p^{k+1}\right)$. Hence, $\operatorname{ord}_{p^{k+1}}(2) \mid 2 q$. By Lemma 22, we now obtain $\operatorname{ord}_{p^{k+1}}(2)=2 q$. Since $\operatorname{ord}_{p}(2) \mid \operatorname{ord}_{p^{k+1}}(2)$, we have $\operatorname{ord}_{p}(2) \in\{1,2, q, 2 q\}$ and, by Lemma 22, we get $\operatorname{ord}_{p}(2)=2 q$. Hence, $\operatorname{ord}_{p^{k+1}}(2)=\operatorname{ord}_{p}(2)$. This means, by Proposition 16, that p is a Wieferich prime of order k.

Next, we prove that (B) implies (C). Assume that p is a Wieferich prime of order k. Then, by Proposition 16, we have $2^{p-1} \equiv 1\left(\bmod p^{k+1}\right)$ and, by part (i) of Proposition 8, we get $\operatorname{ord}_{p^{k+1}}(2) \mid p-1$. Next, from the basic assumption $p^{k} \mid L_{q}$, we obtain $2^{q} \equiv$ $-1\left(\bmod p^{k}\right)$, which yields $2^{2 q} \equiv 1\left(\bmod p^{k}\right)$. Hence, $\operatorname{ord}_{p^{k}}(2) \mid 2 q$ and, by Lemma 22, we obtain $\operatorname{ord}_{p^{k}}(2)=2 q$. Further, by part (v) of Proposition 8, we get $\operatorname{ord}_{p^{k+1}}(2) \in\{2 q, 2 p q\}$.

Suppose that $\operatorname{ord}_{p^{k+1}}(2)=2 p q$. Since $\operatorname{ord}_{p^{k+1}}(2) \mid p-1$, we get $2 p q \mid p-1$, a contradiction. Hence, $\operatorname{ord}_{p^{k+1}}(2)=2 q$.

Finally, we prove that (C) implies (A). Assume, that $\operatorname{ord}_{p^{k+1}}(2)=2 q$. Then $2^{2 q} \equiv$ $1\left(\bmod p^{k+1}\right)$ yielding $p^{k+1} \mid\left(2^{q}-1\right)\left(2^{q}+1\right)$. Suppose that $p \mid 2^{q}-1$. Then we have $\operatorname{ord}_{p}(2) \mid q$, which means that $\operatorname{ord}_{p}(2) \in\{1, q\}$. Hence, by Lemma 22, a contradiction follows. Therefore, $p^{k+1} \mid 2^{q}+1=L_{q}$. The proof is complete.

For Landry numbers with a base $a \in \mathbb{N}, a \geq 2$, we can prove the following theorem.
Theorem 24. Let $a, k \in \mathbb{N}, a \geq 2$, let p, q be odd primes, and let $p \nmid a$. Then $p^{k+1} \mid L_{q}(a)$ if and only if at least one of the below conditions (A), (B), (C) holds.
(A) $\operatorname{ord}_{p}(a)=2, \operatorname{ord}_{p^{k+1}}(a)=2 p, p=q$.
(B) $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p^{k+1}}(a)=2$.
(C) $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p^{k+1}}(a)=2 q$.

Proof. (i) Let $p^{k+1} \mid L_{q}(a)$. Then $a^{q} \equiv-1\left(\bmod p^{k+1}\right)$, which yields $\operatorname{ord}_{p^{k+1}}(a) \neq q$. On the other hand, the congruence $a^{q} \equiv-1\left(\bmod p^{k+1}\right)$ implies $a^{2 q} \equiv 1\left(\bmod p^{k+1}\right)$. Hence, $\operatorname{ord}_{p^{k+1}}(a) \mid 2 q$. Since q is an odd prime, we have $\operatorname{ord}_{p^{k+1}}(a) \in\{1,2,2 q\}$. Next, by part (vi) of Proposition 8, there exists an $s \in\{0, \ldots, k\}$ such that $\operatorname{ord}_{p^{k+1}}(a)=p^{s} \operatorname{ord}_{p}(a)$. Hence, $p^{s} \operatorname{ord}_{p}(a) \mid 2 q$.

Let $s \neq 0$. Since p, q are odd primes, the relation $p^{s} \operatorname{ord}_{p}(a) \mid 2 q$ implies $s=1, p=q$ and $\operatorname{ord}_{p}(a) \mid 2$. Hence, $\operatorname{ord}_{p}(a) \in\{1,2\}$. Suppose that $\operatorname{ord}_{p}(a)=1$. Then $\operatorname{ord}_{p^{k+1}}(a)=p$, which means that $a^{p} \equiv 1\left(\bmod p^{k+1}\right)$. Since we have $p=q$, it follows from $p^{k+1} \mid L_{q}(a)$ that $a^{p} \equiv-1\left(\bmod p^{k+1}\right)$. Combining $a^{p} \equiv 1\left(\bmod p^{k+1}\right)$ and $a^{p} \equiv-1\left(\bmod p^{k+1}\right)$, we obtain $2 \equiv 0\left(\bmod p^{k+1}\right)$, a contradiction. If $\operatorname{ord}_{p}(a)=2$, then $\operatorname{ord}_{p^{k+1}}(a)=2 p=2 q$. Hence, (A).

Let $s=0$. Then we have $\operatorname{ord}_{p^{k+1}}(a)=\operatorname{ord}_{p}(a)$. Suppose that $\operatorname{ord}_{p^{k+1}}(a)=1$. Then $p^{k+1} \mid$ $a-1$. Hence, $p^{k+1} \mid(a-1)\left(a^{q-1}+\cdots+a+1\right)=a^{q}-1$, which yields $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$. On the other hand, from $p^{k+1} \mid L_{q}(a)$, it follows $a^{q} \equiv-1\left(\bmod p^{k+1}\right)$. Along with $a^{q} \equiv 1\left(\bmod p^{k+1}\right)$, this yields $2 \equiv 0\left(\bmod p^{k+1}\right)$, a contradiction. Finally, if $\operatorname{ord}_{p^{k+1}}(a)=2$, we get (B) and, if $\operatorname{ord}_{p^{k+1}}(a)=2 q$, we get (C).
(ii) The proof of the converse implication consists of the three following parts.

Assume (A). From $\operatorname{ord}_{p^{k+1}}(a)=2 p$, it follows that $p^{k+1} \mid a^{2 p}-1=\left(a^{p}-1\right)\left(a^{p}+1\right)$. Suppose that $p \mid a^{p}-1$. Then $\operatorname{ord}_{p}(a) \in\{1, p\}$, which is a contradiction with $\operatorname{ord}_{p}(a)=2$. Hence, $p^{k+1} \mid a^{p}+1$. Since $p=q$, we have $p^{k+1} \mid a^{q}+1=L_{q}(a)$.

Assume (B). From $\operatorname{ord}_{p^{k+1}}(a)=2$, it follows that $p^{k+1} \mid a^{2}-1=(a-1)(a+1)$. Suppose that $p \mid a-1$. Then we have $\operatorname{ord}_{p}(a)=1$, which is a contradiction with $\operatorname{ord}_{p}(a)=2$. Hence, $p^{k+1} \mid a+1$, which yields $p^{k+1} \mid(a+1)\left(a^{q-1}-a^{q-2}+\cdots-a+1\right)=a^{q}+1=L_{q}(a)$.

Assume (C). From $\operatorname{ord}_{p^{k+1}}(a)=2 q$, it follows that $p^{k+1} \mid a^{2 q}-1=\left(a^{q}-1\right)\left(a^{q}+1\right)$. Suppose that $p \mid a^{q}-1$. Then $\operatorname{ord}_{p}(a) \in\{1, q\}$, which is a contradiction with $\operatorname{ord}_{p}(a)=2 q$. Hence, $p^{k+1} \mid a^{q}+1=L_{q}(a)$.

Applying Theorem 24 for $a=2$ and $k=1$, we obtain Corollary 25.
Corollary 25. Let p, q be an odd primes. Then $p^{2} \mid L_{q}$ if and only if

$$
\begin{equation*}
[p, q]=[3,3] \text { or } \operatorname{ord}_{p}(2)=\operatorname{ord}_{p^{2}}(2)=2 q . \tag{13}
\end{equation*}
$$

Consequently, if $p>3$, then

$$
\begin{equation*}
p^{2} \mid L_{q} \text { if and only if } p \in W \text { and } \operatorname{ord}_{p}(2)=2 q . \tag{14}
\end{equation*}
$$

Proof. Let p be an odd prime satisfying $\operatorname{ord}_{p}(2)=2$. Then $2^{2} \equiv 1(\bmod p)$, which yields $p=3$. Since $\operatorname{ord}_{9}(2)=6$, part (A) in Theorem 24 is equivalent to $[p, q]=[3,3]$ and part (B) will never occur. Next, part (C) of Theorem 24 yields $\operatorname{ord}_{p}(2)=\operatorname{ord}_{p^{2}}(2)=2 q$. Hence, (13). Finally, (14) immediately follows from (13) and Proposition 16.

We now demonstrate part (C) of Theorem 24 by some examples.
Example 26. (i) Let $k=1, a=79, p=263$. Then

$$
\operatorname{ord}_{263}(79)=\operatorname{ord}_{263^{2}}(79)=2 \cdot 131 \text { and, } 263^{2} \mid L_{131}(79)=79^{131}+1
$$

(ii) Let $k=2, a=42, p=23$. Then

$$
\operatorname{ord}_{23}(42)=\operatorname{ord}_{23^{3}}(42)=2 \cdot 11 \text { and, } 23^{3} \mid L_{11}(42)=42^{11}+1
$$

(iii) Let $k=3, a=119551, p=107$. Then

$$
\operatorname{ord}_{107}(119551)=\operatorname{ord}_{107^{4}}(119551)=2 \cdot 53 \text { and, } 107^{4} \mid L_{53}(119551)=119551^{53}+1
$$

(iv) Let $k=1, a=26, p=6695256707$. Then

$$
\operatorname{ord}_{p}(26)=\operatorname{ord}_{p^{2}}(26)=2 q, q=3347628353 \text { and, } 6695256707^{2} \mid L_{q}(26)=26^{q}+1
$$

Note, that the number $26^{q}+1$ has 4736804899 digits. This can be verified using the formula $N=\left\lfloor\log _{10}(n)+1\right\rfloor$. Here, N stands for the number of digits of n and $\lfloor\cdot\rfloor$ denotes the floor function.

Remark 27. After a brief inspection of the proof of Theorem 24, we see that its conclusion cannot be true for q having a value of 2 . Namely, if $q=2$, then (B) does not imply $p^{k+1} \mid L_{q}(a)$. To see this, assume (B). Then $\operatorname{ord}_{p^{k+1}}(a)=2$, which means $a^{2} \equiv 1\left(\bmod p^{k+1}\right)$. Suppose that $p^{k+1} \mid L_{2}(a)$. Then $a^{2} \equiv-1\left(\bmod p^{k+1}\right)$. This, together with $a^{2} \equiv 1\left(\bmod p^{k+1}\right)$, yields $2 \equiv 0\left(\bmod p^{k+1}\right)$, a contradiction. It is worth noting that all the remaining implications in Theorem 24 are also true for $q=2$.

Theorem 28. Let $a, k \in \mathbb{N}, a>2,2 \nmid a$ and let q be a prime. Then (A) and (B) hold.
(A) Let $q \neq 2$. Then $2^{k+1} \mid L_{q}(a)$ if and only if $2^{k+1} \mid L_{1}(a)$.
(B) Let $q=2$. Then $2^{k+1} \nmid L_{2}(a)$.

Proof. We prove (A). First, using the assumption $q \neq 2$, we obtain

$$
\begin{equation*}
L_{q}(a)=L_{1}(a)\left(a^{q-1}-a^{q-2}+\cdots-a+1\right) \tag{15}
\end{equation*}
$$

Next, applying $2 \nmid a$ and $2 \nmid q$, we get $2 \nmid\left(a^{q-1}-a^{q-2}+\cdots-a+1\right)$. This, together with (15), yields (A).

We prove (B). Since $a>2$ and $2 \nmid a$, there exists an $\alpha \in \mathbb{N}$ such that $a=2 \alpha+1$. Hence, $a^{2}+1=2\left(2 \alpha^{2}+2 \alpha+1\right)$. This means that $4 \nmid a^{2}+1$ and, $2^{k+1} \nmid L_{2}(a)$ follows.

We conclude this section by Hypothesis 29.
Hypothesis 29. Every Landry number $L_{n}=2^{n}+1$ with a prime exponent $n>3$ is of the form $L_{n}=p_{1} \cdots p_{k}$ where p_{1}, \ldots, p_{k} are distinct odd primes and $k \geq 1$.

6 Some problems related to $\operatorname{ord}_{p}(2)$

We start this section by recalling some known properties of the quadratic character of 2 .
Theorem 30. Let p be a prime, $p \neq 2$. Then

$$
\begin{equation*}
\left(\frac{2}{p}\right) \equiv 2^{\frac{p-1}{2}}(\bmod p) \tag{16}
\end{equation*}
$$

and,

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}1, & \text { if } p \equiv 1,7(\bmod 8) \tag{17}\\ -1, & \text { if } p \equiv 3,5(\bmod 8)\end{cases}
$$

For a proof of (16) see, for example, [6, p. 86] or [8, p. 51]. An elementary proof of (17), based on Gauss's lemma, can be found in books [8, p. 53] and [15, p. 102]. For some alternative proofs of (17), consult articles [10] and [25].

Proposition 31. Let p be a prime, $p \neq 2$ and let $\operatorname{ord}_{p}(2)=q$, where q is a prime. Then

$$
\begin{equation*}
p=3 \text { or } p \equiv 1,7(\bmod 8) . \tag{18}
\end{equation*}
$$

Proof. If $q=2$, then $\operatorname{ord}_{p}(2)=2$. Hence, $3 \equiv 0(\bmod p)$ and $p=3$ follows. Let $q \neq 2$. Since $q \mid p-1$, there exists a $u \in \mathbb{N}$ such that $p-1=2 q u$. Hence, $2^{(p-1) / 2}=\left(2^{q}\right)^{u} \equiv 1^{u} \equiv 1(\bmod p)$. Applying (16) and (17), we now obtain $p \equiv 1,7(\bmod 8)$.

The below example illustrates that, in (18), both cases $p \equiv 1,7(\bmod 8)$ can occur.

Example 32. (i) Let $p=89$. Then $p \equiv 1(\bmod 8)$ and we have $\operatorname{ord}_{89}(2)=11$. (ii) Let $p=7$. Then $p \equiv 7(\bmod 8)$ and we have $\operatorname{ord}_{7}(2)=3$. The values of the primes p presented are the least values for which the corresponding cases occur.

Proposition 33. Let p be a prime, $p \neq 2$ and let $\operatorname{ord}_{p}(2)=2 q$, where q is a prime. Then (i) and (ii) hold:
(i) $p \neq 8 k+5$ for any $k \in \mathbb{N}$.
(ii) $p \neq 8 k+7$ for any $k \in \mathbb{N}$.

Proof. First observe that, if $q=2$, then $\operatorname{ord}_{p}(2)=4$ and, thus, $15 \equiv 0(\bmod p)$. Hence, $p=3$ or $p=5$, which yields a contradiction in both cases (i) and (ii).

To prove (i), let $q \neq 2$. Suppose that $p=8 k+5$ for some $k \in \mathbb{N}$. Then, by Theorem 30, $(2 / p) \equiv 2^{(p-1) / 2} \equiv-1(\bmod p)$. Since $2 q \mid p-1$, there exists a $u \in \mathbb{N}$ such that $p-1=2 q u$. Hence,

$$
\begin{equation*}
2^{q u}=2^{(p-1) / 2} \equiv-1(\bmod p) \tag{19}
\end{equation*}
$$

Next, it is clear from $\operatorname{ord}_{p}(2)=2 q$ that $2^{2 q} \equiv 1(\bmod p)$. Hence, $2^{q} \equiv-1(\bmod p)$. Suppose that u is even. Then

$$
\begin{equation*}
2^{q u}=\left(2^{q}\right)^{u} \equiv(-1)^{u} \equiv 1(\bmod p) . \tag{20}
\end{equation*}
$$

Combining (19) and (20) we obtain $2 \equiv 0(\bmod p)$. Hence, $p=2$, a contradiction.
Suppose that u is odd. Then $u=2 v+1$ for some $v \in \mathbb{N} \cup\{0\}$. From $p-1=2 q u$, it follows that $p=4 q v+2 q+1$, which yields $p \equiv 2 q+1(\bmod 4)$. On the other hand, using the assumption $p=8 k+5$, we get $p \equiv 1(\bmod 4)$. This, together with $p \equiv 2 q+1(\bmod 4)$, yields $q \equiv 0(\bmod 2)$. Hence, $q=2$, a contradiction. This proves (i).

The proof of (ii) is similar.
From Proposition 33, we immediately obtain Corollary 34.
Corollary 34. Let p be a prime, $p \neq 2$ and let $\operatorname{ord}_{p}(2)=2 q$, where q is a prime. Then

$$
\begin{equation*}
p=5 \text { or } p \equiv 1,3(\bmod 8) . \tag{21}
\end{equation*}
$$

The below example illustrates that, in (21), both cases $p \equiv 1,3(\bmod 8)$ can occur.
Example 35. (i) Let $p=1049$. Then $p \equiv 1(\bmod 8)$ and we have $\operatorname{ord}_{1049}(2)=2 \cdot 131$. (ii) Let $p=11$. Then $p \equiv 3(\bmod 8)$ and we have $\operatorname{ord}_{11}(2)=2 \cdot 5$. The values of the primes p presented are the least values for which the corresponding cases occur.

In the remaining part of this section, the following notation will be adopted. If A is a finite set, $\# A$ denotes the number of elements of A. Next, P denotes the set of all odd primes. Finally, for an $n \in \mathbb{N}$, we define

$$
\begin{aligned}
& \pi(n)=\#\{p \in P \cup\{2\}: p \leq n\}, \\
& E(n)=\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2) \text { is even }\right\}, \\
& O(n)=\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2) \text { is odd }\right\} \\
& Q(n)=\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=q, q \in P \cup\{2\}\right\}, \\
& T(n)=\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=2 q, q \in P \cup\{2\}\right\} .
\end{aligned}
$$

Computer investigation of the values $E(n), O(n), Q(n), T(n)$ and $\pi(\pi(n))$ for $n \leq 10^{10}$ yields the data in Table 1:

n	$E(n)$	$O(n)$	$Q(n)$	$T(n)$	$\pi(n)$	$\pi(\pi(n))$
10^{2}	16	8	6	5	25	9
10^{3}	117	50	22	17	168	39
10^{4}	878	350	106	96	1229	201
10^{5}	6794	2797	586	590	9592	1184
10^{6}	55550	22947	3846	3745	78498	7702
10^{7}	470633	193945	26561	26596	664579	53911
10^{8}	4081095	1680359	196652	196695	5761455	397557
10^{9}	36016626	14830907	1511508	1509239	50847534	3048955
10^{10}	322328955	132723555	11982381	11981476	455052511	24106415

Table 1: Some values of $E(n), O(n), Q(n), T(n)$ and $\pi(\pi(n))$.
From Table 1, we immediately obtain

$$
\begin{equation*}
\frac{E\left(10^{10}\right)}{\pi\left(10^{10}\right)} \doteq 0.708333, \frac{O\left(10^{10}\right)}{\pi\left(10^{10}\right)} \doteq 0.291666 \text { and } \frac{O\left(10^{10}\right)}{E\left(10^{10}\right)} \doteq 0.411764 \tag{22}
\end{equation*}
$$

The relations given in (22) reveal a significant difference between the numbers $E(n)$ and $O(n)$ in the investigated range. In fact, in 1966, Hasse, [7, p. 23] proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{E(n)}{\pi(n)}=\frac{17}{24}, \lim _{n \rightarrow \infty} \frac{O(n)}{\pi(n)}=\frac{7}{24} \text { and } \lim _{n \rightarrow \infty} \frac{O(n)}{E(n)}=\frac{7}{17} . \tag{23}
\end{equation*}
$$

See also Lagarias [14, p. 449]. Furthermore, from Table 1, we obtain

$$
\begin{equation*}
\frac{Q\left(10^{10}\right)}{T\left(10^{10}\right)} \doteq 1.000075 \text { and } \frac{\pi\left(\pi\left(10^{10}\right)\right)}{Q\left(10^{10}\right)} \doteq 2.011821 \tag{24}
\end{equation*}
$$

This leads to a natural question, which can be formulated as Problem 36.

Problem 36. Prove or disprove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q(n)}{T(n)}=1 \text { and } \lim _{n \rightarrow \infty} \frac{\pi(\pi(n))}{Q(n)}=2 \tag{25}
\end{equation*}
$$

Next, for an $n \in \mathbb{N}$, let us define

$$
\begin{aligned}
R(n) & =\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=q, q \in P \cup\{2\}, p \equiv 1(\bmod 8)\right\}, \\
S(n) & =\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=q, q \in P \cup\{2\}, p \equiv 7(\bmod 8)\right\}, \\
U(n) & =\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=2 q, q \in P \cup\{2\}, p \equiv 1(\bmod 8)\right\}, \\
V(n) & =\#\left\{p \in P: p \leq n, \operatorname{ord}_{p}(2)=2 q, q \in P \cup\{2\}, p \equiv 3(\bmod 8)\right\} .
\end{aligned}
$$

Computer investigation of the values $R(n), S(n), U(n)$, and $V(n)$ for $n \leq 10^{10}$, yields the data in Table 2.

n	$R(n)$	$S(n)$	$U(n)$	$V(n)$
10^{2}	1	4	0	4
10^{3}	2	19	0	16
10^{4}	13	92	18	77
10^{5}	92	493	95	494
10^{6}	629	3216	594	3150
10^{7}	4182	22378	4320	22275
10^{8}	30556	166095	30961	165733
10^{9}	233384	1278123	233357	1275881
10^{10}	1834805	10147575	1835943	10145532

Table 2: Some values of $R(n), S(n), U(n)$, and $V(n)$.
From Tables 1 and 2, we get

$$
\begin{aligned}
& \frac{R\left(10^{10}\right)}{Q\left(10^{10}\right)} \doteq 0.153125, \frac{S\left(10^{10}\right)}{Q\left(10^{10}\right)} \doteq 0.846874 \text { and } \frac{R\left(10^{10}\right)}{S\left(10^{10}\right)} \doteq 0.180812 \\
& \frac{U\left(10^{10}\right)}{T\left(10^{10}\right)} \doteq 0.153231, \frac{V\left(10^{10}\right)}{T\left(10^{10}\right)} \doteq 0.846768 \text { and } \frac{U\left(10^{10}\right)}{V\left(10^{10}\right)} \doteq 0.180960
\end{aligned}
$$

Hence, we can propose the following problem.
Problem 37. Find the limits (26) and (27) and prove that $\alpha_{i}=\beta_{i}$ for $i \in\{1,2,3\}$.

$$
\begin{align*}
& \alpha_{1}=\lim _{n \rightarrow \infty} \frac{R(n)}{Q(n)}, \alpha_{2}=\lim _{n \rightarrow \infty} \frac{S(n)}{Q(n)} \text { and } \alpha_{3}=\lim _{n \rightarrow \infty} \frac{R(n)}{S(n)} . \tag{26}\\
& \beta_{1}=\lim _{n \rightarrow \infty} \frac{U(n)}{T(n)}, \beta_{2}=\lim _{n \rightarrow \infty} \frac{V(n)}{T(n)} \text { and } \beta_{3}=\lim _{n \rightarrow \infty} \frac{U(n)}{V(n)} . \tag{27}
\end{align*}
$$

7 Concluding remarks

The following questions play an important role in further investigating the problem of the existence of primes p, q satisfying $p^{2} \mid 2^{q} \pm 1$. Is there a third Wieferich prime? Is the set W of all Wieferich primes finite or infinite? Opinions vary as to what are the correct answers to such questions. See, for example, Beeger [3, p. 52] and Guy [5, p. 14]. If Beeger's point of view is right, that is, $W=\{1093,3511\}$, then both Hypothesis 1 and Hypothesis 29 hold. This follows immediately from (28) and (29).

$$
\begin{align*}
& \operatorname{ord}_{1093}(2)=\operatorname{ord}_{1093^{2}}(2)=364=2^{2} \cdot 7 \cdot 13 \tag{28}\\
& \operatorname{ord}_{3511}(2)=\operatorname{ord}_{3511^{2}}(2)=1755=3^{3} \cdot 5 \cdot 13 \tag{29}
\end{align*}
$$

On the other hand, by (12) and (14), both hypotheses may hold true even if the set W is infinite. This fact makes both problems even more interesting.

It is worth noting that a similar disunity of opinion can also be seen in the analogous problem concerning the existence of Wall-Sun-Sun primes. A detailed historical study of this problem can be found in the article [11].

In conclusion, let us note that a statement similar to (12) and (14) can also be proved for Fermat numbers as shown below.

Theorem 38. Let $n \in \mathbb{N} \cup\{0\}$ and let p be a prime. Then

$$
\begin{equation*}
p^{2} \mid F_{n} \text { if and only if } p \in W \text { and } \operatorname{ord}_{p}(2)=2^{n+1} . \tag{30}
\end{equation*}
$$

Using a computer, it can be verified that, for $p \leq 10^{10}$, there exist only 20 primes satisfying $\operatorname{ord}_{p}(2)=2^{k}$ for some $k \in \mathbb{N}$:

$$
3,5,17,257,641,65537,114689,274177,319489,974849,2424833,6700417,13631489,
$$

$$
26017793,45592577,63766529,167772161,825753601,1214251009,6487031809 .
$$

8 Acknowledgment

The author thanks the anonymous referee for carefully reading the manuscript.

References

[1] T. Agoh, K. Dilcher, and L. Skula, Fermat quotients for composite moduli, J. Number Theory 66 (1997), 29-50.
[2] N. Beeger, On a new case of the congruence $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$, Messenger of Mathematics 51 (1922), 149-150.
[3] N. Beeger, On the congruence $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$ and Fermat's last theorem, Nieuw Arch. Wiskunde 20 (1939), 51-54.
[4] E. Deza, Mersenne Numbers and Fermat Numbers, Selected Chapters of Number Theory: Special Numbers, World Scientific, 2021.
[5] R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, Oxford University Press, 2008.
[7] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod.p ist, Math. Ann. 166 (1966), 19-23.
[8] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Springer, 1992.
[9] F. Jakóbczyk, Les applications de la fonction $\lambda_{g}(n)$ à l'étude des fractions périodiques et de la congruence chinoise $2^{n}-2 \equiv 0(\bmod n)$, Ann. Univ. Mariae Curie-Skłodowska 5 (1951), 97-138.
[10] R. Jakimczuk, The quadratic character of 2, Math. Mag. 84 (2011), 126-127.
[11] J. Klaška, Donald Dines Wall's conjecture, Fibonacci Quart. 56 (2018), 43-51.
[12] J. Klaška, A simple proof of Skula's theorem on prime power divisors of Mersenne numbers, J. Integer Sequences 25 (2022), Article 22.4.3.
[13] M. Křížek, F. Luca, and L. Somer, 17 Lectures on Fermat Numbers, From Number Theory to Geometry, Canadian Mathematical Society, Springer, 2001.
[14] J. C. Lagarias, The set of primes dividing the Lucas numbers has density $2 / 3$, Pacific J. Math. 118 (1985), 449-461.
[15] W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, 1977.
[16] W. J. LeVeque, Topics in Number Theory, Volume I, Dover Publications, 2002.
[17] W. Meissner, Über die Teilbarkeit von $2^{p}-2$ durch das Quadrat der Primzahl $p=1093$, Sitzungsberichte der Akademie der Wissenschaften 35 (1913), 663-667.
[18] H. Piersa, Śp. Ksiądz dr Franciszek Jakóbczyk (9 X 1905-3 VI 1992), Roczniki Filozoficzne 39-40, (1991-1992), 5-7.
[19] PrimeGrid, https://www. primegrid.com.
[20] A. Rotkiewicz, Sur les nombres de Mersenne dépourvus de diviseurs carrés et sur les nombres naturels n, tels que $n^{2} \mid 2^{n}-2$, Mat. Vestnik 17 (1965), 78-80.
[21] W. Sierpiński, A Selection of Problems in the Theory of Numbers, Pergamon Press, 1964.
[22] L. Skula, Prime power divisors of Mersenne numbers and Wieferich primes of higher order, Integers 19 (2019), \#A19.
[23] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, available at https://oeis.org, 2023.
[24] L. R. Warren and H. G. Bray, On the square-freeness of Fermat and Mersenne numbers, Pacific J. Math. 22 (1967), 563-564.
[25] K. S. Williams, The quadratic character of $2 \bmod p$, Math. Mag. 49 (1976), 89-90.
[26] K. S. Williams, How was F_{6} factored?, Math. Comp. 61 (1993), 463-474.
[27] A. Wieferich, Zum letzten Fermat'schen Theorem, J. Reine Angew. Math. 136 (1909), 293-302.

2020 Mathematics Subject Classification: Primary 11A41; Secondary 11A07.
Keywords: Mersenne number, Fermat number, Wieferich prime, Wieferich number.
(Concerned with sequences A000215, A000225, A001220, and A077816.)

Received February 9 2023; revised versions received March 16 2023; March 17 2023. Published in Journal of Integer Sequences, March 172023.

Return to Journal of Integer Sequences home page.

