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Abstract

We prove a general theorem that can be used to derive recurrences for familiar
arithmetic functions such as rk(n) and tk(n), the number of representations of n as a
sum of k squares and k triangular numbers, respectively.
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1 Introduction

Jacobi first investigated the relationship between the sum of squares and divisor sums. Leg-
endre also found formulas relating the sum of triangular numbers to divisor sums. The
history of developments in this area has been covered by Dickson [2, Chaps. VI–IX]. More
recent treatments include Grosswald [4] and Moreno-Wagstaff [3].

In this paper, we prove a general theorem that gives a number of recurrences, including
the following:

rk(n) =
−2k

n

n
∑

j=1

(−1)j j D(j) rk(n− j), n ≥ 1 (1)

where rk(n) denotes the number of representations of a positive integer n as a sum of k
squares, and D(n) gives the sum of the reciprocals of the odd divisors of n.

We also prove that

tk(n) =
−k

n

n
∑

j=1

j T (j) tk(n− j), (2)

where tk(n) is the number of representations of n as the sum of k triangular numbers,
representations with different orders are counted as unique, and

T (j) =
∑

d|j

1 + 2 (−1)d

d
=

1

j

∑

d|j

(−1)d d. (3)

We state and prove our main theorem in Section 2. Section 3 is devoted to three special
cases of this theorem.

2 The main theorem

Theorem 1. Let F (q) and G(q) be two analytic functions of q for |q| < 1 with F (0) = 1
and G(0) = 0. Further, let

q
d

dq
logF (q) = G(q), (F (q))k =

∞
∑

n=0

fk(n) q
n, G(q) =

∞
∑

n=1

gn q
n.

Then

fk(n) =
k

n

n
∑

j=1

gj fk(n− j), (4)

gn = −n

n
∑

k=1

(−1)k

k

(

n

k

)

fk(n). (5)
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Proof. From the hypotheses it is clear that fk(0) = 1, for k ≥ 0, f0(n) = δ0n (δij denotes the
Kronecker delta), and g0 = 0. Furthermore, we have

q
d

dq
(F (q))k =

∞
∑

n=0

n fk(n) q
n

= k (F (q))k G(q)

= k

(

∞
∑

j=0

fk(j) q
j

) (

∞
∑

l=0

gl q
l

)

= k

∞
∑

n=0

(

n
∑

j=1

gj fk(n− j)

)

qn,

which on comparison of coefficients of qn on both the sides gives (4).
To prove (5), we use the generating function for the incomplete exponential Bell polyno-

mials [1, p. 133] to deduce that

k!
∞
∑

n=k

Bn,k

(

F ′(0), F ′′(0), . . . , F (n−k+1)(0)
) qn

n!
=

(

∞
∑

j=1

F (j)(0)
qj

j

)k

= (F (q)− 1)k

=
k
∑

m=0

(

k

m

)

(−1)k−m (F (q))m

=
k
∑

m=0

(

k

m

)

(−1)k−m

∞
∑

n=0

fm(n) q
n

which on comparison of coefficients of qn on both the sides gives

Bn,k

(

F ′(0), F ′′(0), . . . , F (n−k+1)(0)
)

=
n!

k!

k
∑

m=0

(−1)k−m

(

k

m

)

fm(n). (6)

Now we use Faà di Bruno’s formula [5]:

dn

dqn
Q(F (q)) =

n
∑

k=1

Q(k) (F (q)) Bn,k

(

F ′(q), F ′′(q), . . . , F (n−k+1)(q)
)
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with Q(q) = log q and let q → 0 to deduce that

−1

n
gn =

1

n!

n
∑

k=1

(−1)k (k − 1)!Bn,k

(

F ′(0), F ′′(0), . . . , F (n−k+1)(0)
)

=
1

n!

n
∑

k=1

(−1)k (k − 1)!
n!

k!

k
∑

m=0

(−1)k−m

(

k

m

)

fm(n) (using (6))

=
n
∑

k=1

(−1)k

k

k
∑

m=1

(−1)k−m

(

k

m

)

fm(n)

=
n
∑

m=1

(−1)m fm(n)
n
∑

k=m

1

k

(

k

m

)

=
n
∑

m=1

(−1)m fm(n)
1

m

(

n

m

)

,

where in the last step we have used the known “hockey stick” identity [7, 6]

n
∑

k=m

1

k

(

k

m

)

=
1

m

(

n

m

)

.

This completes our proof.

3 Three applications of the theorem

Corollary 2. We have

rk(n) =
−2k

n

n
∑

j=1

(−1)j j D(j) rk(n− j) (n ≥ 1), (7)

and

D(n) =
1

n

n
∑

k=1

(−1)n−k

k

(

n

k

)

rk(n), (8)

where D(n) is the sum of the inverses of the odd divisors of n, that is, D(n) =
∑

d|n
d odd

1
d
.

Remark 3. Equation (8) was obtained by Jha [14].

Proof. In Theorem 1, we let

F (q) =
∞
∑

n=−∞

(−1)n qn
2

=
∞
∏

n=1

1− qn

1 + qn
[8, Eq. (2.2.12) on p. 23].
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Then fk(n) = (−1)n rk(n). We can also deduce that

logF (q) =
∞
∑

j=1

log(1− qj)−
∞
∑

j=1

log(1 + qj)

= −
∞
∑

j=1

∞
∑

l=1

qlj

l
+

∞
∑

j′=1

∞
∑

l′=1

ql
′j′(−1)l

′

l′

= −
∞
∑

n=1

qn





∑

d|n

1− (−1)d

d





= −2
∞
∑

n=1

D(n) qn.

Now using (4) and (5) we get (7) and (8), respectively.

Corollary 4. We have

tk(n) =
−k

n

n
∑

j=1

j T (j) tk(n− j), (9)

and

T (n) =
n
∑

k=1

(−1)k

k

(

n

k

)

tk(n), (10)

where T (n) is given by (3).

Proof. In Theorem 1, we let

F (q) =
∞
∑

n=0

q
(n)(n+1)

2 =
∞
∏

j=1

(1− q2j)2

(1− qj)
=

∞
∏

j=1

(1 + qj)2 (1− qj) [8, Eq. (2.2.13) on p. 23].

Then
fk(n) = tk(n).

We can also deduce that

log(F (q)) =
∞
∑

j=1

2 log(1 + qj) +
∞
∑

j=1

log(1− qj)

= −
∞
∑

j=1

∞
∑

l=1

2
(−1)l qlj

l
−

∞
∑

j′=1

∞
∑

l′=1

ql
′j′

l′

= −

∞
∑

n=1

qn
∑

d|n

1 + 2 (−1)d

d
.

Now using (4) and (5) we get (7) and (8), respectively.
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Remark 5. Robbins [9] has shown the relation

∑

d|n
d odd

d = n
∑

d|n

(−1)d−1

d
. (11)

This implies the second equality in (3).

Corollary 6. Let
∏

n≥1(1− qn)k =
∑∞

n=0 pk(n) q
n. Then we have

pk(n) =
−k

n

n
∑

j=1

σ(j) pk(n− j), (12)

and

σ(n) = n

n
∑

k=1

(−1)k

k

(

n

k

)

pk(n), (13)

where σ(n) =
∑

d|n d.

Remark 7. Equation (12) was first obtained by Gandhi [11, 12]. Equation (13) was obtained
by Jha [13].

Proof. In Theorem 1, we let

F (q) =
∏

n≥1

(1− qn) =
∞
∑

n=−∞

(−1)nq
3n2+n

2 .

Then fk(n) = pk(n), which denotes the number of partitions of n with k colors. We can also
deduce that

log(F (q)) =
∞
∑

j=1

log(1− qj)

= −

∞
∑

j=1

∞
∑

l=1

qlj

l

= −
∞
∑

n=1

qn





∑

d|n

1

d





= −

∞
∑

n=1

σ(n) qn

n
.

Now using (4) and (5) we get (12) and (13), respectively.
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Remark 8. Letting k = −1 in the equation (12) gives the well-known relation:

n p(n) =
n
∑

j=1

σ(j) pk(n− j).

Furthermore, letting k = 1 gives an identity obtained by Osler-Hassen-Chandrupatla [10]

σ(n) = −n an −
n−1
∑

j=1

σ(j) an−j (n ≥ 2),

where

aj =

{

0, if j 6= N
2
(3N + 1);

(−1)N , if j = N
2
(3N + 1).

Here N = 0,±1,±2, . . ..
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