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Abstract

Recently Skula published an interesting article on the divisibility of Mersenne num-

bers 2n − 1 by powers of primes. His main result is closely related to Jakóbczyk’s

hypothesis. We generalize Skula’s result for the numbers an ± 1 where a ∈ N, a ≥ 2.

1 Introduction

In 1951, Polish priest and mathematician Franciszek Jakóbczyk [9, p. 127] published two re-
markable hypotheses concerning Mersenne [23, A000225] and Fermat [23, A000215] numbers.
These hypotheses can be formulated as follows.

Hypothesis 1. Every Mersenne number Mn = 2n − 1 with a prime exponent n is of the
form Mn = p1 · · · pk where p1, . . . , pk are distinct odd primes and k ≥ 1.

Hypothesis 2. Every Fermat number Fn = 22
n

+ 1 with n ∈ N ∪ {0} is of the form
Fn = p1 · · · pk where p1, . . . , pk are distinct odd primes and k ≥ 1.

Hypotheses 1 and 2 are currently among the well-known unresolved number theory prob-
lems. See, for example, [21, p. 92], [5, pp. 14–16] and, [13, p. 160]. A more detailed
examination of the divisibility of Mersenne and Fermat numbers led to the discovery of a
link between Jakóbczyk’s hypotheses and the Wieferich primes [23, A001220]. Recall that
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a prime p is called Wieferich if 2p−1 ≡ 1 (mod p2). Wieferich primes were first introduced
in 1909 in relation to the first case of Fermat’s last theorem. In the paper [27] Wieferich
proved that, if p is an odd prime and xp + yp + zp = 0 has a solution in integers x, y, z with
p ∤ xyz, then 2p−1 ≡ 1 (mod p2). Only two Wieferich primes have been discovered so far.
The first Wieferich prime, 1093, was found by Meissner [17] in 1913 and the second Wieferich
prime, 3511, was found by Beeger [2] in 1922. Whether the set W of all Wieferich primes
is a finite or infinite set is another unanswered question. Recent calculations (March 2021)
made under the PrimeGrid project [19] have shown that, if a third Wieferich prime exists,
then its value must be greater than 3.15× 1018. In the following section, we give a summary
of all known results related to Wieferich primes and Jakóbczyk’s hypotheses. Details of the
life and work of Franciszek Jakóbczyk (1905–1992) can be found in [18].

2 Jakóbczyk’s hypotheses and Wieferich primes

In 1964, Schinzel [21, p. 102] posed the following problem: Do there exist infinitely many

natural numbers n for which the number Mn = 2n−1 is not divisible by any square of natural

number > 1? A partial answer to Schinzel’s question is a result proved by Rotkiewicz [20,
p. 79].

Theorem 3. (Rotkiewicz, 1965) If there are infinitely many square-free Mersenne numbers,

then there are infinitely many primes p satisfying 2p−1 6≡ 1 (mod p2).

In 1967, Warren and Bray [24, p. 563] proved the following implications:

Theorem 4. (Warren and Bray, 1967) Let n ∈ N, n 6= 1 and let p, q be odd primes. Then

(i) If p | Mq, then 2(p−1)/2 ≡ 1 (mod Mq).

(ii) If p | Fn, then 2(p−1)/2 ≡ 1 (mod Fn).

The below corollary can be obtained easily from Theorem 4.

Corollary 5. Let n ∈ N and let p, q be odd primes. Then (i) and (ii) hold.

(i) If p2 | Mq, then 2p−1 ≡ 1 (mod p2).

(ii) If p2 | Fn, then 2p−1 ≡ 1 (mod p2).

The results presented by Warren and Bray can be extended as follows.

Theorem 6. Let n ∈ N and let p, q be odd primes. Then (i) and (ii) hold.

(i) If p | Mq, then p2 | Mq if and only if 2p−1 ≡ 1 (mod p2).

(ii) If p | Fn, then p2 | Fn if and only if 2p−1 ≡ 1 (mod p2).
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See [13, p. 68] and, [13, p. 217]. Theorem 6 provides the basic link between Jakóbczyk’s
hypotheses and Wieferich primes. Finally, part (i) of Theorem 6 was generalized by Skula
[22] in 2019. Before formulating Skula’s result, it may be appropriate to recall some concepts
and definitions. Let k ∈ N and let p be a Wieferich prime. By Definition 1.4 in the paper
[22], p is called a Wieferich prime of order k if q(2, pk) ≡ 0 (mod pk) or, equivalently,
2p

k−1(p−1) ≡ 1 (mod p2k). Here, q(2, pk) means the Euler quotient of pk with base 2. See [1,
Definition 1.2]. Hence, a prime p is Wieferich if and only if p is a Wieferich prime of order
1. Furthermore, note that, by [1, Definition 1.3], p is a Wieferich prime of order k if and
only if pk is a Wieferich number with base 2. See also [23, A077816]. Finally, let a,m ∈ N,
m ≥ 2 and let gcd(a,m) = 1. The smallest positive integer h for which ah ≡ 1 (mod m) is
called the multiplicative order of a modulo m, which we write as h = ordm(a). See [15, p.
55] or [13, p. 17]. It is clear from Euler’s theorem [1, p. 55] that ordpk(2) exists for every odd
prime p and k ∈ N.

Now we can formulate the main result proved in [22].

Theorem 7. (Skula, 2019) Let k ∈ N and let p, q be odd primes. If pk | Mq, then the

following statements (i), (ii) and (iii) are equivalent:

(i) pk+1 | Mq.

(ii) p is a Wieferich prime of order k.

(iii) ordpk+1(2) = q.

For an alternative proof of Theorem 7 see [12]. We conclude this section by recalling
some known properties of ordm(a) needed for proving our results.

Proposition 8. Let a,m ∈ N, m ≥ 2 and let gcd(a,m) = 1. Then (i) – (vii) hold.

(i) Let k ∈ N. Then ak ≡ 1 (mod m) if and only if ordm(a) | k.

(ii) ordm(a) | ϕ(m). Consequently, if p is an odd prime, then ordp(2) | p − 1. Here, ϕ
means the Euler function.

(iii) Let m = pk11 · · · pkss be a prime factorization of m. Then

ordm(a) = lcm(ord
p
k1
1

(a), . . . , ordpkss
(a)).

(iv) Let a, k, s ∈ N and let p be an odd prime satisfying p ∤ a. Further, let ordp(a) = h and

let ps ‖ ah − 1. Then

ordpk(a) =

{

h, for k ≤ s;

pk−sh, for k > s.

Here, ps ‖ ah − 1 means that ps | ah − 1 but ps+1 ∤ ah − 1.

3

https://oeis.org/A077816


(v) Let a, k ∈ N and let p be an odd prime satisfying p ∤ a. If ordpk(a) = h, then

ordpk+1(a) ∈ {h, ph}. Consequently, ordpk(a) | ordpk+1(a).

(vi) Let k ∈ N, p be an odd prime and let p ∤ a. Then ordpk+1(a) = ps ordp(a) for some

s ∈ {0, . . . , k}.

(vii) Let k, s ∈ N, p be an odd prime and let p ∤ a. If ordp(a) = · · · = ordpk(a) 6= ordpk+1(a),
then ordpk+s(a) = ps ordp(a).

The proof of (i) and (ii) can be found in [16, p. 43]. For (iii) see [4, p. 30]. Part (iv) is
Theorem 4.4 proved by LeVeque in [15, pp. 80–81]. See also [16, pp. 52–53]. Finally, (v),
(vi) and (vii) immediately follow from (iv).

3 Some arithmetic properties of the numbers an ± 1

In this section, we will study in more detail the arithmetic properties of the numbersMn(a) =
an − 1 and Ln(a) = an + 1 where a ∈ N, a ≥ 2, n ∈ N ∪ {0}. First, we can observe that
the sequences (Mn(a))

∞

n=0 and (Ln(a))
∞

n=0 are determined by the same linear second-order
recurrence formula

Hn+2 = (a+ 1)Hn+1 − aHn, (1)

with suitable initial conditions H0, H1 ∈ N ∪ {0}. To see this, consider the characteristic
equation (1). We have x2 − (a+1)x+ a = (x− 1)(x− a) = 0. Hence, it follows that Binet’s
formula for Hn has the form Hn = c1 + c2a

n where H0 = c1 + c2 and H1 = c1 + ac2. After
short calculation, we obtain

Hn =
aH0 −H1

a− 1
+

H1 −H0

a− 1
an. (2)

If [H0, H1] = [0, a − 1], then Hn = Mn(a) by (2). If [H0, H1] = [2, a + 1], then Hn = Ln(a).
Let m ∈ N, m ≥ 2 and let gcd(a,m) = 1. We define

M(a,m) = min{n ∈ N : [Mn(a),Mn+1(a)] ≡ [0, a− 1] (mod m)},

L(a,m) = min{n ∈ N : [Ln(a), Ln+1(a)] ≡ [2, a+ 1] (mod m)},

µ(a,m) = min{n ∈ N : Mn(a) ≡ 0 (mod m)},

λ(a,m) = min{n ∈ N : Ln(a) ≡ 0 (mod m)}.

Following the customary notation of the theory of linear recurrences, we call the numbers
M(a,m) and L(a,m) primitive periods of the sequences

(Mn(a) mod m)∞n=0 and (Ln(a) mod m)∞n=0.

The numbers µ(a,m) and λ(a,m) will then be called the rank of appearance of m in
(Mn(a))

∞

n=0 and (Ln(a))
∞

n=0 respectively. In the following Theorem 9, the basic properties of
the numbers M(a,m), L(a,m), µ(a,m) and λ(a,m) will be given.
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Theorem 9. Let a,m ∈ N, a,m ≥ 2 and let gcd(a,m) = 1. Then

(A) The numbers M(a,m), L(a,m) and µ(a,m) exist and we have

M(a,m) = L(a,m) = µ(a,m) = ordm(a). (3)

(B) Let m 6= 2 and let ordm(a) be odd. Then λ(a,m) does not exist.

Let m = 2. Then λ(a, 2) = 1.

(C) Let m 6= 2 and let ordm(a) = 2t for some t ∈ N. If λ(a,m) exists, then

λ(a,m) =
ordm(a)

2
= t. (4)

(D) Let k, t ∈ N, p be an odd prime and let p ∤ a. Then

ordpk(a) = 2t if and only if λ(a, pk) = t.

Proof. We prove (A). First, observe that ordm(a) exists. Next, it is clear that µ(a,m) =
min{n ∈ N : an ≡ 1 (mod m)} = ordm(a), which means that µ(a,m) exists. Let r =
µ(a,m). Applying gcd(a,m) = 1, we obtain ar − 1 ≡ 0 (mod m) if and only if ar+1 − 1 ≡
a − 1 (mod m). Hence, M(a,m) = r and, thus, M(a,m) = µ(a,m) = ordm(a). Finally,
[ar − 1, ar+1 − 1] ≡ [0, a− 1] (mod m) if and only if [ar + 1, ar+1 + 1] ≡ [2, a+ 1] (mod m).
Hence, M(a,m) = L(a,m). This proves (3).

We prove (B). Let m 6= 2 and suppose that λ(a,m) = s for some s ∈ N. Then as ≡
−1 (mod m) and, a2s ≡ 1 (mod m) follows. Hence, ordm(a) | 2s. Since ordm(a) is odd,
there exists a t ∈ N ∪ {0} satisfying ordm(a) = 2t + 1. This means that 2t + 1 | 2s. Thus,
there exists an u ∈ N, u 6= 1 such that 2s = u(2t + 1). Hence, we see that u = 2v for
some v ∈ N and, thus, s = v(2t + 1). Therefore, as = (a2t+1)v ≡ 1v ≡ 1 (mod m). Since
as ≡ −1 (mod m), we have 2 ≡ 0 (mod m). Hence, m = 2, a contradiction.

Let m = 2. Then, it follows from gcd(a, 2) = 1 that a is odd and, thus, 2 | an + 1 for
every n ∈ N ∪ {0}. Hence, λ(a,m) = 1. This proves (B).

We prove (C). Assume that λ(a,m) exists and that λ(a,m) = s for some s ∈ N. Then
as ≡ −1 (mod m) and a2s ≡ 1 (mod m) follows. Hence, ordm(a) | 2s. Since, ordm(a) = 2t we
get t | s. Suppose that t < s. Then there is a u ∈ N, u 6= 1 such that s = tu. First, suppose
that u be even. Then we have u = 2v for some v ∈ N. Hence, as = (a2t)v ≡ 1v ≡ 1 (mod m).
On the other hand, as ≡ −1 (mod m). Hence, 2 ≡ 0 (mod m). Since m 6= 2, we have
a contradiction. Next, suppose that u be odd. Then u = 2v + 1 for some v ∈ N ∪ {0}.
Hence, as = at(2v+1) = (a2t)vat ≡ at (mod m). This, together with as ≡ −1 (mod m), yields
at ≡ −1 (mod m). Since s = min{n ∈ N : an ≡ −1 (mod m)}, we get t ≥ s, which is a
contradiction with t < s. Hence, s = t and (4) follows.

We prove (D). (i) First, assume that ordpk(a) = 2t. Therefore,

a2t − 1 = (at − 1)(at + 1) ≡ 0 (mod pk). (5)
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Let k > 1. Suppose that at − 1 ≡ 0 (mod p) and at + 1 ≡ 0 (mod p). Then 2 ≡ 0 (mod p).
As p 6= 2, we get a contradiction. Consequently, we have either at − 1 ≡ 0 (mod pk) or
at + 1 ≡ 0 (mod pk). Since the case at − 1 ≡ 0 (mod pk) leads to a contradiction with
ordpk(a) = 2t, we have at + 1 ≡ 0 (mod pk). Similarly, if k = 1, then (5) together with
ordp(a) = 2t yields at + 1 ≡ 0 (mod p). Hence, t ∈ {n ∈ N : an + 1 ≡ 0 (mod pk)} for every
k ∈ N. This means that λ(a, pk) exists. Applying part (C) of Theorem 9, we now obtain
λ(a, pk) = t.

(ii) Conversely, assume that λ(a, pk) exists and that λ(a, pk) = t. Then it follows from part
(B) of Theorem 9 that ordpk(a) is even. Therefore, there is an s ∈ N such that ordpk(a) = 2s.
Hence, a2s ≡ 1 (mod pk), which yields (as−1)(as+1) ≡ 0 (mod pk). Using the same reasoning
as in (i), we conclude that as ≡ −1 (mod pk). Suppose that s 6= t. Since λ(a, pk) = t, we
have s > t. On the other hand, from at ≡ −1 (mod pk), we get a2t ≡ 1 (mod pk), which
means that ordpk(a) | 2t. Since ordpk(a) = 2s, we have s | t, which is a contradiction with
s > t. Hence, s = t. This proves (D).

In the remaining part of this section, we will study the properties of the numbers λ(a,m)
in more detail.

Theorem 10. Let a,m ∈ N, a,m ≥ 2, 2 ∤ m and let gcd(a,m) = 1. Further, let ordm(a) =
2t for some t ∈ N and let m = pk11 · · · pkss be a prime factorization of m. Then λ(a,m) exists

if and only if (i) and (ii) hold.

(i) λ(a, pkii ) exists for i ∈ {1, . . . , s}.

(ii) For i ∈ {1, . . . , s}, there is an odd wi ∈ N satisfying t = λ(a, pkii )wi.

In addition, if λ(a,m) exists, then

λ(a,m) = lcm(λ(a, pk11 ), . . . , λ(a, pkss )) = t. (6)

Proof. First, assume that λ(a,m) exists. Then it follows that λ(a, pkii ) exists for every
i ∈ {1, . . . , s}. Let ti = λ(a, pkii ). Applying part (D) of Theorem 9, we obtain ord

p
ki
i

(a) = 2ti.

Next, using part (iii) of Proposition 8 , we get

2t = ordm(a) = lcm(ord
p
k1
1

(a), . . . , ordpkss
(a)) = 2 lcm(t1, . . . , ts). (7)

Hence, ti | t for i ∈ {1, . . . , s}. This means that t = tiwi for some wi ∈ N.

Suppose that there is an j ∈ {1, . . . , s} such that 2 | wj. Using atj ≡ −1 (mod p
kj
j ),

we find at = (atj)wj ≡ (−1)wj ≡ 1 (mod p
kj
j ). Suppose now that p

kj
j | at + 1. Then

at ≡ −1 (mod p
kj
j ). This, together with at ≡ 1 (mod p

kj
j ), yields 2 ≡ 0 (mod p

kj
j ). Since

pj is an odd prime, we have a contradiction. Hence p
kj
j ∤ at + 1, which implies m ∤ at + 1.

Therefore, λ(a,m) 6= t. Since ordm(a) = 2t, by part (C) of Theorem 9, we conclude that
λ(a,m) does not exist, which is a contradiction.
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For i ∈ {1, . . . , s}, let wi be odd. Then at = (ati)wi ≡ (−1)wi ≡ −1 (mod pkii ). Hence,
pkii | at + 1. If wi is odd for i ∈ {1, . . . , s}, then m = pk11 · · · pkss | at + 1 and t ∈ {n ∈ N :
an + 1 ≡ 0 (mod m)}. This means that λ(a,m) exists, and, using part (C) of Theorem 9,
we get λ(a,m) = t. This, together with (7), yields (6).

Conversely, assume that (i) and (ii) hold. If ti = λ(a, pkii ), we have ati ≡ −1 (mod pkii ).
Now we can find at = (ati)wi ≡ (−1)wi ≡ −1 (mod pkii ). We now see that pkii | at+1 for every
i ∈ {1, . . . , s} and, thus, m = pk11 · · · pkss | at + 1. Hence, t ∈ {n ∈ N : an + 1 ≡ 0 (mod m)},
which means that λ(a,m) exists. By part (C) of Theorem 9, we obtain λ(a,m) = t. The
proof is complete.

Remark 11. In [15, p. 57], LeVeque published the following Problem 19.

Show that, if m > 1 is odd and ordm(a) = 2t, then at ≡ −1 (mod m). (8)

We now prove, using a counterexample, that LeVeque’s implication is not true. Let
m = 91 = 7 · 13 and let a = 5. Then ord91(5) = 12, which means, by (8), that t = 6. Hence,
56 ≡ 64 6≡ −1 (mod 91). It is evident that LeVeque’s erroneous claim is closely related to
the existence of the numbers λ(a,m). By part (iii) of Proposition 8, we have

ord91(5) = lcm(ord7(5), ord13(5)) = lcm(6, 4) = 12.

Hence, using part (D) of Theorem 9, we obtain λ(5, 7) = ord7(5)/2 = 3 and λ(5, 13) =
ord13(5)/2 = 2. Next, applying Theorem 10, we get w1 = 6/λ(5, 7) = 2 and w2 =
6/λ(5, 13) = 3. Because w1 is not odd, λ(5, 91) does not exist. In other words, 91 ∤ L6(5) =
56 + 1 = 2 · 13 · 601.

Let a ∈ N, a > 1 and let a be odd. Then 2 | a+1 and thus {k ∈ N : 2k | a+1} 6= ∅. Put
ν(a) = max{k ∈ N : 2k | a + 1}. In the following Lemma 12, we show that there is a close
connection between the numbers ν(a) and λ(a, 2k).

Lemma 12. Let a, k, n ∈ N, a > 1 and let a be odd. Then

(A) If 2 | n, then 2 ‖ an + 1.

(B) If 2 ∤ n, then 2ν(a) ‖ an + 1.

(C) λ(a, 2k) exist if and only if k ≤ ν(a). In this case, λ(a, 2k) = 1.

Proof. We prove (A). Let 2 | n. Since a > 1 is odd, there is an α ∈ N such that a = 2α+ 1.
Hence, using the assumption 2 | n and the binomial theorem, we get

an + 1 = (2α + 1)n + 1 ≡ 2 (mod 4). (9)

By (9), 2 ‖ an + 1 for an even n.
We prove (B). Let 2 ∤ n . Then an + 1 = (a + 1)(an−1 − an−2 + · · · − a + 1). Since a is

odd, we have 2 ∤ (an−1 − an−2 + · · · − a + 1). Hence, 2s | an + 1 if and only if 2s | a + 1 for
every s ∈ N. This means that 2ν(a) ‖ an + 1 for any odd n.

Combining (A) and (B), (C) follows immediately.
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Lemma 12 will be useful in proving Theorem 13.

Theorem 13. Let a,M ∈ N, a,M ≥ 2, gcd(a,M) = 1 and let 2 ∤ a, 2 | M . Further, let

M = 2αpα1

1 · · · pαs
s be a prime factorization of M and let m = pα1

1 · · · pαs
s . Then (A) and (B)

hold.

(A) Let α = 1. Then λ(a,M) exists if and only if λ(a,m) exists. Moreover, if λ(a,M)
exists, then λ(a,M) = λ(a,m).

(B) Let α > 1. Then λ(a,M) exists if and only if λ(a, 2α) and λ(a,m) exist and, 2 ∤ λ(a,m).
Moreover, if λ(a,M) exists, then λ(a,M) = λ(a,m).

Proof. We prove (A). Assume that λ(a,M) exists and that λ(a,M) = U . Then M | aU + 1.
Since M = 2m and gcd(2,m) = 1, we get m | aU + 1, which implies that λ(a,m) exists and
that λ(a,m) ≤ U = λ(a,M).

Conversely, assume that λ(a,m) exists and that λ(a,m) = u. Then m | au + 1. Since
a is odd, we have 2 | an + 1 for every n ∈ N. Hence and from gcd(2,m) = 1, we obtain
M = 2m | au + 1. This means that λ(a,M) exists and that λ(a,M) ≤ u = λ(a,m). This
proves (A).

We prove (B). Let α > 1. First, assume that λ(a,M) exists and that λ(a,M) = U .
Then M = 2αm | aU + 1. Hence and from gcd(2α,m) = 1, we obtain 2α | aU + 1 and
m | aU +1. This means that λ(a, 2α) and λ(a,m) exist. Next, by part (C) of Lemma 12, we
have α ≤ ν(a) and, from m | aU + 1, we get λ(a,m) ≤ U = λ(a,M).

Let λ(a,m) = u. Suppose that 2 | u. Then, by part (A) of Lemma 12, we have 2 ‖ au+1.
This means that 2α ∤ au + 1. Hence, M = 2αm ∤ au + 1 and, thus, λ(a,M) 6= u = λ(a,m).
This, together with u = λ(a,m) ≤ U , yields u < U . Hence, U = u + k for some k ∈ N.
From 2αm | au+k + 1 and gcd(2α,m) = 1, we can deduce that m | au+k + 1, or equivalently,
auak ≡ −1 (mod m). Using au ≡ −1 (mod m), we now obtain ak ≡ 1 (mod m). Hence,
ordm(a) | k. Suppose that ordm(a) is odd. Then, by part (B) of Theorem 9, λ(a,m) does
not exist, which is a contradiction. Hence, 2 | ordm(a) and, 2 | k follows. Therefore,
2 | u+ k = U . By part (A) of Lemma 12, we now obtain 2 ‖ aU + 1. Hence and from α > 1,
we get 2α ∤ aU + 1, which means 2αm = M ∤ aU + 1, a contradiction.

Let 2 ∤ u. Then, by part (B) of Lemma 12, we have 2ν(a) | au + 1. As α ≤ ν(a), we
also have 2α | au + 1. Hence and from m | au + 1, we obtain 2αm = M | au + 1, and
U = λ(a,M) ≤ u follows. This, together with u = λ(a,m) ≤ U , yields λ(a,M) = λ(a,m).

Conversely, assume that λ(a, 2α) and λ(a,m) exist and that λ(a,m) is odd. First, observe
that, if α > 1 and λ(a, 2α) exists, then, by part (C) of Lemma 12, we have α ≤ ν(a) and,
by part (B) of Lemma 12, we have 2α | an + 1 for any odd n ∈ N. Let λ(a,m) = u. Then
m | au+1. Since u is odd, we get 2α | au+1. Hence and from gcd(2α,m) = 1, we now obtain
M = 2αm | au+1, which means that λ(a,M) exists and that λ(a,M) ≤ u. Put λ(a,M) = U .
Then we can write M = 2αm | aU + 1. Since gcd(2α,m) = 1, we get m | aU + 1, which
yields λ(a,m) ≤ U . Finally, combining U = λ(a,M) ≤ u with u = λ(a,m) ≤ U , we get
λ(a,M) = λ(a,m). This proves (B).
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Remark 14. Let us note for completeness sake that the case of λ(a,m), where 2 | a and
2 | m, is trivial. Since an + 1 is odd for all n ∈ N, λ(a,m) does not exist.

Let us conclude this section with an illustrative example.

Example 15. Let a = 11, m = 1769 = 29 · 61 and let M = 7076 = 22m. First, observe that
ord29(11) = 28, ord61(11) = 4 and, ord1769(11) = 28. Applying part (D) of Theorem 9, we
obtain λ(11, 29) = ord29(11)/2 = 14 and, λ(11, 61) = ord61(11)/2 = 2. Next, using Theorem
10, we get t = ord1769(11)/2 = 14, w1 = 14/λ(11, 29) = 1 and, w2 = 14/λ(11, 61) = 7.
Since w1 and w2 are odd numbers, λ(11, 1769) exists and, by (6), we have λ(11, 1769) = 14.
Further, observe that 22 | a+1 = 12. Hence, by Lemma 12, λ(11, 22) exists and λ(11, 22) = 1.
Because λ(11, 1769) is an even number, by Theorem 13, we conclude that λ(11, 7076) does
not exist.

4 Mersenne numbers with base a

In this section, we generalize Skula’s result presented in Theorem 7. Let a, k ∈ N, a ≥ 2 and
let p be a prime satisfying p ∤ a. We will call p a Wieferich prime of order k with base a if
pk is a Wieferich number with base a. That is, p is a Wieferich prime of order k with base
a if and only if

q(a, pk) ≡ 0 (mod pk), or equivalently, ap
k−1(p−1) ≡ 1 (mod p2k).

See [1, Definition 1.3].

Proposition 16. Let a, k ∈ N, a ≥ 2, p be a prime and let p ∤ a. Then

(A) ap
k−1(p−1) ≡ 1 (mod p2k) if and only if ap−1 ≡ 1 (mod pk+1).

(B) ap−1 ≡ 1 (mod pk+1) if and only if ordpk+1(a) = ordp(a).

(C) p is a Wieferich prime of order k with base a if and only if ordpk+1(a) = ordp(a).

Proof. First, we prove (A). Assume that ap
k−1(p−1) ≡ 1 (mod p2k). Then, by part (i) of

Proposition 8,

ordp2k(a) | p
k−1(p− 1). (10)

Suppose that ap−1 6≡ 1 (mod pk+1). Then ordpk+1(a) 6= ordp(a) and, by part (vi) of Proposi-
tion 8, there exists an r ∈ {1, . . . , k} such that ordpk+1(a) = pr ordp(a). Hence, by part (vii)
of Proposition 8, we have

ordp2k(a) = pk ordpk+1(a) = pk+r ordp(a). (11)

Since r ∈ {1, . . . , k} and ordp(a) | p− 1, we get a contradiction by relations (10) and (11).
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Conversely, assume that ap−1 ≡ 1 (mod pk+1). Then ordpk+1(a) | p − 1, which yields
ordp(a) = ordpk+1(a). Hence, by part (vi) of Proposition 8, there exists an s ∈ {0, . . . , k −
1} such that ordp2k(a) = ps ordpk+1(a) = ps ordp(a). Since s ≤ k − 1, we get ordp2k(a) |
pk−1 ordp(a), which, together with ordp(a) | p − 1, yields ordp2k(a) | pk−1(p − 1). Hence,

ap
k−1(p−1) ≡ 1 (mod p2k). This proves (A).
We prove (B). Let ap−1 ≡ 1 (mod pk+1). Then ordpk+1(a) | p − 1. Using part (vi) of

Proposition 8, we obtain ordpk+1(a) = pt ordp(a) for some t ∈ {0, . . . , k}. If t 6= 0, then
pt ordp(a) | p− 1, which is a contradiction. Hence, ordpk+1(a) = ordp(a).

Conversely, let ordpk+1(a) = ordp(a) = u. Then u | p − 1, which means that there exists
a v ∈ N such that p − 1 = uv. Since au ≡ 1 (mod pk+1), we have ap−1 = auv = (au)v ≡
1 (mod pk+1) as required.

Finally, combining (A) and (B), we obtain (C). The proof is complete.

Remark 17. The conclusion (A) in Proposition 16 also holds if p | a. In this case, of course,
we have ap

k−1(p−1) 6≡ 1 (mod p2k), ap−1 6≡ 1 (mod pk+1) for every a, k ∈ N, a ≥ 2. The
conclusion (B) in Proposition 16 also holds for k = 0.

Now we can to prove Theorem 18.

Theorem 18. Let a, k ∈ N, a ≥ 2, p, q be odd primes and let p ∤ a, p ∤ a− 1. If pk | Mq(a),
then the following statements are equivalent:

(A) pk+1 | Mq(a).

(B) p is a Wieferich prime with base a of order k.

(C) ordpk+1(a) = q.

Proof. First, we show that (A) implies (B). Let pk+1 | Mq(a). Then aq ≡ 1 (mod pk+1),
which yields ordpk+1(a) | q. Since q is a prime, we have ordpk+1(a) ∈ {1, q}. If ordpk+1(a) = 1,
then ordp(a) = 1, which means p | a − 1, a contradiction. Hence, ordpk+1(a) = q. Suppose
that p = q. Then ordpk+1(a) = p and, using part (vi) of Proposition 8, we get ordp(a) = 1.
Hence, p | a−1, a contradiction. Let p 6= q. Then, by part(vi) of Proposition 8, ordpk+1(a) =
ps ordp(a) for some s ∈ {0, . . . , k}. Since p 6= q, we get s = 0 and ordpk+1(a) = ordp(a) = q.
This means, by Proposition 16, that p is a Wieferich prime of order k with base a.

Next, we show that (B) implies (C). Assume that p is a Wieferich prime of order k
with base a. Then, by Proposition 16, we have 2p−1 ≡ 1 (mod pk+1) and, using part (i) of
Proposition 8, we get ordpk+1(a) | p − 1. Next, from the basic assumption pk | Mq(a), we
obtain aq ≡ 1 (mod pk) and ordpk(a) | q follows. Hence, ordpk(a) ∈ {1, q}. Suppose that
ordpk(a) = 1. Then pk | a− 1, which yields p | a− 1, a contradiction. Hence, ordpk(a) = q.
Now, by part (v) of Proposition 8, we have ordpk+1(a) = pq or ordpk+1(a) = q. Suppose that
ordpk+1(a) = pq. Since ordpk+1(a) | p− 1, we get pq | p− 1, a contradiction. Hence, (C).

Finally, we show that (C) implies (A). If ordpk+1(a) = q, then aq ≡ 1 (mod pk+1), which
yields pk+1 | Mq(a). The proof is complete.
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Another generalization of Theorem 7 provide Theorem 19.

Theorem 19. Let a, k ∈ N, a ≥ 2, p, q be primes and let p ∤ a. Then we have pk+1 | Mq(a)
if and only if at least one of the below conditions (A), (B), (C) holds.

(A) ordp(a) = 1, ordpk+1(a) = p, p = q.

(B) ordp(a) = ordpk+1(a) = 1.

(C) ordp(a) = ordpk+1(a) = q.

Proof. (i) If pk+1 | Mq(a), then aq ≡ 1 (mod pk+1), which yields ordpk+1(a) | q. Since q is
a prime, we have ordpk+1(a) ∈ {1, q}. If ordpk+1(a) = 1, then ordp(a) = 1 and (B) follows.
If ordpk+1(a) = q, then, by part (vi) of Proposition 8, we have ordpk+1(a) = ps ordp(a) for
some s ∈ {0, . . . , k}. Hence, ps ordp(a) = q. Since ordp(a) ∈ N and p, q are primes, only two
following cases can occur.

Case 1: s = 1, ordp(a) = 1, p = q. Hence, (A).
Case 2: s = 0, ordp(a) = q. Hence, (C).

(ii) The proof of a converse implication consists of three simple parts. Assume (A). Then
ordpk+1(a) = p implies ap ≡ 1 (mod pk+1), which means pk+1 | ap − 1. Since p = q, we have
pk+1 | aq − 1 = Mq(a). Assume (B). Then ordpk+1(a) = 1 implies a ≡ 1 (mod pk+1), thus,
pk+1 | a− 1. Hence, pk+1 | (a− 1)(aq−1 + · · ·+ a+ 1) = aq − 1 = Mq(a). Assume (C). Then
ordpk+1(a) = q implies aq ≡ 1 (mod pk+1). Hence, pk+1 | aq − 1 = Mq(a).

Applying Theorem 19 for a = 2, we obtain Corollary 20.

Corollary 20. Let k ∈ N, p, q be primes and let p 6= 2. Then pk+1 | Mq if and only if

ordpk+1(2) = ordp(2) = q. Consequently,

p2 | Mq if and only if p ∈ W and ordp(2) = q. (12)

Proof. If p is a prime satisfying ordp(2) = 1, then 2 ≡ 1 (mod p), which is a contradiction.
Hence, the cases (A) and (B) in Theorem 19 never occur. Part (C) in Theorem 19 yields
ordpk+1(2) = ordp(2) = q. If k = 1, (12) follows immediately.

We now show some examples demonstrating part (C) of Theorem 19.

Example 21. (i) Let k = 1, a = 53, p = 47. Then

ord47(53) = ord472(53) = 23 and, 472 | M23(53) = 5323 − 1.

(ii) Let k = 2, a = 6619, p = 383. Then

ord383(6619) = ord3833(6619) = 191 and, 3833 | M191(6619) = 6619191 − 1.

(iii) Let k = 3, a = 2819, p = 19. Then

ord19(2819) = ord194(2819) = 3 and, 194 | M3(2819) = 28193 − 1.

(iv) Let k = 3, a = 15384, p = 71. Then

ord71(15384) = ord714(15384) = 7 and, 714 | M7(15384) = 153847 − 1.
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5 Landry numbers with base a

In this section we will refer to Landry numbers with base a as the numbers

Ln(a) = an + 1 where a ∈ N, a ≥ 2, n ∈ N ∪ {0}.

In particular, to numbers Ln = Ln(2) = 2n + 1, we will refer as Landry numbers. The term
of Landry numbers we will introduce in honor of the French mathematician Fortuné Landry
(1799–1895), who successfully dealt with prime factorizations of the numbers 2n ± 1. This
designation has been inspired by a note presented by Williams [26, p. 463]. Here, Williams
mentions that some of Landry’s results have not received due attention being largely ignored.
For details see [26].

The main aim of this section is to show that results analogous to Theorem 7 can also be
proved for Landry numbers. The following Lemma 22 will be useful in proving Theorem 23.

Lemma 22. Let k ∈ N, p, q be primes and let p 6= 2. Then (i) – (iv) hold.

(i) ordpk(2) 6= 1.

(ii) ordpk(2) = 2 if and only if p = 3 and k = 1.

(iii) ordpk+1(2) 6= 2.

(iv) If ordpk+1(2) = 2q then, ordp(2) 6= q.

The proof of Lemma 22 can be left to the reader.

Theorem 23. Let k ∈ N, p, q be odd primes and let p > 3. If pk | Lq, then the following

statements are equivalent:

(A) pk+1 | Lq.

(B) p is a Wieferich prime of order k.

(C) ordpk+1(2) = 2q.

Proof. First, we prove that (A) implies (B). Let pk+1 | Lq. Then we have 2q ≡ −1 (mod pk+1),
which yields 22q ≡ 1 (mod pk+1). Hence, ordpk+1(2) | 2q. By Lemma 22, we now obtain
ordpk+1(2) = 2q. Since ordp(2) | ordpk+1(2), we have ordp(2) ∈ {1, 2, q, 2q} and, by Lemma
22, we get ordp(2) = 2q. Hence, ordpk+1(2) = ordp(2). This means, by Proposition 16, that
p is a Wieferich prime of order k.

Next, we prove that (B) implies (C). Assume that p is a Wieferich prime of order k.
Then, by Proposition 16, we have 2p−1 ≡ 1 (mod pk+1) and, by part (i) of Proposition
8, we get ordpk+1(2) | p − 1. Next, from the basic assumption pk | Lq, we obtain 2q ≡
−1 (mod pk), which yields 22q ≡ 1 (mod pk). Hence, ordpk(2) | 2q and, by Lemma 22, we
obtain ordpk(2) = 2q. Further, by part (v) of Proposition 8, we get ordpk+1(2) ∈ {2q, 2pq}.
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Suppose that ordpk+1(2) = 2pq. Since ordpk+1(2) | p− 1, we get 2pq | p− 1, a contradiction.
Hence, ordpk+1(2) = 2q.

Finally, we prove that (C) implies (A). Assume, that ordpk+1(2) = 2q. Then 22q ≡
1 (mod pk+1) yielding pk+1 | (2q − 1)(2q + 1). Suppose that p | 2q − 1. Then we have
ordp(2) | q, which means that ordp(2) ∈ {1, q}. Hence, by Lemma 22, a contradiction
follows. Therefore, pk+1 | 2q + 1 = Lq. The proof is complete.

For Landry numbers with a base a ∈ N, a ≥ 2, we can prove the following theorem.

Theorem 24. Let a, k ∈ N, a ≥ 2, let p, q be odd primes, and let p ∤ a. Then pk+1 | Lq(a) if

and only if at least one of the below conditions (A), (B), (C) holds.

(A) ordp(a) = 2, ordpk+1(a) = 2p, p = q.

(B) ordp(a) = ordpk+1(a) = 2.

(C) ordp(a) = ordpk+1(a) = 2q.

Proof. (i) Let pk+1 | Lq(a). Then aq ≡ −1 (mod pk+1), which yields ordpk+1(a) 6= q. On
the other hand, the congruence aq ≡ −1 (mod pk+1) implies a2q ≡ 1 (mod pk+1). Hence,
ordpk+1(a) | 2q. Since q is an odd prime, we have ordpk+1(a) ∈ {1, 2, 2q}. Next, by part (vi)
of Proposition 8, there exists an s ∈ {0, . . . , k} such that ordpk+1(a) = ps ordp(a). Hence,
ps ordp(a) | 2q.

Let s 6= 0. Since p, q are odd primes, the relation ps ordp(a) | 2q implies s = 1, p = q
and ordp(a) | 2. Hence, ordp(a) ∈ {1, 2}. Suppose that ordp(a) = 1. Then ordpk+1(a) = p,
which means that ap ≡ 1 (mod pk+1). Since we have p = q, it follows from pk+1 | Lq(a) that
ap ≡ −1 (mod pk+1). Combining ap ≡ 1 (mod pk+1) and ap ≡ −1 (mod pk+1), we obtain
2 ≡ 0 (mod pk+1), a contradiction. If ordp(a) = 2, then ordpk+1(a) = 2p = 2q. Hence, (A).

Let s = 0. Then we have ordpk+1(a) = ordp(a). Suppose that ordpk+1(a) = 1. Then pk+1 |
a−1. Hence, pk+1 | (a−1)(aq−1+· · ·+a+1) = aq−1, which yields aq ≡ 1 (mod pk+1). On the
other hand, from pk+1 | Lq(a), it follows a

q ≡ −1 (mod pk+1). Along with aq ≡ 1 (mod pk+1),
this yields 2 ≡ 0 (mod pk+1), a contradiction. Finally, if ordpk+1(a) = 2, we get (B) and, if
ordpk+1(a) = 2q, we get (C).

(ii) The proof of the converse implication consists of the three following parts.
Assume (A). From ordpk+1(a) = 2p, it follows that pk+1 | a2p − 1 = (ap − 1)(ap + 1).

Suppose that p | ap − 1. Then ordp(a) ∈ {1, p}, which is a contradiction with ordp(a) = 2.
Hence, pk+1 | ap + 1. Since p = q, we have pk+1 | aq + 1 = Lq(a).

Assume (B). From ordpk+1(a) = 2, it follows that pk+1 | a2 − 1 = (a− 1)(a+ 1). Suppose
that p | a− 1. Then we have ordp(a) = 1, which is a contradiction with ordp(a) = 2. Hence,
pk+1 | a+ 1, which yields pk+1 | (a+ 1)(aq−1 − aq−2 + · · · − a+ 1) = aq + 1 = Lq(a).

Assume (C). From ordpk+1(a) = 2q, it follows that pk+1 | a2q − 1 = (aq − 1)(aq + 1).
Suppose that p | aq − 1. Then ordp(a) ∈ {1, q}, which is a contradiction with ordp(a) = 2q.
Hence, pk+1 | aq + 1 = Lq(a).
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Applying Theorem 24 for a = 2 and k = 1, we obtain Corollary 25.

Corollary 25. Let p, q be an odd primes. Then p2 | Lq if and only if

[p, q] = [3, 3] or ordp(2) = ordp2(2) = 2q. (13)

Consequently, if p > 3, then

p2 | Lq if and only if p ∈ W and ordp(2) = 2q. (14)

Proof. Let p be an odd prime satisfying ordp(2) = 2. Then 22 ≡ 1 (mod p), which yields
p = 3. Since ord9(2) = 6, part (A) in Theorem 24 is equivalent to [p, q] = [3, 3] and part (B)
will never occur. Next, part (C) of Theorem 24 yields ordp(2) = ordp2(2) = 2q. Hence, (13).
Finally, (14) immediately follows from (13) and Proposition 16.

We now demonstrate part (C) of Theorem 24 by some examples.

Example 26. (i) Let k = 1, a = 79, p = 263. Then

ord263(79) = ord2632(79) = 2 · 131 and, 2632 | L131(79) = 79131 + 1.

(ii) Let k = 2, a = 42, p = 23. Then

ord23(42) = ord233(42) = 2 · 11 and, 233 | L11(42) = 4211 + 1.

(iii) Let k = 3, a = 119551, p = 107. Then

ord107(119551) = ord1074(119551) = 2 · 53 and, 1074 | L53(119551) = 11955153 + 1.

(iv) Let k = 1, a = 26, p = 6695256707. Then

ordp(26) = ordp2(26) = 2q, q = 3347628353 and, 66952567072 | Lq(26) = 26q + 1.

Note, that the number 26q + 1 has 4736804899 digits. This can be verified using the
formula N = ⌊log10(n) + 1⌋. Here, N stands for the number of digits of n and ⌊·⌋ denotes
the floor function.

Remark 27. After a brief inspection of the proof of Theorem 24, we see that its conclu-
sion cannot be true for q having a value of 2. Namely, if q = 2, then (B) does not imply
pk+1 | Lq(a). To see this, assume (B). Then ordpk+1(a) = 2, which means a2 ≡ 1 (mod pk+1).
Suppose that pk+1 | L2(a). Then a2 ≡ −1 (mod pk+1). This, together with a2 ≡ 1 (mod pk+1),
yields 2 ≡ 0 (mod pk+1), a contradiction. It is worth noting that all the remaining implica-
tions in Theorem 24 are also true for q = 2.

Theorem 28. Let a, k ∈ N, a > 2, 2 ∤ a and let q be a prime. Then (A) and (B) hold.

(A) Let q 6= 2. Then 2k+1 | Lq(a) if and only if 2k+1 | L1(a).
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(B) Let q = 2. Then 2k+1 ∤ L2(a).

Proof. We prove (A). First, using the assumption q 6= 2, we obtain

Lq(a) = L1(a)(a
q−1 − aq−2 + · · · − a+ 1). (15)

Next, applying 2 ∤ a and 2 ∤ q, we get 2 ∤ (aq−1 − aq−2 + · · · − a+ 1). This, together with
(15), yields (A).

We prove (B). Since a > 2 and 2 ∤ a, there exists an α ∈ N such that a = 2α+ 1. Hence,
a2 + 1 = 2(2α2 + 2α + 1). This means that 4 ∤ a2 + 1 and, 2k+1 ∤ L2(a) follows.

We conclude this section by Hypothesis 29.

Hypothesis 29. Every Landry number Ln = 2n + 1 with a prime exponent n > 3 is of the

form Ln = p1 · · · pk where p1, . . . , pk are distinct odd primes and k ≥ 1.

6 Some problems related to ordp(2)

We start this section by recalling some known properties of the quadratic character of 2.

Theorem 30. Let p be a prime, p 6= 2. Then

(

2

p

)

≡ 2
p−1

2 (mod p) (16)

and,

(

2

p

)

= (−1)
p2−1

8 =

{

1, if p ≡ 1, 7 (mod 8);

−1, if p ≡ 3, 5 (mod 8).
(17)

For a proof of (16) see, for example, [6, p. 86] or [8, p. 51]. An elementary proof of
(17), based on Gauss’s lemma, can be found in books [8, p. 53] and [15, p. 102]. For some
alternative proofs of (17), consult articles [10] and [25].

Proposition 31. Let p be a prime, p 6= 2 and let ordp(2) = q, where q is a prime. Then

p = 3 or p ≡ 1, 7 (mod 8). (18)

Proof. If q = 2, then ordp(2) = 2. Hence, 3 ≡ 0 (mod p) and p = 3 follows. Let q 6= 2. Since
q | p−1, there exists a u ∈ N such that p−1 = 2qu. Hence, 2(p−1)/2 = (2q)u ≡ 1u ≡ 1 (mod p).
Applying (16) and (17), we now obtain p ≡ 1, 7 (mod 8).

The below example illustrates that, in (18), both cases p ≡ 1, 7 (mod 8) can occur.
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Example 32. (i) Let p = 89. Then p ≡ 1 (mod 8) and we have ord89(2) = 11. (ii) Let
p = 7. Then p ≡ 7 (mod 8) and we have ord7(2) = 3. The values of the primes p presented
are the least values for which the corresponding cases occur.

Proposition 33. Let p be a prime, p 6= 2 and let ordp(2) = 2q, where q is a prime. Then

(i) and (ii) hold:

(i) p 6= 8k + 5 for any k ∈ N.

(ii) p 6= 8k + 7 for any k ∈ N.

Proof. First observe that, if q = 2, then ordp(2) = 4 and, thus, 15 ≡ 0 (mod p). Hence,
p = 3 or p = 5, which yields a contradiction in both cases (i) and (ii).

To prove (i), let q 6= 2. Suppose that p = 8k + 5 for some k ∈ N. Then, by Theorem 30,
(2/p) ≡ 2(p−1)/2 ≡ −1 (mod p). Since 2q | p− 1, there exists a u ∈ N such that p− 1 = 2qu.
Hence,

2qu = 2(p−1)/2 ≡ −1 (mod p). (19)

Next, it is clear from ordp(2) = 2q that 22q ≡ 1 (mod p). Hence, 2q ≡ −1 (mod p). Suppose
that u is even. Then

2qu = (2q)u ≡ (−1)u ≡ 1 (mod p). (20)

Combining (19) and (20) we obtain 2 ≡ 0 (mod p). Hence, p = 2, a contradiction.
Suppose that u is odd. Then u = 2v + 1 for some v ∈ N ∪ {0}. From p − 1 = 2qu, it

follows that p = 4qv + 2q + 1, which yields p ≡ 2q + 1 (mod 4). On the other hand, using
the assumption p = 8k + 5, we get p ≡ 1 (mod 4). This, together with p ≡ 2q + 1 (mod 4),
yields q ≡ 0 (mod 2). Hence, q = 2, a contradiction. This proves (i).

The proof of (ii) is similar.

From Proposition 33, we immediately obtain Corollary 34.

Corollary 34. Let p be a prime, p 6= 2 and let ordp(2) = 2q, where q is a prime. Then

p = 5 or p ≡ 1, 3 (mod 8). (21)

The below example illustrates that, in (21), both cases p ≡ 1, 3 (mod 8) can occur.

Example 35. (i) Let p = 1049. Then p ≡ 1 (mod 8) and we have ord1049(2) = 2 · 131. (ii)
Let p = 11. Then p ≡ 3 (mod 8) and we have ord11(2) = 2 · 5. The values of the primes p
presented are the least values for which the corresponding cases occur.

16



In the remaining part of this section, the following notation will be adopted. If A is a
finite set, #A denotes the number of elements of A. Next, P denotes the set of all odd
primes. Finally, for an n ∈ N, we define

π(n) = #{p ∈ P ∪ {2} : p ≤ n},

E(n) = #{p ∈ P : p ≤ n, ordp(2) is even},

O(n) = #{p ∈ P : p ≤ n, ordp(2) is odd},

Q(n) = #{p ∈ P : p ≤ n, ordp(2) = q, q ∈ P ∪ {2}},

T (n) = #{p ∈ P : p ≤ n, ordp(2) = 2q, q ∈ P ∪ {2}}.

Computer investigation of the values E(n), O(n), Q(n), T (n) and π(π(n)) for n ≤ 1010

yields the data in Table 1:

n E(n) O(n) Q(n) T (n) π(n) π(π(n))
102 16 8 6 5 25 9
103 117 50 22 17 168 39
104 878 350 106 96 1229 201
105 6794 2797 586 590 9592 1184
106 55550 22947 3846 3745 78498 7702
107 470633 193945 26561 26596 664579 53911
108 4081095 1680359 196652 196695 5761455 397557
109 36016626 14830907 1511508 1509239 50847534 3048955
1010 322328955 132723555 11982381 11981476 455052511 24106415

Table 1: Some values of E(n), O(n), Q(n), T (n) and π(π(n)).

From Table 1, we immediately obtain

E(1010)

π(1010)
.
= 0.708333,

O(1010)

π(1010)
.
= 0.291666 and

O(1010)

E(1010)
.
= 0.411764. (22)

The relations given in (22) reveal a significant difference between the numbers E(n) and
O(n) in the investigated range. In fact, in 1966, Hasse, [7, p. 23] proved that

lim
n→∞

E(n)

π(n)
=

17

24
, lim
n→∞

O(n)

π(n)
=

7

24
and lim

n→∞

O(n)

E(n)
=

7

17
. (23)

See also Lagarias [14, p. 449]. Furthermore, from Table 1, we obtain

Q(1010)

T (1010)
.
= 1.000075 and

π(π(1010))

Q(1010)
.
= 2.011821. (24)

This leads to a natural question, which can be formulated as Problem 36.
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Problem 36. Prove or disprove

lim
n→∞

Q(n)

T (n)
= 1 and lim

n→∞

π(π(n))

Q(n)
= 2. (25)

Next, for an n ∈ N, let us define

R(n) = #{p ∈ P : p ≤ n, ordp(2) = q, q ∈ P ∪ {2}, p ≡ 1 (mod 8)},

S(n) = #{p ∈ P : p ≤ n, ordp(2) = q, q ∈ P ∪ {2}, p ≡ 7 (mod 8)},

U(n) = #{p ∈ P : p ≤ n, ordp(2) = 2q, q ∈ P ∪ {2}, p ≡ 1 (mod 8)},

V (n) = #{p ∈ P : p ≤ n, ordp(2) = 2q, q ∈ P ∪ {2}, p ≡ 3 (mod 8)}.

Computer investigation of the values R(n), S(n), U(n), and V (n) for n ≤ 1010, yields
the data in Table 2.

n R(n) S(n) U(n) V (n)
102 1 4 0 4
103 2 19 0 16
104 13 92 18 77
105 92 493 95 494
106 629 3216 594 3150
107 4182 22378 4320 22275
108 30556 166095 30961 165733
109 233384 1278123 233357 1275881
1010 1834805 10147575 1835943 10145532

Table 2: Some values of R(n), S(n), U(n), and V (n).

From Tables 1 and 2, we get

R(1010)

Q(1010)
.
= 0.153125,

S(1010)

Q(1010)
.
= 0.846874 and

R(1010)

S(1010)
.
= 0.180812.

U(1010)

T (1010)
.
= 0.153231,

V (1010)

T (1010)
.
= 0.846768 and

U(1010)

V (1010)
.
= 0.180960.

Hence, we can propose the following problem.

Problem 37. Find the limits (26) and (27) and prove that αi = βi for i ∈ {1, 2, 3}.

α1 = lim
n→∞

R(n)

Q(n)
, α2 = lim

n→∞

S(n)

Q(n)
and α3 = lim

n→∞

R(n)

S(n)
. (26)

β1 = lim
n→∞

U(n)

T (n)
, β2 = lim

n→∞

V (n)

T (n)
and β3 = lim

n→∞

U(n)

V (n)
. (27)
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7 Concluding remarks

The following questions play an important role in further investigating the problem of the
existence of primes p, q satisfying p2 | 2q ± 1. Is there a third Wieferich prime? Is the set W
of all Wieferich primes finite or infinite? Opinions vary as to what are the correct answers
to such questions. See, for example, Beeger [3, p. 52] and Guy [5, p. 14]. If Beeger’s point
of view is right, that is, W = {1093, 3511}, then both Hypothesis 1 and Hypothesis 29 hold.
This follows immediately from (28) and (29).

ord1093(2) = ord10932(2) = 364 = 22 · 7 · 13, (28)

ord3511(2) = ord35112(2) = 1755 = 33 · 5 · 13. (29)

On the other hand, by (12) and (14), both hypotheses may hold true even if the set W
is infinite. This fact makes both problems even more interesting.

It is worth noting that a similar disunity of opinion can also be seen in the analogous
problem concerning the existence of Wall-Sun-Sun primes. A detailed historical study of this
problem can be found in the article [11].

In conclusion, let us note that a statement similar to (12) and (14) can also be proved
for Fermat numbers as shown below.

Theorem 38. Let n ∈ N ∪ {0} and let p be a prime. Then

p2 | Fn if and only if p ∈ W and ordp(2) = 2n+1. (30)

Using a computer, it can be verified that, for p ≤ 1010, there exist only 20 primes
satisfying ordp(2) = 2k for some k ∈ N:

3, 5, 17, 257, 641, 65537, 114689, 274177, 319489, 974849, 2424833, 6700417, 13631489,

26017793, 45592577, 63766529, 167772161, 825753601, 1214251009, 6487031809.
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[7] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl
a 6= 0 von gerader bzw. ungerader Ordnung mod.p ist, Math. Ann. 166 (1966), 19–23.

[8] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd
edition, Springer, 1992.
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