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Abstract

We generalize recent work of Andrews, Just, and Simay on modular palindromic
compositions and anti-palindromic compositions by viewing all compositions partially
(modular) palindromic or anti-palindromic. More precisely, we enumerate compositions
by the extent to which they are (modular) palindromic or anti-palindromic. We obtain
various closed formulas from generating functions and provide bijective proofs for many
of them. We recover some known results of Andrews, Just, and Simay and discover new
connections with numerous sequences in the On-Line Encyclopedia of Integer Sequences
(OEIS).

1 Introduction

The concept of (integer) composition is useful and well studied in enumerative and algebraic
combinatorics. A composition of n is a sequence α = (α1, . . . , αℓ) of positive integers with
|α| := α1 + · · ·+ αℓ = n. The parts of α are α1, . . . , αℓ and the length of α is ℓ(α) := ℓ. We
often drop the parentheses and commas in α when the parts are all single-digit numbers.
We can encode α in a binary string of length n whose ith entry is 1 if

i ∈ {α1, α1 + α2, . . . , α1 + · · ·+ αℓ},

and 0 otherwise. For instance, α = 24112 is a composition of 10 corresponding to the binary
string 0100011101. Thus there are exactly 2n−1 compositions of n, as they are in bijection
with binary strings of length n whose last entry must be 1.
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It is well known that the number of palindromic compositions of n is 2⌊n/2⌋ [3], where
a composition α = (α1, . . . , αℓ) is palindromic if αi = αℓ+1−i for all i = 1, 2, . . . , ⌊ℓ/2⌋.
Recently, Andrews and Simay [1] generalized this to parity palindromic compositions by
replacing the condition αi = αℓ+1−i with αi ≡ αℓ+1−i (mod 2), and Just [5] further generalized
it to palindromic compositions modulo m by imposing the condition αi ≡ αℓ−i (mod m) for
an arbitrary positive integer m. By Just [5], the generating function of the number pc(n,m)
of palindromic compositions of n modulo m is

∑

n≥1

pc(n,m)qn =
q + 2q2 − qm+1

1− 2q2 − qm
.

For m = 2 and n ≥ 1 we have pc(2n, 2) = pc(2n+ 1, 2) = 2 · 3n−1 with an analytic proof by
Andrews and Simay [1], a combinatorial proof by Just [5], and a recursive proof by Vatter [7].
For m = 3, Just [5] showed, both analytically and combinatorially, that pc(1, 3) = 1 and
pc(n, 3) = 2Fn−1 for all n ≥ 2, where Fn is the ubiquitous Fibonacci number defined by
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. The case m > 3 was also briefly discussed
by Just [5].

On the other hand, Andrews, Just, and Simay [2] defined a composition α = (α1, . . . , αℓ)
to be anti-palindromic if αi 6= αℓ−i for all i = 1, 2, . . . , ⌊ℓ/2⌋. They showed, among other
things, that the number of anti-palindromic compositions of n is ac(n) = Tn + Tn−2, where
Tn is a Tribonacci number defined by the recurrence Tn = Tn−1+Tn−2+Tn−3 for n ≥ 3 with
initial conditions Ti = 0 for i < 1 and T1 = T2 = 1 (A000073).

In this paper we generalize the aforementioned work [1, 2, 3, 5] by viewing all compositions
partially (modular) palindromic/anti-palindromic. More precisely, we count compositions
by the extent to which they are (modular) palindromic/anti-palindromic. This is analogous
to the well-known Euler partition theorem generalized to Glaisher’s theorem, and further
to Franklin’s theorem (for more details and a parallel theory of compositions, see recent
work [4]).

Definition 1.

(i) For n, k ≥ 0, let pck(n) := |PCk(n)|, where PCk(n) denotes the set of all compositions
(α1, . . . , αℓ) of n satisfying |{1 ≤ i ≤ ℓ/2 : αi 6= αℓ+1−i}| = k. Note that pc0(0) = 1
and pck(0) = 0 for k ≥ 1. We further define

pck+(n) := #{(α1, . . . , αℓ) ∈ PCk(n) : 2 | ℓ or 2 | α(ℓ+1)/2},

pck−(n) := #{(α1, . . . , αℓ) ∈ PCk(n) : 2 ∤ ℓ and 2 ∤ α(ℓ+1)/2}.

In other words, pck+(n) counts those compositions in PCk(n) with an even middle part
or no middle part, while pck−(n) counts those compositions in PCk(n) with an odd
middle part. This leads to a refinement pck(n) = pck+(n) + pck−(n). For example,
pc1+(4) = |{31, 13}| = 2, pc1−(4) = {211, 112}| = 2, and pc1(4) = 2 + 2 = 4.

(ii) We define ack(n), ack+(n), and ack−(n) by replacing αi 6= αℓ+1−i with αi = αℓ+1−i in (i).
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(iii) For every positive integerm we define pck(n,m), pck+(n,m), and pck−(n,m) by replacing
αi 6= αℓ+1−i with αi 6≡ αℓ+1−i (mod m) in (i), and define ack(n,m), ack+(n,m), and
ack−(n,m) by using ≡ instead of 6≡.

(iv) We also define pck(n,∞) := pck(n), pck+(n,∞) := pck+(n), pck−(n,∞) := pck−(n),
ack(n,∞) := ack(n), ack+(n,∞) := ack+(n), and ack−(n,∞) := pck−(n). We often drop
the superscript k when k = 0 since ac0(n) and pc0(n,m) agree with ac(n) [2] and
pc(n,m) [5], respectively.

By Definition 1, we have pck(n,m) = pck+(n,m) + pck−(n,m) and pck−(0,m) = 0. We
also have pck+(n,m) = pck−(n + 1,m) since any composition α = (α1, . . . , αℓ) counted by
pck+(n,m) corresponds to a composition α′ counted by counted by pck−(n + 1,m), where
α′ := (α1, . . . , αs, 1, αs+1, . . . , αℓ) if ℓ = 2s, or α′ := (α1, . . . , αs, αs+1 + 1, αs+2, . . . , αℓ) if
ℓ = 2s+ 1 and αs+1 is even. It follows that

pck(n,m) = pck+(n,m) + pck+(n− 1,m) (1)

where pck+(−1,m) := 0. Similarly, with ack+(−1,m) := 0 we have

ack(n,m) = ack+(n,m) + ack+(n− 1,m). (2)

To obtain closed formulas for pck(n,m) and ack(n,m), it suffices to do that for pck+(n,m)
and ack+(n,m).

In Section 2 we obtain one closed formula for pck+(n) and three for ack+(n) using their
generating functions. We also combinatorially prove all of these formulas except the last
one for ack+(n) via a bijection between compositions and certain pairs of nonnegative integer
sequences.

For k = 0, our formula for pck+(n) becomes pc+(n) = 2n/2 if n is even or pc+(n) = 0
if n is odd, and this implies the well-known fact that pc(n) = 2⌊n/2⌋ [3]. We also have
pc1+(n) = 2 + (⌈n/2⌉ − 2)2⌈n/2⌉ for n ≥ 0 (A036799). On the other hand, when k = 0 the
three formulas for ack+(n) all reduce to a Tribonacci number T ′

n+1 defined by the recurrence
T ′
n = T ′

n−1 + T ′
n−2 + T ′

n−3 for n ≥ 3 with initial conditions T ′
0 = 0, T ′

1 = 1, and T ′
2 =

0 (A001590). Combining this with Eq. (2) gives ac(n) = T ′
n+1 + T ′

n, which is different from
the formula ac(n) = Tn+Tn−2 obtained by Andrews, Just, and Simay [2], although they are
equivalent via the relations T ′

n+1 = Tn−1 + Tn−2 and T ′
n = Tn − Tn−1 (A001590).

We still have a fourth formula for ack(n), which is an alternating sum. We suspect
that it has a combinatorial proof via inclusion-exclusion. For k = 0 this formula reduces
to ac(n) = Tn+1 − Tn−1, which is also equivalent to ac(n) = T ′

n+1 + T ′
n. A byproduct of

this is a formula for the Tribonacci number Tn that is not found in the entry for the OEIS
sequence A000073, but has a simple bijective proof.

In Section 3 we extend the concept of reduced anti-palindromic compositions introduced
by Andrews, Just, and Simay [2] by defining rpck(n) (resp., rack(n)) as the number of
equivalence classes of compositions counted by pck(n) (resp., ack(n)) under swaps of the
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first and last parts, the second and second last parts, and so on. We obtain closed formulas
for the similarly defined rpck+(n) and rack+(n), which lead to formulas for rpck(n) and rack(n).
It turns out that rpck(n) = pck(n)/2k and rack+(n) coincides with the number of compositions
of n− k with exactly k parts equal to 1 (A105422).

Now let m be a positive integer. In Section 4 we provide a positive sum formula and an
alternating sum formula for pck+(n,m), and thus for pck(n,m) by Eq. (1). In particular, we
have a formula for pc(n,m), which implies the formulas of pc(n, 2) and pc(n, 3) as well as
some properties of pc(n,m) given by Just [5]. In section 5 we provide formulas for rpck+(n,m)
and rpck(n,m) (defined similarly as rpck+(n) and rpck(n)) and find connections to certain
sequences in the OEIS [6] for special values of m and k.

In Section 6 we provide a positive sum formula and an alternating sum formula for
ack+(n,m) as well as a third formula for ack(n,m) which is also an alternating sum. For k = 0
we find no connection of ac+(n,m) and ac(n,m) with existing sequences in the OEIS [6],
but for m = 1, a signed version of ack+(n, 1) is an interesting Riordan array (A158454) and
ack(n, 1) counts compositions of n with 2k or 2k+1 parts. In Section 7 we provide formulas
for rack+(n,m) and rack(n,m) (defined similarly as rack+(n) and rack(n)) and find connections
to various integer sequences in the OEIS [6] for small values of m and k.

Below is a summary of the integer sequences in the OEIS [6] that occur in this paper.

• A036799(n) = pc+(2n+ 1) = pc+(2n+ 2),
A025192(n) = pc+(2n, 2), A008346(n) = pc+(n+ 2, 3)/2.

• A001590(n+ 1) = ac+(n), A000073(n+ 2)−A000073(n) = ac(n).

• A212804(n) = rac+(n), A006367(n) = rac1+(n+ 2), A105423(n) = rac2+(n+ 4),
A105422(n, k) = rack+(n+ k), A324969(n) = rac(n), A208354(n) = rac1(n+ 2).

• A002620(n) = ac1+(n, 1), A001752(n) = ac2+(n+ 4, 1), A001769(n) = ac3+(n+ 6, 1),
A001780(n) = ac4+(n+ 8, 1), A001786(n) = ac5+(n+ 10, 1), A161680(n) = ac1(n, 1),
A000332(n) = ac2(n, 1), A000579(n) = ac3(n, 1), A000581(n) = ac4(n+ 8, 1).

• A052547(n) = rpc+(n, 1), A001870(n) = rpc1+(2n+ 3, 2), 052534(n) = rpc+(2n, 4),
A028495(n) = rpc(n, 1), A094967(n) = rpc(n, 2).

• A062200(n) = rac+(n, 2), A113435(n) = rac(n, 3),
A008805(n) = rac1+(n+2, 1), A096338(n) = rac2+(n+3, 1), A299336(n) = rac3+(n+6, 1),
A002620(n) = rac1(n, 1), A002624(n) = rac2(n+ 4, 1), A060099(n) = rac3(n+ 6, 1),
A060100(n) = rac4(n+ 8, 1), A060101(n) = rac5(n+ 10, 1),
A060098(n, k) = rack(n+ 2k, 1).

All of the closed formulas in this paper are derived from generating functions and they are
either positive sums or alternating sums of products of binomial coefficients. To be precise,
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given integers a and b, we define the binomial coefficient

(

a

b

)

:=











a!
b!(a−b)!

, if a ≥ b ≥ 1;

1, if b = 0;

0, otherwise.

While we have bijective proofs for most of the positive sum formulas in this paper, it would
be nice to see combinatorial proofs for the rest (possibly via inclusion-exclusion for the
alternating sum formulas).

2 Partially (anti-)palindromic compositions

In this section we provide closed formulas for pck(n) and ack(n). By Eq. (1) and Eq. (2), it
suffices to do this for pck+(n) and ack+(n).

Theorem 2. For all integers n, k ≥ 0 we have

pck+(n) =
∑

i+2j=n−3k

(

i+ k − 1

i

)(

j + k

j

)

2j+k, (3)

ack+(n) =
∑

2r+i+j=n−2k

(

r + k

r

)(

r

i

)(

r + j − 1

j

)

. (4)

Analytic Proof. We derive pck+(n) from the generating function
∑

n, k≥0 pc
k
+(n)q

ntk. Given

a composition counted by pck+(n), we pair the first part with the last part, the second part
with the second last part, and so on. Each pair may or may not be equal. If the middle part
exists, it must be even and is not paired with any other part. The generating function for
each pair is

G(q, t) = (q2 + q4 + · · · ) + t((q + q2 + · · · )2 − (q2 + q4 + · · · ))

where t keeps track of whether the two numbers in the pair are unequal. We can simplify
G(q, t) and obtain

∑

n, k≥0

pck+(n)q
ntk =

1

1−G(q, t)

1

1− q2
=

1− q

(1− q)(1− 2q2)− 2q3t
.

Extracting the coefficient of tk gives

∑

n≥0

pck+(n)q
n =

(2q3)k

(1− q)k(1− 2q2)k+1
= (2q3)k

∑

i≥0

(

i+ k − 1

i

)

qi
∑

j≥0

(

j + k

j

)

(2q2)j.
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This implies the formula (3) for pck+(n). Similarly, we obtain the generating function for
ack+(n):

∑

n, k≥0

ack+(n)q
ntk =

1

1− tG(q, 1/t)

1

1− q2
=

1− q

1− q − q2 − q3 − (1− q)q2t
. (5)

Extracting the coefficient of tk gives

∑

n≥0

ack+(n)q
n =

(1− q)k+1q2k

(1− q − q2 − q3)k+1
=

q2k

(1− q2(1 + q)/(1− q))k+1
.

Applying the binomial theorem to this gives the formula (4) for ack+(n).

Combinatorial Proof. Let α = (α1, . . . , αℓ) be a composition of n such that α(ℓ+1)/2 is even
whenever ℓ is odd. Let S := {1 ≤ h ≤ ℓ/2 : αh 6= αℓ+1−h}. Define a composition βh :=
(|αh − αℓ+1−h| : h ∈ S). Subtracting the parts of β from the corresponding parts of α gives
a palindromic composition γ = (γ1, . . . , γℓ) with |β|+ |γ| = n, where γh := min{αh, αℓ+1−h}
for all h = 1, . . . , ℓ. Since γ is palindromic, we can encode it in a binary sequence of
b = (b1, . . . , b|γ|/2), where bh = 1 if and only if h ∈ {γ1, γ1 + γ2, . . . , γ1 + · · · + γ⌊ℓ/2⌋}. We
obtain b′ (resp., b′′) from b by adding βh to bγ1+···+γh for all h ∈ S with αh > αℓ+1−h (resp.,
αh < αℓ+1−h). Then we have a bijection α ↔ (b′, b′′) since α can be recovered from b′ and b′′:

• Let s be the number of positive entries in b′. Then ℓ is 2s if b′ ends in 1 or 2s + 1
otherwise.

• For each h = 1, . . . , s, the hth positive entry of b′ (resp., b′′) plus the number of
consecutive zeros immediately before it equals αh (resp., αℓ+1−h).

• If ℓ = 2s + 1 then αs+1 equals twice the length of the rightmost string of consecutive
zeros in b′.

Restrict the bijection α ↔ (b′, b′′) to those α with |S| = k. Then |β| = i + k for some
i ≥ 0, |γ| = 2(j + k) for some j ≥ 0, and n = |β| + |γ| = i + 2j + 3k. We can construct all
(b′, b′′) corresponding to those α with |S| = k as follows.

(i) First, let b′ and b′′ be the same binary sequence with k ones indexed by a set T and j
zeros.

(ii) Let β = (βh : h ∈ T ) be a composition of i+ k with exactly k parts indexed by T .

(iii) For each h ∈ T , add βh to either b′h or b′′h.

(iv) For each h ∈ {1, . . . , j + k} \ T , let b′h = b′′h be either 0 or 1.
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The numbers of possibilities for the above steps are
(

j+k
j

)

,
(

i+k−1
i

)

, 2k, and 2j, respectively.

The formula (3) for pck+(n) follows.
Now restrict the bijection α ↔ (b′, b′′) to those α with |S| = ⌊ℓ/2⌋ − k, where ℓ is the

length of α. Let i := #{h ∈ S : αh > αℓ+1−h}. Then |β| = i+j for some j ≥ 0, |γ| = 2(r+k)
for some r ≥ 0, and n = |β|+ |γ| = 2r+2k+i+j. We can construct all (b′, b′′) corresponding
to those α with |S| = ⌊ℓ/2⌋ − k as follows.

(i) First let b′ and b′′ be the same binary sequence with r zeros indexed by a set T and k
ones.

(ii) Choose i indices from T without repetition and increase the corresponding entries in
b′ and b′′ by 2 and 1, respectively.

(iii) Choose j indices from T with repetition and do the following each time.

– If we pick one of the i indices chosen at the last step, add 1 to the corresponding
entry in b′.

– If we pick an index not among the i indices chosen at the last step, increase the
corresponding entries in b′ and b′′ by 1 and 2, respectively for the first time and
increase only the corresponding entry in b′′ by 1 each time afterwards.

The numbers of ways to finish the above steps are
(

r+k
k

)

,
(

r
i

)

, and
(

r+j−1
j

)

, respectively. The

formula (4) for ack+(n) follows.

We provide some examples below to illustrate the above combinatorial proof.

Example 3.

(i) For n = 25 and k = 3 we have a composition α = 2141124111232 counted by pck+(n)
with S = {2, 3, 6}, β = 221, γ = 2121114111212, b′ = 0110311200, b′′ = 0130111100,
i = 2, j = 7, and i + 2j + 3k = 25 = n. The construction of (b′, b′′) begins with
b′ = b′′ = 0010100100, which has k = 3 ones indexed by T = {3, 5, 8} and j = 7
zeros. Adding the second and third parts of β = 221 to the second and third ones in b′

gives b′ = 0010300200, and adding the first part of β = 221 to the first one in b′′ gives
b′′ = 0030100100. Finally, changing the zeros indexed by 2, 6, 7 to ones in both b′ and
b′′ results in b′ = 0110311200 and b′′ = 0130111100.

(ii) For n = 17 and k = 1 we have a composition α = 2134115 counted by ack+(n) with
S = {1, 3}, β = 32, γ = 2114112, i = 1, j = 4, r = 5, b′ = 011300, b′′ = 041100,
and 2r + 2k + i + j = 17 = n. The construction of (b′, b′′) is given below, with
T = {1, 2, 4, 5, 6}.

001000 → 001200 → 001300 → 011300 → 011300 → 011300

001000 → 001100 → 001100 → 021100 → 031100 → 041100
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(iii) For n = 6 and k = 0 we have ac+(6) = 11 anti-palindromic compositions with an even
middle part or no middle part:

r i j α (b, b′)
1 0 4 15 (1, 5)
1 1 3 51 (5, 1)
2 0 2 24 (01, 03)
2 0 2 123 (10, 30)
2 0 2 1122 (11, 22)

r i j α (b, b′)
2 1 1 42 (03, 01)
2 1 1 321 (30, 10)
2 1 1 1212 (12, 12)
2 1 1 2121 (21, 21)
2 2 0 2211 (22, 11)
3 0 0 6 (000, 000)

We provide two more formulas for ack+(n) next.

Theorem 4. For n, k ≥ 0 we have

ack+(n) =
∑

2r+i+j=n−2k

2i
(

r + k

k

)(

r

i

)(

i+ j − 1

j

)

(6)

=
∑

i+j+r+2s=n−2k

(−1)i
(

k + 1

i

)(

j + k

j

)(

j

r + s

)(

r + s

r

)

. (7)

Proof. We can rewrite the generating function (5) of ack+(n) as

∑

n, k≥0

ack+(n)q
ntk =

1

1− q2(2q/(1− q) + 1 + t)
=

∑

r,k≥0

q2(r+k)

(

r + k

k

)(

r

i

)

(2q)i

(1− q)i
tk.

Extracting the coefficient of qntk gives the first formula (6). This formula can also be proved
via the same bijection α ↔ (b′, b′′) as in the combinatorial proof of Theorem 2 but using a
slightly different construction of b′ and b′′:

(i) Let b′ and b′′ be the same binary sequence with r zeros indexed by a set T and k ones.

(ii) Pick i indices from T without repetition and for each of them, add 1 to the corre-
sponding entry in b′ and add 2 to the corresponding entry in b′′, or the other way
around.

(iii) Among the 2’s in b′ and b′′, choose j of them with repetition and add 1 each time.

We also have

∑

n, k≥0

ack+(n)q
ntk =

∑

k≥0

(1− q)k+1q2ktk

(1− q − q2 − q3)k+1

=
∑

k≥0

q2k
∑

i≥0

(

k + 1

i

)

(−q)i
∑

j≥0

(

j + k

j

)

(q + q2 + q3)jtk,

which implies the second formula (7).
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The formula (3) for pck+(n) implies a formula for pck(n) = pck+(n)+pck+(n−1) by Eq. (1).
In particular, we have pc0+(n) = 2n/2 if n is even or pc0+(n) = 0 otherwise, and this implies
pc(n) = 2⌊n/2⌋. We also have

pc1+(n) =

⌊(n−3)/2⌋
∑

j=0

(j + 1)2j+1 = 2 + (⌈n/2⌉ − 2)2⌈n/2⌉

for n ≥ 0, which is essentially the same as the known sequence A036799.
On the other hand, the formulas (4), (6), (7) for ack+(n) give formulas for ack(n) =

ack+(n) + ack+(n− 1) by Eq. (2). For k = 0, we have

ac+(n) =
∑

2r+i+j=n

(

r

i

)(

r + j − 1

j

)

=
∑

2r+i+j=n

2i
(

r

i

)(

i+ j − 1

j

)

=
∑

j+r+2s=n

(

j

r + s

)(

r + s

r

)

−
∑

j+r+2s=n−1

(

j

r + s

)(

r + s

r

)

,

which equals the Tribonacci number T ′
n+1 with initial conditions T ′

0 = 0, T ′
1 = 1, T ′

2 =
0 (A001590). This implies ac(n) = T ′

n+1 + T ′
n and it is different from the formula ac(n) =

Tn + Tn−2 obtained by Andrews, Just, and Simay [2], although they can be derived from
each other via the relations T ′

n+1 = Tn−1 + Tn−2 and T ′
n = Tn − Tn−1 (A001590). We provide

one more formula for ack(n) below, which reduces to another formula ac(n) = Tn+1 − Tn−1

when k = 0.

Theorem 5. For n, k ≥ 0 we have

ack(n) =
∑

i+j+r+s
=n−2k

(−1)i
(

k

i

)(

j + k

j

)(

j

r

)(

r

s

)

−
∑

i+j+r+s
=n−2k−2

(−1)i
(

k

i

)(

j + k

j

)(

j

r

)(

r

s

)

. (8)

Proof. We obtain the generating function of ack(n) from Eq. (5):

∑

n, k≥0

ack(n)qntk =
1− q2

1− q − q2 − q3 − (1− q)q2t

= (1− q2)
∑

j,k≥0

(

j + k

j

)

(q + q2 + q3)j(1− q)kq2ktk.

Extracting the coefficient of qntk gives the desired formula for ack(n).

Remark 6. There might be a combinatorial proof for the formula (8) of ack(n) via inclusion-
exclusion. For k = 0 this formula becomes ac(n) = Tn+1 − Tn−1, giving a byproduct

Tn+1 =
∑

j+r+s=n

(

j

r

)(

r

s

)

.
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The above formula of Tn+1 is not found in the entry for the OEIS sequence A000073, but has
a simple bijective proof. In fact, it is known that the number of compositions of n with no
part greater than 3 is Tn+1 (A000073). Given such a composition, let j, r, s be the number
of parts greater than 0, 1, 2, respectively. Then the r parts greater than 1 are among those
j parts greater than 0, the s parts greater than 2 are among those r parts greater than 1,
and j + r + s = n. This combinatorially proves the above formula of Tn+1.

3 Reduced partially (anti-)palindromic compositions

Andrews, Just, and Simay [2] found a formula for the number rac(n) of reduced anti-
palindromic compositions of n, where reduced anti-palindromic compositions are equivalence
classes of anti-palindromic compositions under swaps of the first and last parts, the second
and second last parts, and so on. We extend this definition and let rpck(n) (resp., rack(n))
denote the number of equivalence classes of compositions counted by pck(n) (resp., ack(n))
under the aforementioned swaps. Taking k = 0 gives rpc0(n) = rpc(n) and rac0(n) = rac(n).
We define rpck+(n), rpc

k
−(n), rac

k
+(n), and rack−(n) similarly.

Proposition 7. For n, k ≥ 0, we have rpck+(n) = pck+(n)/2
k, rpck−(n) = pck−(n)/2

k, and
rpck(n) = pck(n)/2k.

Proof. This result follows immediately from the definition.

Theorem 8. For n ≥ 0, we have

rack+(n) =
∑

2r+j=n−2k

(

r + k

r

)(

r + j − 1

j

)

,

which is also the number of compositions of n− k with exactly k parts equal to 1 (A105422).

Proof. Similarly to the proof of Theorem 2, the generating function for rack+(n) is

∑

n, k≥0

rack+(n)q
ntk =

1

1− tG(q, 1/2t)

1

1− q2
=

1− q

1− q − q2 − (1− q)q2t
.

Extracting the coefficient of tk gives

∑

n≥0

rack+(n)q
n =

(1− q)k+1q2k

(1− q − q2)k+1
=

q2k

(1− q2/(1− q))k+1
.

This implies the desired formula of rack+(n). We can also prove this formula by modifying
the combinatorial proof of the formula (6) of ack+(n), where the i indices picked in step (ii)
correspond to the swaps of parts used to define rack+(n).
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Finally, comparing the generating function of rack+(n) with the generating function of A105422
shows that rack+(n) is also the number of compositions of n − k with exactly k parts equal
to 1. This can also be proved bijectively. In fact, given a composition of n− k with k parts
equal to 1 and r parts greater than 1, subtracting 1 from each part gives a composition
of n − 2k − r = r + j for some j ≥ 0 with r parts. Conversely, if 2r + j = n − 2k then
there are

(

r+j−1
j

)

many compositions of r+ j with r parts, each corresponding to
(

r+k
r

)

many
compositions of n− k with k parts equal to 1 and r parts greater than 1.

Some special cases of Theorem 8 are given below.

• We have rac0+(0) = 1 and rac0+(n) = Fn−1 (A212804). Consequently, rac(0) = 1 and
rac(n) = Fn for n ≥ 1 (A324969).

• For n ≥ 0, rac1+(n) =
∑

0≤r≤(n−2)/2(r+1)
(

n−r−3
n−2r−2

)

is the number of compositions of n−1

with exactly one part equal to 1 (A006367), and rac1(n) is the number of compositions
of n− 2 with at most one even part (A208354).

• For n ≥ 0, rac2+(n) =
∑

2r+j=n−4

(

r+2
2

)(

r+j−1
j

)

is the number of compositions of n − 2

with exactly two parts equal to 1 (A105423).

Remark 9. It would be interesting to see whether rac1(n) = rac1+(n) + rac1+(n − 1) can be
proved bijectively using compositions with exactly one part equal to 1 and compositions with
at most one even part. One may also notice that rac(n) equals the number of the number of
compositions of n with no even parts. By checking the generating functions we are convinced
that the connection between rack(n) and compositions of n with at most k even parts is valid
only for k = 0, 1.

4 Partially palindromic compositions modulo m

Let m be a positive integer throughout the rest of the paper. In this section we obtain closed
formulas for pck+(n,m), which imply formulas for pck(n,m) by Eq. (1).

Theorem 10. For n, k ≥ 0 we have

pck+(n,m) =
∑

2i+mj+(m−1)r+s=n−k

(−1)r2i
(

i

k

)(

i+ j − 1

j

)(

k

r

)(

k + s− 1

s

)

(9)

=
∑

i0+i1+···+im−2=k
2i+mj+i1+2i2+···+(m−2)im−2=n−k

2i
(

i

k

)(

i+ j − 1

j

)(

k

i0, i1, . . . , im−2

)

. (10)

Proof. Given a composition, each part equals its least positive residue modulo m plus a
nonnegative multiple of m. We pair the first part with the last part, the second part with
the second last part, and so on. If the middle part exists, then it is not paired with any
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other part. For each pair, their smallest positive residues modulom may be equal or unequal.
Thus the generating function for each pair is

Gm(q, t) = (q2 + q4 + · · ·+ q2m + t((q + q2 + · · ·+ qm)2 − q2 − q4 − · · · − q2m)(1 + qm + · · · )2

and the generating function for pck+(n,m) is

∑

n,k≥0

pck+(n,m)qntk =
1

1−Gm(q, t)

1

1− q2

=
(1− q)(1− qm)

(1− q)(1− qm)− 2q2(1− q + q(1− qm−1)t)

=
∑

i≥0

(2q2)i

(1− qm)i

(

1 +
q(1− qm−1)t

1− q

)i

=
∑

i≥k≥0

(

i

k

)

(2q2)iqk(1− qm−1)ktk

(1− qm)i(1− q)k
.

Extracting the coefficient of qntk gives the formula (9) for pck+(n,m).
We can also write (1− qm−1)k/(1− q)k = (1+ q+ · · ·+ qm−2)k in the generating function

of pc+(n,m, k) and apply the multinomial theorem to obtain the formula (10).

Remark 11. We can rewrite Eq. (10) (and similar formulas appearing later) using symmetric
functions. Let λ ⊆ (m − 2)k denote that λ is an (integer) partition with at most k parts,
each no more than m−2. Adding trailing zeros we can identify it with a decreasing sequence
λ = (λ1, . . . , λk) of k integers in {0, 1, . . . ,m − 2}. For h = 0, 1, . . . ,m − 2, let ih be the
number of parts of λ ⊆ (m − 2)k that are equal to h. We have i0 + i1 + · · · + im−2 = k
and i1 + 2i2 + · · ·+ (m− 2)im−2 = |λ|. The monomial symmetric function mλ(x1, . . . , xk) is
the sum of the monomials xa1

1 · · · xak
k for all rearrangements (a1, . . . , ak) of (λ1, . . . , λk). The

formula (10) becomes

pck+(n,m) =
∑

λ⊆(m−2)k

2i+mj+|λ|=n−k

2i
(

i

k

)(

i+ j − 1

j

)

mλ(1
k)

where mλ(1
k) is the evaluation of mλ(x1, . . . , xk) at the vector (1, . . . , 1) of length k.

Taking k = 0 in either Eq. (9) or Eq. (10) give the following:

pc+(n,m) =
∑

2i+mj=n

2i
(

i+ j − 1

j

)

. (11)

We can also obtain this by modifying the combinatorial proof of Theorem 2 with |β| = mj
and |γ| = 2i. Some known results follow.
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Corollary 12 ([1, 5, 7]). For n ≥ 1 we have pc(2n, 2) = pc(2n+1, 2) = 2 · 3n−1 (A025192).

Proof. Taking m = 2 in Eq. (11) immediately gives pc0+(2n, 2) =
∑

i≥0 2
i
(

n−1
n−i

)

= 2 ·3n−1 and
pc0+(2n+ 1, 2) = 0.

Corollary 13 ([5]).

(i) For n ≥ 2 we have pc(n, 3) = 2Fn−1.

(ii) If m is even then pc(2n,m) = pc(2n+ 1,m).

(iii) If 2n+ 1 < m then pc(2n,m) = pc(2n+ 1,m) = 2n.

Proof. The proof of Theorem 10 gives the generating function
∑

n≥0

pc0+(n, 3)q
n =

(1− q)(1− q3)

(1− q)(1− q3)− 2q2(1− q)
=

1− q3

1− 2q2 − q3
.

Taking m = 3 in Eq. (11) gives pc0+(n, 3) =
∑

2i+3j=n 2
i
(

i+j−1
j

)

. Either way we have

pc0+(0, 3) = 1, pc0+(1, 3) = 1, and pc0+(n, 3) = 2(Fn−2 + (−1)n−2) for n ≥ 2 (cf. the
known sequence A008346. It follows from Eq. (1) and the recursive relation of Fn that
pc(n, 3) = pc0+(n, 3) + pc0+(n− 1, 3) = 2Fn−1. Thus (i) holds.

If m is even then pc0+(n,m) = 0 for all odd n by Eq. (11). Thus (ii) follows from Eq. (1).
If 2n+ 1 < m then a summand in pc0+(2n,m) given by Eq. (11) is nonzero only if j = 0

and i = n, and pc0+(2n + 1,m) = pc0+(2n − 1,m) = 0 for the same reason. This together
with Eq. (1) gives (iii).

For m = 1 we have pc+(n, 1) =
∑

2i+j=n 2
i
(

i+j−1
j

)

and pck+(n, 1) = 0 for k ≥ 1 from

∑

n,k≥0

pck+(n, 1)q
ntk =

1− q

1− q − 2q2
=

∑

i≥0

(2q2)i

(1− q)i
.

We can also use a combinatorial argument for this. In fact, since any two integers are
congruent modulo m = 1, we have must pck+(n, 1) = 0 for k ≥ 1, and for k = 0, the number
pc+(n, 1) counts compositions of n without an odd middle part. The combinatorial proof
of Theorem 2 can be modified with |β| = j and |γ| = 2i to give another proof of the above
formula of pc+(n, 1). Analogously, we have pc(n, 1) = 2n−1 counts all compositions of n and
pck(n, 1) = 0 for k ≥ 1. Note that pc+(n, 1) coincide with the known sequence A078008,
which counts compositions of n with parts greater than one, each part colored in two possible
ways. It would be interesting to have a bijection between the two families of compositions
both counted by pc+(n, 1).

For m = 2 we observe the following.

Corollary 14. For n ≥ 0 we have pck+(n, 2) =
∑

2i+2j=n−k 2
i
(

i
k

)(

i+j−1
j

)

, which is zero when

n − k is odd. In particular, pc1+(2n, 2) = 0 and pc1+(2n + 1, 2) =
∑

i≥0(i + 1)2i+1
(

n−1
i

)

for
n ≥ 1 (A081038).

Proof. Taking m = 2 in Eq. (10) gives pck+(n, 2) =
∑

2i+2j=n−k 2
i
(

i
k

)(

i+j−1
j

)

. This sum is
empty if 2i+ 2j = n− k is odd. The rest of the result follows.
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5 Reduced partially palindromic compositions modulo

m

Let rpck(n,m) denote the number of equivalence classes of compositions counted by pck(n,m)
under swaps of the first and last parts, the second and second last parts, and so on. We define
rpck+(n,m) and rpck−(n,m) similarly. It follows that rpck(n,m) = rpck+(n,m)+rpck−(n,m) =
rpck+(n,m) + rpck+(n− 1,m) where rpck+(−1,m) := 0.

Theorem 15. For n, k ≥ 0 we have

rpck+(n,m) =
∑

2i+mj+2c+(m−1)r+s=n−k

(−1)r
(

i

k

)(

i+ j − 1

j

)(

i+ c

c

)(

k

r

)(

k + s− 1

s

)

(12)

=
∑

i0+i1+···+im−2=k
2i+mj+2c+i1+2i2+···+(m−2)im−2=n−k

(

i

k

)(

i+ j − 1

j

)(

i+ c

c

)(

k

i0, i1, . . . , im−2

)

.

(13)

Proof. Similarly to the proof of Theorem 10, the generating function for each pair is

G′
m(q, t) =(q2 + q4 + · · ·+ q2m)

(

1 + q2m + · · ·+
1

2
((1 + qm + · · · )2 − 1− q2m − · · · )

)

+
t

2
((q + q2 + · · ·+ qm)2 − q2 − q4 − · · · − q2m)(1 + qm + · · · )2,

and the generating function of rpck+(n,m) is

∑

n,k≥0

rpck+(n,m)qntk =
1

1−G′
m(q, t)

1

1− q2

=
(1− q)(1− qm)

(1− q)(1− q2)(1− qm)− q2(1− q)− q3(1− qm−1)t

=
1

1− q2

∑

i≥k≥0

(

i

k

)

q2i+k(1− q)i−k(1− qm−1)ktk

(1− q)i(1− q2)i(1− qm)i
.

Extracting the coefficient of qntk gives the desired formulas for rpck+(n,m).

For k = 0 we have the number rpc+(n,m) counts compositions α = (α1, . . . , αℓ) of n
such that α(ℓ+1)/2 is even whenever ℓ is odd and that αh − αℓ+1−h is a nonnegative multiple
of m for h = 1, . . . , ⌊ℓ/2⌋. One can compare the following formula of rpc+(n,m) with the
formula (11) for pc+(n,m).

Corollary 16. For n ≥ 0 we have

rpc+(n,m) =
∑

2i+mj+2r=n

(

i+ j − 1

j

)(

i+ r

r

)

.
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Proof. Setting t = 0 in the generating function of rpck+(n,m) gives

∑

n≥0

rpc+(n,m)qn =
(1− qm)

(1− q2)(1− qm)− q2
=

1

1− q2

∑

i≥k≥0

q2i

(1− q2)i(1− qm)i
.

This implies the desired formula for rpc+(n,m), which can also be obtained by modifying
the combinatorial proof of Theorem 2 with |β| = mj, |γ| = 2(i+ r), and ℓ(γ) = 2i.

In particular, we have rpc+(n, 1) coincides with the known sequence A052547, and
rpc(n, 1) =

∑

2i+j+2r=n

(

i+j
j

)(

i+r−1
r

)

agrees with another sequence, A028495, which also

counts compositions of n with increments appearing only at every second position (such
compositions are in bijection with the compositions counted by rpc(n, 1) by reordering
parts appropriately). Next, the generating function of rpc+(n, 2) can be written as (F (q)−
F (−q))/2q, where F (q) = q/(1 − q − q2) is the generating function of the Fibonacci num-
bers. Thus rpc+(2n, 2) = F2n+1 and rpc+(2n + 1, 2) = 0. Consequently, rpc(n, 2) agrees
with A094967: rpc(2n, 2) = rpc(2n + 1, 2) = F2n+1. Moreover, rpc+(2n, 4) is the same
as A052534 and rpc+(2n+ 1, 4) = 0.

On the other hand, form = 1 and k ≥ 1 we have rpck+(n, 1) = 0, which follows from either
its definition or its generating function. Form = 2 we have rpck+(n, 2) =

∑

2i+2j=n−k

(

i
k

)(

2i+j
j

)

from its generating function

∑

n,k≥0

rpck+(n, 2)q
ntk =

(1− q2)

(1− q2)2 − q2 − q3t
=

1

1− q2

∑

i≥0

q2i(1 + qt)i

(1− q2)2i
.

Thus rpc1+(2n, 2) = 0, rpc1+(2n + 1, 2) =
∑

0≤i≤n i
(

n+i
2i

)

(A001870), and rpc1(2n + 1, 2) =
rpc1(2n+ 2, 2) = rpc1+(2n+ 1, 2).

6 Partially anti-palindromic compositions modulo m

In this section we provide closed formulas for ack+(n,m) and ack(n,m), where m is a positive
integer.

Theorem 17. For n, k ≥ 0 we have

ack+(n,m) =
∑

2i+j+r(m−1)+s
+mc+md=n−2k

(−1)r2j
(

i+ k

k

)(

i

j

)(

j

r

)(

j + s− 1

s

)(

k

c

)(

k + j + d− 1

d

)

=
∑

i0+i1+···+im−2=j
2i+j+i1+2i2+···+(m−2)im−2

+mc+md=n−2k

2j
(

i+ k

k

)(

i

j

)(

j

i0, . . . , im−2

)(

k

c

)(

k + j + d− 1

d

)

.

15

https://oeis.org/A052547
https://oeis.org/A028495
https://oeis.org/A094967
https://oeis.org/A052534
https://oeis.org/A001870


Proof. Similarly as the proof of Theorem 10, we have

∑

n, k≥0

ack+(n,m)qntk =
1

1− tGm(q, 1/t)

1

1− q2

=
(1− q)(1− qm)

(1− q)(1− qm)− q2(1− q)(1− qm)− 2q3(1− qm−1)− q2(1− q)(1 + qm)t

=
∑

i≥0

q2i
(

1 +
2q(1− qm−1)

(1− q)(1− qm)
+

(1 + qm)t

1− qm

)i

=
∑

i,k≥0

q2(i+k)

(

i+ k

k

)(

1 +
2q(1− qm−1)

(1− q)(1− qm)

)i
(1 + qm)ktk

(1− qm)k

=
∑

i,j,k≥0

q2(i+k)

(

i+ k

k

)(

i

j

)

(2q)j(1− qm−1)j

(1− q)j(1− qm)j
(1 + qm)ktk

(1− qm)k
.

Extracting the coefficient of qntk gives the first formula for ack+(n,m).
We can also write (1− qm−1)j/(1− q)j = (1+ q+ · · ·+ qm−2)j in the generating function

of ac+(n,m, k) and apply the multinomial theorem to obtain the second formula.

Combining Theorem 17 and Eq. (2), we obtain two formulas for ack(n,m). We also
directly provide another formula for ack(n,m) below.

Theorem 18. For n, k ≥ 0 we have

ack(n,m) =
∑

3i+j+r(m−1)+2s
+cm+dm=n−2k

(−1)r2i
(

i+ k

k

)(

i+ j

j

)(

i

r

)(

i+ k + s− 1

s

)(

k

c

)(

i+ k + d− 1

d

)

.

Proof. Similarly to the proof of Theorem 10, we have

∑

n, k≥0

ack(n,m)qntk =
1

1− tGm(q, 1/t)

1

1− q

=
(1− q2)(1− qm)

(1− q)(1− q2)(1− qm)− 2q3(1− qm−1)− q2(1− q)(1 + qm)t

=
1

1− q

∑

i≥0

(

2q3(1− qm−1)

(1− q)(1− q2)(1− qm)
+

q2(1− q)(1 + qm)t

(1− q)(1− q2)(1− qm)

)i

=
1

1− q

∑

i,k≥0

(

i+ k

k

)

(2q3)i(1− qm−1)i

(1− q)i(1− q2)i(1− qm)i
·

q2k(1 + qm)ktk

(1− q2)k(1− qm)k

=
∑

i,k≥0

(

i+ k

k

)

2iq3i+2k(1− qm−1)i(1 + qm)ktk

(1− q)i+1(1− q2)i+k(1− qm)i+k
.

Extracting the coefficient of qntk from this gives the desired formula for ack(n,m).
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Taking k = 0 in Theorem 17 and Theorem 18 immediately give closed formulas for
ac+(n,m) and ac(n,m). We cannot find any connection of ac+(n,m) and ac(n,m) with
existing sequences in the OEIS [6].

Another interesting specialization is at m = 1. Since any two integers are congruent
modulo m = 1, the number ack+(n, 1) counts compositions of n with 2k parts or with 2k + 1
parts, the middle one of which is even. The generating function of ack+(n,m) specializes to

∑

n,k≥0

ack+(n, 1)q
ntk =

1

1− q2 − q2(1 + q)t/(1− q)
=

∑

i,k≥0

q2(i+k)

(

i+ k

k

)

(1 + q)ktk

(1− q)k
,

which implies

ack+(n, 1) =
∑

2i+c+d=n−2k

(

i+ k

k

)(

k

c

)(

k + d− 1

d

)

.

A signed version of ack+(n, 1) gives a Riordan array that is the coefficient table of the square
of Chebyshev S-polynomials and also sends the Catalan numbers to ones (A158454). We
also find some special cases: ac+(n, 1) = (1 + (−1)n)/2, ac1+(n, 1) = ⌊n2/4⌋ (A002620),
ac2+(n, 1) (A001752), ac

3
+(n, 1) (A001769), ac

4
+(n, 1) (A001780), and ac5+(n, 1) (A001786).

Similarly, the number ack(n, 1) counts all compositions of n with 2k or 2k+1 parts, and

∑

n, k≥0

ack(n, 1)qntk =
1− q

(1− q)2 − q2t
=

∑

k≥0

q2ktk

(1− q)2k+1
,

which implies ack(n, 1) =
(

2k+1+n−2k−1
n−2k

)

=
(

n
2k

)

. This formula can also be proved combinato-
rially as compositions of n with 2k or 2k + 1 parts are in bijection with binary sequences of
length n with exactly 2k ones (if the last digit is zero, change it to one to get a composition
with 2k + 1 parts).

For m = 2, 3 and k = 0, 1, 2 we list some initial terms of ack(n,m) below.

• ac0(n, 2) : 1, 1, 1, 3, 3, 7, 11, 17, 33, 49, 89, 147, 243, 423, 691, 1185, . . .

• ac1(n, 2) : 0, 0, 1, 1, 4, 8, 13, 33, 52, 108, 201, 353, 688, 1196, 2213, 3985, . . .

• ac2(n, 2) : 0, 0, 0, 0, 1, 1, 7, 13, 32, 80, 148, 352, 677, 1381, 2799, 5313, . . .

• ac0(n, 3) : 1, 1, 1, 3, 5, 7, 15, 27, 43, 81, 147, 249, 449, 809, 1409, 2507, . . .

• ac1(n, 3) : 0, 0, 1, 1, 2, 8, 13, 23, 58, 108, 195, 411, 786, 1446, 2831, 5387, . . .

• ac2(n, 3) : 0, 0, 0, 0, 1, 1, 3, 13, 22, 48, 132, 258, 525, 1197, 2409, 4797, . . .

The OEIS [6] does not contain any of the above sequences.
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7 Reduced partially anti-palindromic compositions mod-

ulo m

Let rack(n,m) denote the number of equivalence classes of compositions counted by ack(n,m)
under swaps of the first and last parts, the second and second last parts, and so on. Define
rack+(n,m) and rack−(n,m) similarly. It follows that rack(n,m) = rack+(n,m) + rack−(n,m) =
rack+(n,m) + rack+(n − 1,m) where rack+(−1,m) := 0. We give two closed formulas for
rack+(n,m) and a third formula directly for rack(n,m).

Theorem 19. For n, k ≥ 0 we have

rack+(n,m) =
∑

2i+j+r(m−1)+s+md=n−2k

(−1)r
(

i+ k

k

)(

i

j

)(

j

r

)(

j + s− 1

s

)(

k + j + d− 1

d

)

=
∑

i0+i1+···+im−2=j
2i+j+i1+2i2+···+(m−2)im−2+md=n−2k

(

i+ k

k

)(

i

j

)(

j

i0, . . . , im−2

)(

k + j + d− 1

d

)

,

rack(n,m) =
∑

3i+j+r(m−1)+2s+dm=n−2k

(−1)r
(

i+ k

k

)(

i+ j

j

)(

i

r

)(

i+ k + s− 1

s

)(

i+ k + d− 1

d

)

.

Proof. Similarly to the proof of Theorem 15, the generating function for rack+(n,m) is

∑

n, k≥0

rack+(n,m)qntk =
1

1− tG′
m(q, 1/t)

1

1− q2

=
(1− q)(1− qm)

(1− q)(1− qm)− q2(1− 2qm + qm+1)− q2(1− q)t

=
∑

i≥0

q2i
(

1 +
q(1− qm−1)

(1− q)(1− qm)
+

t

1− qm

)i

=
∑

i,k≥0

q2(i+k)

(

i+ k

k

)(

1 +
q(1− qm−1)

(1− q)(1− qm)

)i
tk

(1− qm)k

=
∑

i,j,k≥0

q2(i+k)

(

i+ k

k

)(

i

j

)

qj(1− qm−1)j

(1− q)j(1− qm)j
tk

(1− qm)k
.
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Extracting the coefficient of qntk gives the desired formulas for rack+(n,m). We also have

∑

n, k≥0

rack(n,m)qntk =
1

1− tG′
m(q, 1/t)

1

1− q

=
(1− q2)(1− qm)

(1− q)(1− q2)(1− qm)− q3(1− qm−1)− q2(1− q)t

=
1

1− q

∑

i≥0

(

q3(1− qm−1)

(1− q)(1− q2)(1− qm)
+

q2(1− q)t

(1− q)(1− q2)(1− qm)

)i

=
∑

i,k≥0

(

i+ k

k

)

q3i+2k(1− qm−1)itk

(1− q)i+1(1− q2)i+k(1− qm)i+k
.

Extracting the coefficient of qntk from this gives the desired formula for rack(n,m).

Taking k = 0 in Theorem 19 immediately gives formulas for rac+(n,m) and rac(n,m).
Although ac+(n,m) and ac(n,m) are not related to any sequences in the OEIS (see Section 6),
we find the following special cases of rac+(n,m) and rac(n,m):

• We have rac+(2n, 1) = 1, rac+(2n+ 1, 1) = 0, rac(n, 1) = 1 for n ≥ 0.

• We have rac+(0, 2) = 1, rac+(1, 2) = 0 and for n ≥ 2 the number rac+(n, 2) counts
compositions of n− 2 with no two adjacent parts of the same parity (A062200).

• The sequence rac(n, 3) for n ≥ 0 agrees with the known sequence A113435, which
currently does not contain any combinatorial interpretation.

For m = 1 we obtain rack+(n, 1) =
∑

2i+j=n−2k

(

i+k
k

)(

j+k−1
j

)

from the generating function

∑

n, k≥0

rack+(n, 1)q
ntk =

1− q

(1− q)− q2(1− q)− q2t
=

∑

i,k≥0

q2(i+k)

(

i+ k

k

)

tk

(1− q)k
.

Since every two integers are congruent modulo m = 1, the number rack+(n, 1) counts all
compositions α = (α1, . . . , αℓ) of n such that α(ℓ+1)/2 is even whenever ℓ is odd and that
αh ≥ αℓ+1−h for h = 1, . . . , ⌊ℓ/2⌋. Thus the above formula for rack+(n, 1) can also be obtained
by modifying the combinatorial proof of Theorem 2 with |β| = j, |γ| = 2(i + k), and
⌊ℓ(γ)/2⌋ = k. We have rac1+(2n, 1) = rac1+(2n+1, 1) =

∑

0≤i≤n−1(i+1) = n(n+1)/2, giving
a new interpretation of the sequence of repeated triangular numbers (A008805). We also
have rac2+(n, 1) =

∑

2i+j=n−4

(

i+2
2

)

(j + 1) (A096338).

Similarly, we obtain rack(n, 1) =
∑

2i+j=n−2k

(

i+k−1
i

)(

j+k
j

)

from the generating function

∑

n, k≥0

rack(n, 1)qntk =
1− q2

(1− q)(1− q2)− q2t
=

1

1− q

∑

i,k≥0

q2ktk

(1− q)k(1− q2)k
.
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The number rack(n, 1) counts compositions α = (α1, . . . , αℓ) of n such that αh ≥ αℓ+1−h for
h = 1, . . . , ⌊ℓ/2⌋. This gives a new interpretation of a triangular array of integers A060098.
Some special cases include rac1(n, 1) =

∑

0≤i≤⌊n/2⌋−1(n − 2i − 1) = ⌊n
2
⌋⌈n

2
⌉, which coin-

cides with both ac1+(n, 1) and the known sequence A002620, rac2(n, 1) =
∑

2i+j=n−4(i +

1)
(

j+2
2

)

(A002624), rac3(n, 1) (A060099), rac4(n, 1) (A060100), and rac5(n, 1) (A060101). A
combinatorial explanation for rac1(n, 1) = ac1+(n, 1) would be interesting.

For m ≥ 2 we cannot find any connection of rack+(n, 1) or rack(n, 1) with existing se-
quences in the OEIS [6].

8 Acknowledgment

The author uses SageMath to help discover and verify the closed formulas in this paper. He
also thanks the anonymous referees for helpful comments and suggestions.

References

[1] G. E. Andrews and G. Simay, Parity palindrome compositions, Integers 21 (2021), Paper
No. A85.

[2] G. E. Andrews, M. Just, and G. Simay, Anti-palindromic compositions, Fibonacci Quart.
60 (2022), 164–176.

[3] V. E. Hoggatt, Jr. and M. Bicknell, Palindromic compositions, Fibonacci Quart. 13
(1975), 350–356.

[4] J. Huang, Compositions with restricted parts, Discrete Math. 343 (2020), 111875.

[5] M. Just, Compositions that are palindromic modulo m, arxiv preprint arXiv:2102.00996
[math.CO], 2021. Available at https://arxiv.org/abs/2102.00996.

[6] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2023. Available
at https://oeis.org.

[7] V. Vatter, Counting parity palindrome compositions, arxiv preprint arXiv:2109.13155
[math.CO], 2021. Available at https://arxiv.org/abs/2109.13155.

2010 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: composition, palindrome.

(Concerned with sequences A000073, A000332, A000579, A000581, A001590, A001752, A001769,
A001780, A001786, A001870, A002620, A002624, A006367, A008346, A008805, A025192,

20

https://oeis.org/A060098
https://oeis.org/A002620
https://oeis.org/A002624
https://oeis.org/A060099
https://oeis.org/A060100
https://oeis.org/A060101
https://arxiv.org/abs/2102.00996
https://oeis.org
https://arxiv.org/abs/2109.13155
https://oeis.org/A000073
https://oeis.org/A000332
https://oeis.org/A000579
https://oeis.org/A000581
https://oeis.org/A001590
https://oeis.org/A001752
https://oeis.org/A001769
https://oeis.org/A001780
https://oeis.org/A001786
https://oeis.org/A001870
https://oeis.org/A002620
https://oeis.org/A002624
https://oeis.org/A006367
https://oeis.org/A008346
https://oeis.org/A008805
https://oeis.org/A025192


A028495, A036799, A052534, A052547, A060098, A060099, A060100, A060101, A062200,
A078008, A081038, A094967, A096338, A105422, A105423, A113435, A158454, A161680,
A208354, A212804, A299336, and A324969.)

Received March 11 2023; revised versions received April 4 2023; April 5 2023. Published in
Journal of Integer Sequences, April 7 2023.

Return to Journal of Integer Sequences home page.

21

https://oeis.org/A028495
https://oeis.org/A036799
https://oeis.org/A052534
https://oeis.org/A052547
https://oeis.org/A060098
https://oeis.org/A060099
https://oeis.org/A060100
https://oeis.org/A060101
https://oeis.org/A062200
https://oeis.org/A078008
https://oeis.org/A081038
https://oeis.org/A094967
https://oeis.org/A096338
https://oeis.org/A105422
https://oeis.org/A105423
https://oeis.org/A113435
https://oeis.org/A158454
https://oeis.org/A161680
https://oeis.org/A208354
https://oeis.org/A212804
https://oeis.org/A299336
https://oeis.org/A324969
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Partially (anti-)palindromic compositions
	Reduced partially (anti-)palindromic compositions
	Partially palindromic compositions modulo m
	Reduced partially palindromic compositions modulo m
	Partially anti-palindromic compositions modulo m
	Reduced partially anti-palindromic compositions modulo m
	Acknowledgment

