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Abstract

In this paper, we use some properties of Chebyshev polynomials and trigonometric

functions to study four classes of sums of products of two arctangents involving these

polynomials. We also give some infinite series identities concerning Fibonacci and

Lucas numbers.

1 Introduction

For all integers n ≥ 1 and all real x, the Chebyshev polynomials of the first and second kind,
Tn(x) and Un(x), are defined by the second-order linear recurrences

Tn+1(x) = 2xTn(x)− Tn−1(x) and Un+1(x) = 2xUn(x)− Un−1(x),

where the first two terms are T0(x) = 1, T1(x) = x, U0(x) = 1 and U1(x) = 2x.
Explicit formulae for Tn(x) and Un(x) can be expressed as follows:

Tn(x) =
(

αn + βn
)

/2 and Un(x) =
(

αn+1 − βn+1
)

/2
√
x2 − 1,

where α = α(x) = x+
√
x2 − 1, β = β(x) = x−

√
x2 − 1.

It is common knowledge that the Chebyshev polynomials Tn(x) and Un(x) play an im-
portant role in approximation theory, and so many scholars have studied their properties
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and obtained many interesting conclusions. In particular, Kim and his team [4–9] have done
a lot of important research work. You can also find many papers on Chebyshev polynomials
in the literature [10–17]. For example, Ma and Lv [10] computed the reciprocal sums of
Chebyshev polynomials. For k = 1, 2 and 3, they considered the summations

q−1
∑

a=1

T−2k
a

(

cos πh/q
)

and

q−1
∑

a=1

U−2k
a−1

(

cos πh/q
)

,

where q is an odd number and h is an integer co-prime to q.
Zhang [12] studied convolution sums involving Tn(x), and proved the following identities:

∑

a1+a2+···+ak+1=n+k+1

k+1
∏

i=1

Tai(x) = (1/2k · k!) ·
k+1
∑

h=0

(−x)h ·
(

k + 1

h

)

· U (k)
n+2k+1−h(x),

where U
(k)
n (x) denotes the k-th derivative of Un(x) with respect to x, and the summation

is over all
(

k + 1
)

-dimension non-negative integer coordinates
(

a1, a2, . . . , ak+1

)

such that
a1 + a2 + · · ·+ ak+1 = n+ k + 1.

Zhang and Chen [13] proved the following result:

∑

a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1
(x)

= (1/2h · h!) ·
h

∑

j=1

C
(

h, j
)

/x2h−j

n
∑

i=0

(

n− i+ j
)

!/
(

n− i
)

! ·
(

2h+ i− j − 1

i

)

· Un−i+j(x)/x
i,

where C(h, i) is the second order non-linear recurrence sequence defined by C(h, 0) = 0,
C(h, h) = 1, C(h+ 1, 1) = 1 · 3 · 5 · · · (2h− 1) = (2h− 1)! and

C(h+ 1, i+ 1) = (2h− 1− i) · C(h, i+ 1) + C(h, i)

for all 1 ≤ i ≤ h− 1.
Adegoke [14] studied sums of arctangents involving Fibonacci numbers and Lucas num-

bers and obtained the following result:

∞
∑

r=p

arctanλF2jL4jr+2k/
(

F 2
4jr+2k − F 2

2j + λ2
)

= arctanλ/F4jp+2k−2j;

∞
∑

r=p

arctanλF2jF4jr+2k−1/
(

L8jr+4k−2 − L4j + λ2
)

= arctanλ/L4jp+2k−2j−1,

where λ ∈ R, j, k, p ∈ Z and j 6= 0.
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Mahon and Horadam [15] studied sums of arctangents involving Pell and Pell-Lucas
polynomials and obtained the following result:

n
∑

r=1

arctan 2x/P2r−1(x) = π/2− arctan 1/P2n(x);

n
∑

r=1

arctan(−1)r−1/P2r(x) = arctanPn(x)/Pn+1(x),

where x ∈ R, n ∈ Z and n ≥ 1.
We observe that Chebyshev polynomials have similar properties to Pell and Pell-Lucas

polynomials, so it is natural to wonder whether Chebyshev polynomials have similar identi-
ties. Inspired by [14] and [15], in this paper, we use the properties of Chebyshev polynomials
and trigonometric functions to study the sums of products of two arctangents involving
Chebyshev polynomials, and give some infinite series identities for Fibonacci and Lucas
numbers. We prove the following results:

Theorem 1. Let n, k be positive integers. Then for all real x > 1, we have the identities

n
∑

k=1

arctan 2xT2k(x)/
(

T 2
2k(x) + x2 − 2

)

arctan 2
(

x2 − 1
)

U2k−1(x)/
(

T 2
2k(x) + x2

)

= arctan2 1/x− arctan2 1/T2n+1(x);
n

∑

k=1

arctan 2xT2k−1(x)/
(

T 2
2k−1(x) + x2 − 2

)

arctan 2
(

x2 − 1
)

U2k−2(x)/
(

T 2
2k−1(x) + x2

)

= π2/16− arctan2 1/T2n(x).

Theorem 2. Let n, k be positive integers. Then for all real x > 1, we have the identities

n
∑

k=1

arctan 2xU2k(x)/
(

U2
2k(x)− 2

)

arctan 2T2k+1(x)/U
2
2k(x)

= arctan2 1/2x− arctan2 1/U2n+1(x);
n

∑

k=1

arctan 2xU2k−1(x)/
(

U2
2k−1(x)− 2

)

arctan 2T2k(x)/U
2
2k−1(x)

= π2/16− arctan2 1/U2n(x).
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Theorem 3. Let n, k be positive integers. Then for all real x > 1, we have the identities

n
∑

k=1

arctan
(

1− x2
)

/2xT 2
k (x) arctan

(

2T 2
k (x) + x2 − 1

)

/
(

x2 − 1
)

U2k−1(x)

= arctan2 Tn(x)/Tn+1(x)− arctan2 1/x;
n

∑

k=1

arctan 2x2
(

1− x2
)

/
(

2x2 − 1
)

T 2
k (x) arctan

(

T 2
k (x) + 2x2

(

x2 − 1
))

/x
(

x2 − 1
)

U2k−1(x)

= arctan2 Tn−1(x)/Tn+1(x) + arctan2 Tn(x)/Tn+2(x)− π2/16− arctan2 1/
(

2x2 − 1
)

.

Theorem 4. Let n, k be positive integers. Then for all real x > 1, we have the identities

n
∑

k=1

arctan 1/2xU2
k (x) arctan

(

2U2
k (x)− 1

)

/U2k+1(x)

= arctan2 Un(x)/Un+1(x)− arctan2 1/2x;
n

∑

k=1

arctan 2x2/
(

2x2 − 1
)

U2
k (x) arctan

(

U2
k (x)− 2x2

)

/xU2k+1(x)

= arctan2 Un(x)/Un+2(x) + arctan2 Un−1(x)/Un+1(x)− arctan2 1/
(

4x2 − 1
)

.

In the above theorems, we only consider the case x > 1. If x < −1, we have −x > 1,
α(x) = −(−x)+

√

(−x)2 − 1 = −β(−x), β(x) = −(−x)−
√

(−x)2 − 1 = −α(−x). From the
definition of Tn(x) and Un(x), we obtain Tn(x) = (−1)n · Tn(−x), Un(x) = (−1)n · Un(−x).
By observing the above theorems, we find that the results are the same in both cases, so we
do not discuss them here. Taking n → ∞, from our theorems we can deduce the following:

Corollary 5. Let k be an integer. Then for all real x > 1, we have

∞
∑

k=1

arctan 2xT2k(x)/
(

T 2
2k(x) + x2 − 2

)

arctan 2
(

x2 − 1
)

U2k−1(x)/
(

T 2
2k(x) + x2

)

= arctan2 1/x;
∞
∑

k=1

arctan 2xT2k−1(x)/
(

T 2
2k−1(x) + x2 − 2

)

arctan 2
(

x2 − 1
)

U2k−2(x)/
(

T 2
2k−1(x) + x2

)

= π2/16.

Corollary 6. Let k be an integer. Then for all real x > 1, we have

∞
∑

k=1

arctan 2xU2k(x)/
(

U2
2k(x)− 2

)

arctan 2T2k+1(x)/U
2
2k(x) = arctan2 1/2x;

∞
∑

k=1

arctan 2xU2k−1(x)/
(

U2
2k−1(x)− 2

)

arctan 2T2k(x)/U
2
2k−1(x) = π2/16.
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Corollary 7. Let k be an integer. Then for all real x > 1, we have

∞
∑

k=1

arctan
(

1− x2
)

/2xT 2
k (x) arctan

(

2T 2
k (x) + x2 − 1

)

/
(

x2 − 1
)

U2k−1(x)

= arctan2 β − arctan2 1/x;
∞
∑

k=1

arctan 2x2
(

1− x2
)

/
(

2x2 − 1
)

T 2
k (x) arctan

(

T 2
k (x) + 2x2

(

x2 − 1
))

/x
(

x2 − 1
)

U2k−1(x)

= 2 arctan2 β2 − π2/16− arctan2 1/
(

2x2 − 1
)

,

where β = β(x) = x−
√
x2 − 1.

Corollary 8. Let k be an integer. Then for all real x > 1, we have

∞
∑

k=1

arctan 1/2xU2
k (x) arctan

(

2U2
k (x)− 1

)

/U2k+1(x) = arctan2 β − arctan2 1/2x;

∞
∑

k=1

arctan 2x2/
(

2x2 − 1
)

U2
k (x) arctan

(

U2
k (x)− 2x2

)

/xU2k+1(x)

= 2 arctan2 β2 − arctan2 1/
(

4x2 − 1
)

,

where β = β(x) = x−
√
x2 − 1.

Remark 9. Here we give several values of Tn(x) and Un(x) as follows:

Tn

(

3/2
)

= L2n/2;Tn

(

7/2
)

= L4n/2; Un

(

3/2
)

= F2n+2;Un

(

7/2
)

= F4n+4/3.

Tn

(
√
5/2

)

=

{

Ln/2, if n is even;√
5Fn/2, if n is odd.

Un

(
√
5/2

)

=

{

Ln+1, if n is even;√
5Fn+1, if n is odd.

Tn

(
√
5
)

=

{

L3n/2, if n is even;√
5F3n/2, if n is odd.

Un

(
√
5
)

=

{

L3n+3/4, if n is even;√
5F3n+3/4, if n is odd.

where Fn and Ln denote the famous Fibonacci and Lucas numbers.

From the first formula of Corollary 5 and Corollary 6, we can also deduce the following
four Corollaries about Fibonacci and Lucas numbers.

Corollary 10. Let k be an integer. Then for x =
√
5/2, we have the identities

∞
∑

k=1

arctan 2
√
5L2k/

(

L2
2k − 3

)

arctan 2
√
5F2k/

(

L2
2k + 5

)

= arctan2 2/
√
5;

∞
∑

k=1

arctan
√
5L2k+1/

(

L2
2k+1 − 2

)

arctan
√
5F2k+1/L

2
2k+1 = arctan2 1/

√
5.
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Corollary 11. Let k be an integer. Then for x = 3/2, we have the identities

∞
∑

k=1

arctan 6L4k/
(

L2
4k + 1

)

arctan 10F4k/
(

L2
4k + 9

)

= arctan2 2/3;

∞
∑

k=1

arctan 3F4k+2/
(

F 2
4k+2 − 2

)

arctanL4k+2/F
2
4k+2 = arctan2 1/3.

Corollary 12. Let k be an integer. Then for x =
√
5, we have the identities

∞
∑

k=1

arctan 4
√
5L6k/

(

L2
6k + 12

)

arctan 8
√
5F6k/

(

L2
6k + 20

)

= arctan2
√
5/5;

∞
∑

k=1

arctan 8
√
5L6k+3/

(

L2
6k+3 − 32

)

arctan 16
√
5F6k+3/L

2
6k+3 = arctan2

√
5/10.

Corollary 13. Let k be an integer. Then for x = 7/2, we have the identities

∞
∑

k=1

arctan 14L8k/
(

L2
8k + 41

)

arctan 30F8k/
(

L2
8k + 49

)

= arctan2 2/7;

∞
∑

k=1

arctan 21F8k+4/
(

F 2
8k+4 − 18

)

arctan 9L8k+4/F
2
8k+4 = arctan2 1/7.

2 Lemmas

To complete the proofs of our theorems, we need several simple lemmas. The proof of these
lemmas requires the properties of the Chebyshev polynomials of the first and second kind,
Tn(x) and Un(x). All these can be found in [2,3], and we do not repeat them. First, we have
the following:

Lemma 14. Let k, λ be positive integers with k ≥ λ. Then for all real x, we have

Tk+λ(x)− Tk−λ(x) = 2
(

x2 − 1
)

Uk−1(x)Uλ−1(x),

Tk+λ(x) + Tk−λ(x) = 2Tk(x)Tλ(x),

Tk+λ(x)Tk−λ(x) = T 2
k (x) + T 2

λ (x)− 1.

Proof. See [3, p. 393].

Lemma 15. Let k, λ be positive integers with k ≥ λ. Then for all real x, we have

Uk+λ(x)− Uk−λ(x) = 2Tk+1(x)Uλ−1(x),

Uk+λ(x) + Uk−λ(x) = 2Uk(x)Tλ(x),

Uk+λ(x)Uk−λ(x) = U2
k (x)− U2

λ−1(x).
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Proof. See [3, p. 388].

Apart from that, we also need to use the following properties of the arctangent (see [1, p.
80]):

arctan x+ arctan y = arctan
(

x+ y
)

/
(

1− xy
) (

xy > 1
)

,

arctan x− arctan y = arctan
(

x− y
)

/
(

1 + xy
) (

xy < −1
)

.

3 Proofs of the theorems

In this section, we use the two basic lemmas and the properties of arctangents to prove our
main results. First we prove Theorem 1. From Lemma 14 and the properties of arctangents,
we have

arctan 1/Tk−λ(x) + arctan 1/Tk+λ(x) = arctan 2Tk(x)Tλ(x)/
(

T 2
k (x) + T 2

λ (x)− 2
)

, (1)

arctan 1/Tk−λ(x)− arctan 1/Tk+λ(x) = arctan 2
(

x2 − 1
)

Uk−1(x)Uλ−1(x)/
(

T 2
k (x) + T 2

λ (x)
)

.
(2)

Taking λ = 1 in (1), (2) and replacing k by 2k, we have

arctan 1/T2k−1(x) + arctan 1/T2k+1(x) = arctan 2xT2k(x)/
(

T 2
2k(x) + x2 − 2

)

,

arctan 1/T2k−1(x)− arctan 1/T2k+1(x) = arctan 2
(

x2 − 1
)

U2k−1(x)/
(

T 2
2k(x) + x2

)

.

Multiplying the two equations and summing for k from 1 to n, we may deduce the identity

n
∑

k=1

arctan 2xT2k(x)/
(

T 2
2k(x) + x2 − 2

)

arctan 2
(

x2 − 1
)

U2k−1(x)/
(

T 2
2k(x) + x2

)

= arctan2 1/x− arctan2 1/T2n+1(x). (3)

This proves the first formula in Theorem 1. Similarly, replacing k by 2k−1, from the method
of proving (3), we can deduce the second formula. This proves Theorem 1.

Now we prove Theorem 2. From Lemma 15 and the properties of arctangents, we have

arctan 1/Uk−λ(x) + arctan 1/Uk+λ(x) = arctan 2Uk(x)Tλ(x)/
(

U2
k (x)− U2

λ−1(x)− 1
)

, (4)

arctan 1/Uk−λ(x)− arctan 1/Uk+λ(x) = arctan 2Tk+1(x)Uλ−1(x)/
(

U2
k (x)− U2

λ−1(x) + 1
)

.
(5)
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Taking λ = 1 in (4), (5) and replacing k by 2k, we have

arctan 1/U2k−1(x) + arctan 1/U2k+1(x) = arctan 2xU2k(x)/
(

U2
2k(x)− 2

)

,

arctan 1/U2k−1(x)− arctan 1/U2k+1(x) = arctan 2T2k+1(x)/U
2
2k(x).

Multiplying the two identities and summing for k from 1 to n, we have

n
∑

k=1

arctan 2xU2k(x)/
(

U2
2k(x)− 2

)

arctan 2T2k+1(x)/U
2
2k(x)

= arctan2 1/2x− arctan2 1/U2n+1(x). (6)

From Lemma 15 and (6), we can easily obtain the second formula. This proves Theorem
2.

Now we prove Theorem 3. From Lemma 14 and the properties of arctangents, we have

arctanTk(x)/Tk+λ(x)− arctanTk−λ(x)/Tk(x) = arctan
(

1− T 2
λ (x)

)

/2T 2
k (x)Tλ(x), (7)

arctanTk(x)/Tk+λ(x) + arctanTk−λ(x)/Tk(x)

= arctan
(

2T 2
k (x) + T 2

λ (x)− 1
)

/
(

x2 − 1
)

U2k−1(x)Uλ−1(x). (8)

Taking λ = 1 in (7) and (8), we have

arctanTk(x)/Tk+1(x)− arctanTk−1(x)/Tk(x) = arctan
(

1− x2
)

/2xT 2
k (x),

arctanTk(x)/Tk+1(x) + arctanTk−1(x)/Tk(x) = arctan
(

2T 2
k (x) + x2 − 1

)

/
(

x2 − 1
)

U2k−1(x).

Multiplying the above two formulae and summing for k from 1 to n, we have the following
identity

n
∑

k=1

arctan
(

1− x2
)

/2xT 2
k (x) arctan

(

2T 2
k (x) + x2 − 1

)

/
(

x2 − 1
)

U2k−1(x)

= arctan2 Tn(x)/Tn+1(x)− arctan2 1/x. (9)

This proves the first formula in Theorem 3. Taking λ = 2 in (7) and (8), from the method
of proving (9), we can easily deduce the second formula. This proves Theorem 3.

Analogously, from Lemma 15 and the method of proving Theorem 3, we can easily obtain
Theorem 4. This completes the proofs of our all results.

4 Applications

To further illustrate the application of our results, we take some specific values to obtain
identities about Fibonacci and Lucas numbers.

8



• Taking x =
√
5/2, from the first formula of Corollary 5 and Corollary 6, we have the

following identities

∞
∑

k=1

arctan
√
5T2k

(
√
5/2

)

/
(

T 2
2k

(
√
5/2

)

− 3/4
)

arctanU2k−1

(
√
5/2

)

/
(

2T 2
2k

(
√
5/2

)

+ 5/2
)

= arctan2 2/
√
5;

∞
∑

k=1

arctan
√
5U2k

(
√
5/2

)

/
(

U2
2k

(
√
5/2

)

− 2
)

arctan 2T2k+1

(
√
5/2

)

/U2
2k

(
√
5/2

)

= arctan2 1/
√
5.

Note that

T2k−1

(
√
5/2

)

=
√
5F2k−1/2, T2k+1

(
√
5/2

)

=
√
5F2k+1/2, T2k

(
√
5/2

)

= L2k/2,

U2k−1

(
√
5/2

)

=
√
5F2k, U2k−2

(
√
5/2

)

= L2k−1, U2k

(
√
5/2

)

= L2k+1.

Substituting the values into the above two identities, respectively, we have

∞
∑

k=1

arctan 2
√
5L2k/

(

L2
2k − 3

)

arctan 2
√
5F2k/

(

L2
2k + 5

)

= arctan2 2/
√
5;

∞
∑

k=1

arctan
√
5L2k+1/

(

L2
2k+1 − 2

)

arctan
√
5F2k+1/L

2
2k+1 = arctan2 1/

√
5.

Similarly, using the above method, we also have

∞
∑

k=1

arctan 10F2k−1/
(

5F 2
2k−1 − 3

)

arctan 2L2k−1/
(

5F 2
2k−1 + 5

)

= π2/16;

∞
∑

k=1

arctan 5F2k/
(

5F 2
2k − 2

)

arctanL2k/5F
2
2k = π2/16.

• Take x = 3/2 and note that

T2k+1

(

3/2
)

= L4k+2/2, T2k−1

(

3/2
)

= L4k−2/2, T2k

(

3/2
)

= L4k/2,

U2k+1

(

3/2
)

= F4k+4, U2k−1

(

3/2
)

= F4k, U2k

(

3/2
)

= F4k+2.

Substituting the values into the first formula of Corollary 5, Corollary 6, Corollary 7 and
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Corollary 8, respectively, we have

∞
∑

k=1

arctan 6L4k/
(

L2
4k + 1

)

arctan 10F4k/
(

L2
4k + 9

)

= arctan2 2/3;

∞
∑

k=1

arctan 3F4k+2/
(

F 2
4k+2 − 2

)

arctanL4k+2/F
2
4k+2 = arctan2 1/3;

∞
∑

k=1

arctan−5/3L2
2k arctan

(

2L2
2k + 5

)

/5F4k = arctan2
(

2/
√
5
)

/4− arctan2 2/3;

∞
∑

k=1

arctan 1/3F 2
2k+2 arctan

(

2F 2
2k+2 − 1

)

/F4k+4 = arctan2
(

2/
√
5
)

/4− arctan2 1/3.

Similarly, from the method above, we also have

∞
∑

k=1

arctan 6L4k−2/
(

L2
4k−2 + 1

)

arctan 10F4k−2/
(

L2
4k−2 + 9

)

= π2/16;

∞
∑

k=1

arctan 3F4k/
(

F 2
4k − 2

)

arctanL4k/F
2
4k = π2/16;

∞
∑

k=1

arctan−45/7L2
2k arctan

(

2L2
2k + 45

)

/15F4k = 2arctan2
(

7− 3
√
5
)

/2− π2/16− arctan2 2/7;

∞
∑

k=1

arctan 9/7F 2
2k+2 arctan

(

2F 2
2k+2 − 9

)

/3F4k+4 = 2arctan2
(

7− 3
√
5
)

/2− arctan2 1/8.

• Take x =
√
5 and note that

T2k−1

(
√
5
)

=
√
5F6k−3/2, T2k+1

(
√
5
)

=
√
5F6k+3/2, T2k

(
√
5
)

= L6k/2,

U2k−1

(
√
5
)

=
√
5F6k/4, U2k−2

(
√
5
)

= L6k−3/4, U2k

(
√
5
)

= L6k+3/4.

Substituting the values into the first formula of Corollary 5 and Corollary 6, respectively, we
have the following identities

∞
∑

k=1

arctan 4
√
5L6k/

(

L2
6k + 12

)

arctan 8
√
5F6k/

(

L2
6k + 20

)

= arctan2
√
5/5;

∞
∑

k=1

arctan 8
√
5L6k+3/

(

L2
6k+3 − 32

)

arctan 16
√
5F6k+3/L

2
6k+3 = arctan2

√
5/10.
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Analogously, from the above calculation method, we also obtain

∞
∑

k=1

arctan 20F6k−3/
(

5F 2
6k−3 + 36

)

arctan 8L6k−3/
(

5F 2
6k−3 + 20

)

= π2/16;

∞
∑

k=1

arctan 40F6k/
(

5F 2
6k − 32

)

arctan 16L6k/5F
2
6k = π2/16.

• Take x = 7/2 and note that

T2k+1

(

7/2
)

= L8k+4/2, T2k−1

(

7/2
)

= L8k−4/2, T2k

(

7/2
)

= L8k/2,

U2k−2

(

7/2
)

= F8k−4/3, U2k−1

(

7/2
)

= F8k/3, U2k

(

7/2
)

= F8k+4/3.

Substituting the values into the first formula of Corollary 5 and Corollary 6, respectively, we
have the identities

∞
∑

k=1

arctan 14L8k/
(

L2
8k + 41

)

arctan 30F8k/
(

L2
8k + 49

)

= arctan2 2/7;

∞
∑

k=1

arctan 21F8k+4/
(

F 2
8k+4 − 18

)

arctan 9L8k+4/F
2
8k+4 = arctan2 1/7.

Analogously, from the above calculation method, we also have

∞
∑

k=1

arctan 14L8k−4/
(

L2
8k−4 + 41

)

arctan 30F8k−4/
(

L2
8k−4 + 49

)

= π2/16;

∞
∑

k=1

arctan 21F8k/
(

F 2
8k − 18

)

arctan 9L8k/F
2
8k = π2/16.
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