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Abstract

We show that the p-adic valuation (where p is a given prime number) of certain
rational numbers is unusually large. This generalizes very recent results of the author
and of Dubickas, which are both related to the special case p = 2. The crucial point for
obtaining our main result is the fact that the p-adic valuation of the rational numbers
in question is unbounded from above. We confirm this fact by three different methods;
the first two are elementary, while the third one relies on p-adic analysis.

1 Introduction and notation

Throughout this paper, we let N denote the set of positive integers and N0 := N∪{0} denote
the set of non-negative integers. For x ∈ R, we let ⌊x⌋ denote the integer part of x. For a
given prime number p and a given non-zero rational number r, we let νp(r) denote the usual
p-adic valuation of r; if in addition r is positive then we let logp(r) denote its logarithm to

the base p (i.e., logp(r) :=
log r
log p

). Next, the least common multiple of given positive integers

u1, u2, . . . , un (n ∈ N) is denoted by lcm(u1, u2, . . . , un) . In several places of this paper, we
will use the estimate νp(n) ≤ logp(n) (for primes p and all n ∈ N). We also often use the

formula νp (lcm(1, 2, . . . , n)) =
⌊

logp(n)
⌋

(for primes p and all n ∈ N). At the end of the
paper, we need to use the p-adic logarithm function which we denote by Lp (to differentiate
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from the notation logp, which is reserved to denote the logarithm to the base p). With the
usual notation Qp for the field of p-adic numbers, Cp for the field of the p-adic complex
numbers, and | · |p for the usual p-adic absolute value on Cp, recall that Lp can be defined
by

−Lp(1− x) :=
+∞
∑

k=1

xk

k
(∀x ∈ Cp, |x|p < 1).

(See [5]). The fundamental property of Lp is that it satisfies the functional equation

Lp(uv) = Lp(u) + Lp(v)

(for all u, v ∈ Cp, with |u− 1|p < 1 and |v − 1|p < 1).
The author [2, 3] has obtained nontrivial lower bounds for the 2-adic valuation of the

rational numbers of the form
∑n

k=1
2k

k
(n ∈ N). The stronger one is

ν2

(

n
∑

k=1

2k

k

)

≥ n− ⌊log2(n)⌋ (∀n ∈ N). (1)

The author [3] has also posed the problem of generalizing Eq. (1) to other prime numbers p
other than p = 2. Dubickas [1] has found arguments for improving and optimizing Eq. (1)

by relying solely on the fact that the sequence
(

ν2

(

∑n

k=1
2k

k

))

n≥1
is unbounded from above.

However, he did not establish a method to prove this fact without relying on Eq. (1). The
main result in [1] states that

ν2

(

n
∑

k=1

2k

k

)

≥ (n+ 1)− log2(n+ 1), (2)

for all n ∈ N, with equality if and only if n = 2α − 1 (α ∈ N).
The goal of this paper is twofold. On the one hand, we expand and improve the arguments

in [1] to establish a general result providing to us nontrivial lower bounds for the p-adic
valuation of a sum of rational numbers under some conditions (see Theorem 2). On the
other hand, we solve the problem posed in [3] by generalizing Eqs. (1) and (2) to other prime
numbers. More precisely, we show (in different ways) that for all prime numbers p and all
non-multiple integers a of p, the sequence

(

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

))

n≥1

(3)

is unbounded from above. Then, by using our general theorem 2, we derive an optimal
lower bound for the sequence in Eq. (3). It must be noted that the crucial point of the
unboundedness from above of the sequence in Eq. (3) is established by three methods. The
first two are elementary and effective while the third one relies on the p-adic analysis and it
is ineffective; precisely, it uses the function Lp described above. Personally, we consider that
the deep reason why the sequence in Eq. (3) is unbounded from above is rather given by the
third method.
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2 The results and the proofs

Our main result is the following:

Theorem 1. Let p be a prime number, and let a be an integer that is not a multiple of p.
Then

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

)

≥ (n+ 1)− logp

(

n+ 1

2

)

(4)

for all positive integers n. In addition, this inequality becomes an equality if and only if n
has the form n = 2pα − 1 (α ∈ N0).

Note that Theorem 1 generalizes the recent results of the author [2, 3] and Dubickas [1],
which are both related to the particular case p = 2. In particular, if we take p = 2 and a = 1
in Theorem 1, we exactly obtain (after some obvious simplifications) the main result of [1],
stating that

ν2

(

n
∑

k=1

2k

k

)

≥ (n+ 1)− log2(n+ 1) (∀n ∈ N),

with equality if and only if n has the form (2α − 1) (α ∈ N).
The proof of Theorem 1 is based in part on the following result, which can be useful in

other situations for establishing a lower bound on the p-adic valuation of certain sums of
rational numbers. It must be also noted that the result below is obtained by generalizing
the arguments in [1].

Theorem 2. Let p be a fixed prime number and (rn)n≥1 be a sequence of rational numbers

such that the sequence (νp (
∑n

k=1 rk))n≥1
is unbounded from above. Let also (ℓk)k≥2 be an

increasing real sequence satisfying the property

ℓk ≤ νp(rk) (∀k ≥ 2). (5)

Then we have

νp

(

n
∑

k=1

rk

)

≥ min
k≥n+1

νp(rk) ≥ ℓn+1 (6)

for all positive integers n. In addition, the inequality νp (
∑n

k=1 rk) ≥ ℓn+1 becomes an equality

if and only if we have

νp(rn+1) = ℓn+1. (7)

Our main result (i.e., Theorem 1) is proven in two steps. In the first one, we suppose

(in the situation of Theorem 1) that the sequence
(

νp

(

∑n

k=1

(

1
ak

+ 1
(p−a)k

)

pk

k

))

n≥1
is un-

bounded from above, and we apply for it Theorem 2 to establish the lower bound (4) and
characterize the n’s for which it is attained. In the second one, we focus on proving the
unboundedness from above of the sequence in question. This is accomplished using three
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different methods. The first method relies on two identities, one combinatorial and the other
arithmetic. The second method utilizes a specific functional equation and Taylor polyno-
mials. Lastly, the third method employs p-adic analysis, specifically the p-adic logarithm
function.

Let us begin by proving Theorem 2.

Proof of Theorem 2. Let n be a fixed positive integer. Let us show the first inequality of

(6). Since, by hypothesis, the sequence
(

νp

(

∑N

k=1 rk

))

N≥1
is unbounded from above then

there exists m ∈ N, with m > n, such that

νp

(

m
∑

k=1

rk

)

> νp

(

n
∑

k=1

rk

)

.

Then, by using the elementary properties of the p-adic valuation, we have on the one hand

νp

(

m
∑

k=n+1

rk

)

= νp

(

m
∑

k=1

rk −
n
∑

k=1

rk

)

= min

(

νp

(

m
∑

k=1

rk

)

, νp

(

n
∑

k=1

rk

))

= νp

(

n
∑

k=1

rk

)

,

and on the other hand

νp

(

m
∑

k=n+1

rk

)

≥ min
n+1≤k≤m

νp(rk) ≥ min
k≥n+1

νp(rk).

By comparing these two results, we deduce that

νp

(

n
∑

k=1

rk

)

≥ min
k≥n+1

νp(rk),

which is the first inequality of (6). The second inequality of (6) is immediately derived from
its first inequality, combined with the properties of the sequence (ℓk)k≥2. Indeed, we have

νp

(

n
∑

k=1

rk

)

≥ min
k≥n+1

νp(rk) (by the first inequality of (6))

≥ min
k≥n+1

ℓk (by using (5))

= ℓn+1 (since (ℓk)k is increasing by hypothesis),

confirming the second inequality of (6).
Now, let us prove the second part of Theorem 2. If νp (

∑n

k=1 rk) = ℓn+1 then we have
(according to Eq. (6), proved above) mink≥n+1 νp(rk) = ℓn+1. Then, using Eq. (5) and the
increase of (ℓk)k, we have

ℓn+1 = min
k≥n+1

νp(rk) = min

(

νp(rn+1), min
k≥n+2

νp(rk)

)

≥ min

(

νp(rn+1), min
k≥n+2

ℓk

)

= min (νp(rn+1), ℓn+2) .
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But since ℓn+1 < ℓn+2, we must have νp(rn+1) ≤ ℓn+1, implying (according to Eq. (5)) that
νp(rn+1) = ℓn+1, as required. Conversely, suppose that νp(rn+1) = ℓn+1 and let us show that
νp (
∑n

k=1 rk) = ℓn+1. If νp (
∑n

k=1 rk) 6= ℓn+1, we must have (in view of Eq. (6))

νp

(

n
∑

k=1

rk

)

> ℓn+1 = νp(rn+1);

consequently, we get

νp

(

n+1
∑

k=1

rk

)

= min

(

νp

(

n
∑

k=1

rk

)

, νp(rn+1)

)

= νp(rn+1) = ℓn+1 < ℓn+2,

contradicting Eq. (6) (applied for the positive integer (n+ 1) instead of n). Hence

νp

(

n
∑

k=1

rk

)

= ℓn+1,

as required. This confirms the second part of Theorem 2 and completes this proof.

Next, we have the following fundamental result:

Theorem 3. Let p be a prime number and a be an integer that is not a multiple of p. Then
the sequence

(

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

))

n≥1

is unbounded from above.

Admitting Theorem 3 for the moment, our main result is obtained as an application of
Theorem 2.

Proof of Theorem 1 by admitting Theorem 3. Let us put ourselves in the situation of Theo-

rem 1. We apply Theorem 2 with rk :=
(

1
ak

+ 1
(p−a)k

)

pk

k
(∀k ∈ N) and ℓk := k − logp

(

k
2

)

(∀k ≥ 2). The unboundedness from above of the sequence (νp (
∑n

k=1 rk))n≥1
is guaranteed

by Theorem 3 (admitted for the moment). Next, the increase of the sequence (ℓk)k≥2 can be

derived from the increase of the function x 7→ x− logp
(

x
2

)

on the interval [2,+∞). Finally,
we have for

νp(rk) = νp

((

1

ak
+

1

(p− a)k

)

pk

k

)

= νp

(

ak + (p− a)k

(a(p− a))k
·
pk

k

)

= νp
(

ak + (p− a)k
)

+ k − νp(k) (8)
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for all integers k (since a is coprime with p). If k is even, we use νp
(

ak + (p− a)k
)

≥ νp(2)
(for p > 2, this is obvious and for p = 2, observe that ak + (p− a)k is even). So, we obtain

νp(rk) ≥ k − νp

(

k

2

)

≥ k − logp

(

k

2

)

= ℓk

(because k/2 is a positive integer if k is even). However, if k is odd, we use νp
(

ak + (p− a)k
)

≥
1 (since ak + (p− a)k ≡ ak + (−a)k (mod p) ≡ 0 (mod p)). So, we again obtain

νp(rk) ≥ 1 + k − νp(k) ≥ logp(2) + k − logp(k) = k − logp

(

k

2

)

= ℓk.

Consequently, we have νp(rk) ≥ ℓk for all integers k ≥ 2. So, all the hypothesis of Theorem
2 are satisfied; thus we can apply it for our situation. Applying the first part of Theorem 2,
we get

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

)

≥ min
k≥n+1

νp

((

1

ak
+

1

(p− a)k

)

pk

k

)

≥ (n+1)− logp

(

n+ 1

2

)

for all positive integers n, thus confirming Inequality (4) of Theorem 1. Next, for a given
positive integer n, the second part of Theorem 2 tells us that (4) becomes an equality if and
only if we have

νp(rn+1) = (n+ 1)− logp

(

n+ 1

2

)

,

which is equivalent (by using Eq. (8) and simplifying) to

νp
(

an+1 + (p− a)n+1
)

− νp(n+ 1) = − logp

(

n+ 1

2

)

. (9)

So, it remains to prove that Eq. (9) holds if and only if n has the form n = 2pα−1 (α ∈ N0).
Let us prove this last fact.

• Suppose that Eq. (9) holds. Then, we have

logp

(

n+ 1

2

)

= νp(n+ 1)− νp
(

an+1 + (p− a)n+1
)

∈ Z.

But since logp
(

n+1
2

)

≥ 0, we have even logp
(

n+1
2

)

∈ N0. By setting α := logp
(

n+1
2

)

∈
N0, we get n = 2pα − 1, as required.

• Conversely, suppose that n = 2pα − 1 for some α ∈ N0. Then we have νp(n + 1) =
νp(2) + α and logp

(

n+1
2

)

= α. So Eq. (9) is equivalent to

νp
(

an+1 + (p− a)n+1
)

= νp(2). (10)

To confirm Eq. (10), we distinguish two cases:
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Case 1: (If p = 2). In this case, since a is coprime with p then a and (p − a) are
both odd, implying that a2 ≡ 1 (mod 4) and (p−a)2 ≡ 1 (mod 4). Then, because
n+1 = 2pα is even, we have also an+1 ≡ 1 (mod 4) and (p−a)n+1 ≡ 1 (mod 4); thus
an+1 + (p− a)n+1 ≡ 2 (mod 4), implying that νp (a

n+1 + (p− a)n+1) = 1 = νp(2).

Case 2: (If p is odd). In this case, because n + 1 = 2pα is even, we have an+1 +
(p − a)n+1 ≡ an+1 + (−a)n+1 (mod p) ≡ 2an+1 (mod p) 6≡ 0 (mod p) (since p is
assumed odd and a is coprime with p). Thus νp (a

n+1 + (p− a)n+1) = 0 = νp(2).
Consequently, Formula (10) is confirmed in all cases. This completes the proof of
the second part of Theorem 1 and completes this proof.

The rest of the paper is now devoted to proving Theorem 3. We achieve this by three
different methods.

2.1 The first method

We rely on two identities. The first one (due to Mansour [6]) is combinatorial and states
that

n
∑

k=0

xkyn−k

(

n

k

) =
n+ 1

(x+ y)
(

1
x
+ 1

y

)n+1

n+1
∑

k=1

(

xk + yk
)

(

1
x
+ 1

y

)k

k
(11)

(for x, y ∈ R∗, with x+ y 6= 0, and n ∈ N0). While the second one (due to the author [4]) is
arithmetic and states that

lcm

((

n

0

)

,

(

n

1

)

, . . . ,

(

n

n

))

=
lcm (1, 2, . . . , n, n+ 1)

n+ 1
(12)

(for all n ∈ N0).
Using Eqs. (11) and (12), we are now ready to prove Theorem 3. Let p be a prime number

and a be an integer non-multiple of p. By applying Eq. (11) for x = a and y = p − a and
replacing n by (n− 1) (where n ∈ N), we get (after simplifying and rearranging)

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k
=

pn+1

n (a(p− a))n

n−1
∑

k=0

ak(p− a)n−1−k

(

n−1
k

) . (13)

On the other hand, for all n ∈ N, we have (according to Eq. (12))

1 =
n

lcm(1, 2, . . . , n)
lcm

((

n− 1

0

)

,

(

n− 1

1

)

, . . . ,

(

n− 1

n− 1

))

. (14)
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Then, for a given n ∈ N, by multiplying Eqs. (13) and (14), we obtain

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k
=

pn+1

(a(p− a))n lcm(1, 2, . . . , n)

× lcm

((

n− 1

0

)

,

(

n− 1

1

)

, . . . ,

(

n− 1

n− 1

)) n−1
∑

k=0

ak(p− a)n−1−k

(

n−1
k

) .

But since the rational number

lcm

((

n− 1

0

)

,

(

n− 1

1

)

, . . . ,

(

n− 1

n− 1

)) n−1
∑

k=0

ak(p− a)n−1−k

(

n−1
k

)

is obviously an integer, we derive from the last identity that

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

)

≥ νp

(

pn+1

(a(p− a))n lcm(1, 2, . . . , n)

)

= n+ 1− νp (lcm(1, 2, . . . , n)) (since a is not a multiple of p)

= n+ 1−
⌊

logp(n)
⌋

,

confirming the unboundedness from above of the sequence
(

νp

(

∑n

k=1

(

1
ak

+ 1
(p−a)k

)

pk

k

))

n≥1

(since n+ 1−
⌊

logp(n)
⌋

→ +∞ as n → +∞). �

2.2 The second method

Let p be a prime number and a be an integer non-multiple of p. For a given n ∈ N, consider
the rational function Rn defined by

Rn(X) :=
n
∑

k=1

(

1

ak
+

1

(X − a)k

)

Xk

k
=

n
∑

k=1

(

X
a

)k

k
+

n
∑

k=1

(

X
X−a

)k

k
.

Also consider the real function f defined at the neighborhood of 0 by

f(X) := − log (1−X) ,

which satisfies the functional equation

f

(

X

a

)

+ f

(

X

X − a

)

= 0 (15)

and whose the nth degree Taylor polynomial at 0 is
∑n

k=1
Xk

k
.
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On the one hand, according to the well-known properties of Taylor polynomials, the nth

degree Taylor polynomial of the function X
g
7→ f

(

X
a

)

+ f
(

X
X−a

)

at 0 is the same with the

nth degree Taylor polynomial of

n
∑

k=1

(

X
a

)k

k
+

n
∑

k=1

(

X
X−a

)k

k
= Rn(X).

But on the other hand, in view of Eq. (15), this nth degree Taylor polynomial of g at 0 is
zero. Comparing these two results, we deduce that the multiplicity of 0 in Rn is at least
(n+ 1). Consequently, Rn(X) can be written as

Rn(X) = Xn+1 ·
Un(X)

an(X − a)nlcm(1, 2, . . . , n)
,

where Un ∈ Z[X]. In particular, we have

Rn(p) = pn+1 ·
Un(p)

an(p− a)nlcm(1, 2, . . . , n)
.

Next, because Un(p) ∈ Z (since Un ∈ Z[X]) and a is not a multiple of p, then by taking the
p-adic valuations in the two sides of the last identity, we derive that

νp (Rn(p)) ≥ n+ 1− νp (lcm(1, 2, . . . , n)) = n+ 1−
⌊

logp(n)
⌋

,

implying that the sequence (νp (Rn(p)))n≥1 is unbounded from above, as required by Theorem
3. �

Remark 4. Curiously, the two previous methods give the same upper bound

νp

(

n
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k

)

≥ n+ 1−
⌊

logp(n)
⌋

.

Furthermore, this last estimate is remarkably very close to the optimal one of Theorem 1.

In the third method below, we will show the unboundedness of the sequence in Theorem
3 without providing any estimate!

2.3 The third method

Let p be a prime number and a be an integer non-multiple of p. For all n ∈ N, set

rn :=

(

1

an
+

1

(p− a)n

)

pn

n
and sn :=

n
∑

k=1

rk.
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The property we have to show is that the sequence (νp(sn))n≥1 is unbounded from above; in
other words, we have that lim supn→+∞ νp(sn) = +∞. So, if we show the stronger property
limn→+∞ νp(sn) = +∞, then we are done. To do so, observe that

lim
n→+∞

νp(sn) = +∞ ⇐⇒ lim
n→+∞

|sn|p = 0

⇐⇒ lim
n→+∞

sn = 0 (in the p-adic sense)

⇐⇒
+∞
∑

k=1

rk = 0 (in the p-adic sense).

Consequently, it suffices to show that

+∞
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k
= 0 (16)

(in the p-adic sense). Let us show Eq. (16). By using the p-adic logarithm function (recalled
in §1), we have

+∞
∑

k=1

(

1

ak
+

1

(p− a)k

)

pk

k
=

+∞
∑

k=1

(

p

a

)k

k
+

+∞
∑

k=1

(

p

p−a

)k

k

= −Lp

(

1−
p

a

)

− Lp

(

1−
p

p− a

)

= −

[

Lp

(

a− p

a

)

+ Lp

(

−a

p− a

)]

= −Lp

(

a− p

a
·

−a

p− a

)

= −Lp(1) = 0,

as required. The unboundedness from above of the sequence (νp(sn))n≥1 follows. �
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