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Abstract

We study expressions of the type
∏

p p
⌊ x
f(p)

⌋
, where x is a nonnegative real number,

f is an arithmetic function satisfying some conditions, and the product is over the
primes p. We begin by proving that such expressions can be expressed by using the
lcm function, without reference to prime numbers; we illustrate this result with several
examples. The rest of the paper is devoted to studying two particular cases related
to f(m) = m and f(m) = m − 1. In both cases, we find arithmetic properties and
analytic estimates for the underlying expressions.
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1 Introduction and notation

Throughout this paper, we let N∗ denote the set of positive integers and P the set of prime
numbers. The letter p is reserved for primes. For a given prime number p, we let ϑp denote
the usual p-adic valuation. For x ∈ R, we let ⌊x⌋ denote the integer part of x. For N, b ∈ N,
with b ≥ 2, the expansion of N in base b is denoted by N = akak−1 · · · a1a0(b), meaning

that N = a0 + ba1 + b2a2 + · · · + bkak (with k ∈ N, a0, a1, . . . , ak ∈ {0, 1, . . . , b − 1} and
ak 6= 0). In such a context, we let Sb(N) denote the sum of base-b digits of N ; that is,
Sb(N) := a0 + a1 + · · · + ak. Further, we let τ , π, and θ, respectively, denote the divisor-
counting function, the prime-counting function, and the Chebyshev theta function, defined
as follows:

τ(n) :=
∑

d|n
1 , π(x) :=

∑

p≤x

1 , and θ(x) :=
∑

p≤x

log p (∀n ∈ N
∗, ∀x ∈ R

+).

It is known that for n ≥ 3, we have τ(n) = nO(1/ log logn) (see e.g., [5, Proposition 7.12, page
101]). So, a fortiori,

τ(n) = O(n1/3). (1)

On the other hand, the prime number theorem states that π(x) ∼+∞
x

log x
. Other equivalent

statements are θ(x) ∼+∞ x and log lcm(1, 2, . . . , n) ∼+∞ n (see e.g., [5, Chapter 4]). The
weaker estimates π(x) = O(x/log x), θ(x) = O(x), and log lcm(1, 2, . . . , n) = O(n) are called
Chebyshev’s estimates.

In number theory, it is common that a prime factorization of some special numbers N
produces, as exponents of each prime p, expressions of the form ⌊ uN

f(p)
⌋ or a sum of such

expressions. The most famous example is perhaps the Legendre formula, stating that for
natural numbers n, we have

n! =
∏

p

p
⌊n
p
⌋+⌊ n

p2
⌋+⌊ n

p3
⌋+···

, (2)

which may be also reformulate in terms of base expansions as follows:

n! =
∏

p

p
n−Sp(n)

p−1 . (3)

See e.g., [6, pages 76-77]. Another famous example is the formula of the least common
multiple of the first consecutive positive integers:

lcm(1, 2, . . . , n) =
∏

p

p⌊
logn

log p
⌋ (∀n ∈ N). (4)

Among other examples which are less known, we can cite the following

lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N
∗, i1 + i2 + · · ·+ ik ≤ n} =

∏

p

p⌊
n
p
⌋, (5)
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which is pointed out in the book of Cahen and Chabert [2, page 246] and also by Farhi [3] in
the context of the integer-valued polynomials. Basing on the remark that in Formulas (2),
(4), and (5), the right-hand side (which is a product taken over the primes) is interpreted
without reference to prime numbers, we may naturally ask if an expression of a general type∏

p p
⌊ x
f1(p)

⌋+⌊ x
f2(p)

⌋+···
, where x ∈ R

+ and (fi)i is a sequence of positive functions satisfying
some regularity conditions, possesses the same property; that is, it has an interpretation
without reference to the primes. In this paper, we study only the case of the products

πf (x) :=
∏

p

p⌊
x

f(p)
⌋,

for which we affirmatively answer the previous question under some hypotheses on f . After
giving several applications of our result, we focus our study on the two particular cases
f(p) = p and f(p) = p− 1. Because in both cases, there is no loss of generality to take x an
integer, we are led define

ρn :=
∏

p

p⌊
n
p
⌋ and σn :=

∏

p

p⌊
n

p−1
⌋

for n ∈ N. These are, respectively, the sequences A048803 and A091137 of [7].
We begin with the arithmetic study of ρn and σn by establishing several arithmetic

properties concerning them; in particular, we obtain a nontrivial divisor and a nontrivial
multiple for σn. Moreover, we determine the p-adic valuations of the integers σn

n!
when the

prime p is large enough compared to
√
n; we discover that the prime numbers of the form

⌊n
k
+ 1⌋ (k ∈ N

∗, k <
√
n+ 1 + 1) play a vital role in the arithmetic nature of the σn’s. In

another direction, we find asymptotic estimates for log ρn and log σn.

2 An expression of πf using the least common multiple

Our result of expressing πf in terms of the lcm’s without reference to prime numbers is the
following:

Theorem 1. Let f : N∗ → R+ be an arithmetic function such that f(N∗ \ {1}) ⊂ R
∗
+ (i.e.,

f does not vanish except at 1 eventually). Consider the set N∗ \{1} equipped with the partial
order relation “ |” of divisibility (a | b ⇔ a divides b) and the set R∗

+ equipped with the usual
total order relation “≤”, and suppose that the map

f̃ : N
∗ \ {1} −→ R

∗
+

n 7−→ f(n)

log n

is nondecreasing with respect to these two orders. Then for x ∈ R
+ we have

∏

p

p⌊
x

f(p)
⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, f(i1) + f(i2) + · · ·+ f(ik) ≤ x}.
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In order to present a clean proof of Theorem 1, we use the following lemma:

Lemma 2. Let f : N∗ → R+ as in Theorem 1. Then, for prime numbers p and positive
integers a, we have

ϑp(a) ≤
f(a)

f(p)
.

Proof. Let p be a prime number and a be a positive integer. Since the inequality of the
lemma is trivial when ϑp(a) = 0, we may suppose that ϑp(a) ≥ 1; that is p | a. So according

to our assumptions on f , we have that f(p)
log p

≤ f(a)
log a

, which translates into log a
log p

≤ f(a)
f(p)

. Hence,

ϑp(a) ≤ log a
log p

≤ f(a)
f(p)

, as required.

Proof of Theorem 1. Let x ∈ R+ be fixed. For a given prime number p, the p-adic valuation
of the left-hand side of the identity of Theorem 1 is equal to ⌊ x

f(p)
⌋, while the p-adic val-

uation of the right-hand side of the same identity is equal to ℓp := max{ϑp(i1i2 . . . ik); k ∈
N, i1, . . . , ik ∈ N

∗, f(i1) + · · · + f(ik) ≤ x}. So, we have to show that ℓp = ⌊ x
f(p)

⌋ for primes

p. To do so, we prove the two inequalities ℓp ≥ ⌊ x
f(p)

⌋ and ℓp ≤ ⌊ x
f(p)

⌋.
First, for a given prime number p, let us show that ℓp ≥ ⌊ x

f(p)
⌋. By considering the

particular natural number k = ⌊ x
f(p)

⌋ and the particular positive integers i1 = i2 = · · · =
ik = p, we get f(i1) + f(i2) + · · · + f(ik) = kf(p) = ⌊ x

f(p)
⌋f(p) ≤ x. Thus, according to the

definition of ℓp we have ℓp ≥ ϑp (i1i2 · · · ik) = ϑp(p
k) = k = ⌊ x

f(p)
⌋, as required.

Now, for a given prime number p, let us show that ℓp ≤ ⌊ x
f(p)

⌋. For k ∈ N and

i1, i2, . . . , ik ∈ N
∗, with f(i1) + f(i2) + · · ·+ f(ik) ≤ x, we have

ϑp (i1i2 · · · ik) = ϑp(i1) + ϑp(i2) + · · ·+ ϑp(ik)

≤ f(i1)

f(p)
+

f(i2)

f(p)
+ · · ·+ f(ik)

f(p)
(according to Lemma 2)

=
f(i1) + f(i2) + · · ·+ f(ik)

f(p)

≤ x

f(p)
;

but since ϑp(i1i2 · · · ik) ∈ N, it follows that: ϑp (i1i2 · · · ik) ≤ ⌊ x
f(p)

⌋. The definition of ℓp
concludes that ℓp ≤ ⌊ x

f(p)
⌋, as required. This completes the proof.

Remark 3. Let us put ourselves in the situation of Theorem 1.

1. If the map f̃ is nondecreasing in the usual sense; i.e., with respect to the usual orders
of the two sets N∗ \{1} and R

∗
+, then it remains nondecreasing in the sense imposed by

Theorem 1. This immediately follows from the implication: a | b ⇒ a ≤ b, ∀a, b ∈ N
∗.

2. More generally than the previous item, if the restriction of the map f̃ on N
∗ \ {1, 2} is

nondecreasing in the usual sense and f̃(2) ≤ f̃(4), then f̃ is nondecreasing in the sense
imposed by Theorem 1.
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Now, from Theorem 1, we derive the following corollary in which the condition imposed
on f is made simpler.

Corollary 4. Let f : N∗ → R+ be an arithmetic function satisfying f(N∗ \ {1}) ⊂ R
∗
+.

Suppose that the map
N

∗ \ {1} −→ R
∗
+

n 7−→ f(n)

n
is nondecreasing in the usual sense (i.e., with respect to the usual order of R). Then for
x ∈ R+ we have
∏

p

p⌊
x

f(p)
⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, f(i1) + f(i2) + · · ·+ f(ik) ≤ x}.

Proof. We use Theorem 1 together with Item 2 of Remark 3. We remark that f̃ (defined as in

Theorem 1) is the product of the two functions: n 7→ f(n)
n

(assumed to be nondecreasing in the
usual sense on N

∗ \ {1}) and n 7→ n
logn

, which is nondecreasing on N
∗ \ {1, 2} = {3, 4, 5, . . . }.

So, f̃ is nondecreasing on N
∗ \ {1, 2} in the usual sense. In addition, we have

f̃(2) =
f(2)

log 2
=

f(2)

2
· 2

log 2
=

f(2)

2
· 4

log 4
≤ f(4)

4
· 4

log 4

(since n 7→ f(n)
n

is assumed to be nondecreasing in the usual sense on N
∗ \ {1}). That is,

we have f̃(2) ≤ f(4)
log 4

= f̃(4). The conclusion follows from Item 2 of Remark 3 and Theorem
1.

2.1 Some applications

1. By applying Theorem 1 for f(m) = logm, we obtain that for x ∈ R+, we have
∏

p

p⌊
x

log p
⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, log i1 + log i2 + · · ·+ log ik ≤ x}
= lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, i1i2 · · · ik ≤ ex}
= lcm (1, 2, . . . , ⌊ex⌋) .

In particular, by taking x = log n (n ∈ N
∗), we obtain the following well-known formula:

∏

p

p⌊
logn

log p
⌋ = lcm (1, 2, . . . , n) .

2. By applying Corollary 4 for the function f(m) = m, we obtain in particular that for
all n ∈ N, we have
∏

p

p⌊
n
p
⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, i1 + i2 + · · · + ik ≤ n}, (6)

which is already pointed out by Cahen and Chabert [2] and by Farhi [3].
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3. (Generalization of (6)). Let α ≥ 1. By applying Corollary 4 for the function f(m) =
mα, we obtain in particular that for all n ∈ N, we have

∏

p

p⌊
n
pα

⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N
∗, iα1 + iα2 + · · ·+ iαk ≤ n}.

4. For all n, k ∈ N, with n ≥ k, let us define, as in [3],

qn,k := lcm{i1i2 · · · ik ; i1, i2, . . . , ik ∈ N
∗, i1 + i2 + · · ·+ ik ≤ n}.

These numbers were studied by Farhi [3] in a context related to integer-valued poly-
nomials. By applying Corollary 4 for the function f(m) = m − 1, we obtain that for
all n ∈ N, we have

∏

p

p⌊
n

p−1
⌋ = lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗,

(i1 − 1) + (i2 − 1) + · · ·+ (ik − 1) ≤ n}
= lcm{i1i2 · · · ik ; k ∈ N, i1, i2, . . . , ik ∈ N

∗, i1 + i2 + · · ·+ ik ≤ n+ k}
= lcm{qn+k,k ; k ∈ N}, (7)

which remarkably represents the least common multiple of the nth diagonal of the
arithmetic triangle of the qi,j’s, beginning as follows (see [3])

1
1 1
1 2 1
1 6 2 1
1 12 12 2 1
1 60 12 12 2 1
1 60 360 24 12 2 1
1 420 360 360 24 12 2 1

Table 1: The triangle of the qn,k’s for 0 ≤ k ≤ n ≤ 7.

For a given n ∈ N, let Dn = (dn,k)k∈N denote the sequence of the nth diagonal of the
above triangle, that is

dn,k := qn+k,k = lcm{i1i2 · · · ik ; i1, i2, . . . , ik ∈ N
∗, i1 + i2 + · · ·+ ik ≤ n+ k}. (8)

In order to simplify Formula (7), we show that the sequencesDn (n ∈ N) are all nondecreasing
in the divisibility sense and eventually constant. More precisely, we have the following
proposition:
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Proposition 5. For all n, k ∈ N, we have

dn,k divides dn,k+1.

If in addition k ≥ n, then we have
dn,k = dn,n.

Proof. Let n, k ∈ N be fixed. If i1i2 · · · ik is a member of the list of lcm defining dn,k, then
1 · i1i2 · · · ik satisfies 1 + (i1 + i2 + · · ·+ ik) ≤ 1 + (n+ k) = n+ (k+ 1), so the same element
is a member of the list of the lcm defining dn,k+1. Hence, dn,k divides dn,k+1, as required.

Now, let us prove the second part of the proposition. So, suppose that k ≥ n and let
us prove that dn,k = dn,n. It follows from an immediate induction leaning on the result of
the first part of the proposition (proved above) that dn,n | dn,k. So, it remains to prove that
dn,k | dn,n. Let i1, i2, . . . , ik ∈ N

∗ such that i1 + i2 + · · · + ik ≤ n + k. Let ℓ ∈ N denote the
number of indices ir (1 ≤ r ≤ k) which are equal to 1; so we have exactly (k − ℓ) indices ir
which are ≥ 2. Thus, we have

i1 + i2 + · · ·+ ik ≥ ℓ+ 2(k − ℓ) = 2k − ℓ.

But since i1+ i2+ · · ·+ ik ≤ n+k, we derive that 2k− ℓ ≤ n+k, which gives ℓ ≥ k−n. This
proves that we have at least (k − n) indices ir which are equal to 1. By assuming, without
loss of generality, that those indices are in+1, in+2, . . . , ik (i.e., in+1 = in+2 = · · · = ik = 1),
we get

i1i2 · · · in = i1i2 · · · ik
and

i1 + i2 + · · ·+ in = (i1 + i2 + · · ·+ ik)− (k − n) ≤ (n+ k)− (k − n) = 2n.

This shows that each product i1i2 · · · ik occurring in the definition of dn,k reduces (by per-
muting the ir’s and eliminate those of them which are equal to 1) to a product j1j2 · · · jn
which occurs in the definition of dn,n. Consequently dn,k | dn,n, as required. This completes
the proof of the proposition.

Using Proposition 5, for n ∈ N we have

lcm{qn+k,k ; k ∈ N} = lcm{dn,k ; k ∈ N}
= dn,n

= lcm{i1i2 · · · in ; i1, i2, . . . , in ∈ N
∗, i1 + i2 + · · ·+ in ≤ 2n}.

This proves the following interesting corollary, simplifying Formula (7):

Corollary 6. For n ∈ N, we have

∏

p

p⌊
n

p−1
⌋ = lcm{i1i2 · · · in ; i1, i2, . . . , in ∈ N

∗, i1 + i2 + · · ·+ in ≤ 2n}. �
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3 Arithmetic results on the numbers ρn and σn

A certain number of arithmetic properties concerning the numbers ρn and σn are either
immediate or quite easy to prove. We have gathered them in the following proposition:

Proposition 7. For natural numbers n, we have

(i) ρn | ρn+1, σn | σn+1, and ρn | σn;

(ii) ρn | n!;

(iii) n! | σn and σn | (2n)!;

(iv) σ2n+1 = 2σ2n.

Proof. Let n ∈ N be fixed. The properties of Item (i) are trivial.
Item (ii) follows because for primes p, the term ⌊n/p⌋ is the first term of ⌊n/p⌋+⌊n/p2⌋+

· · · , which is the exact exponent of p in n!, which is also n−Sp(n)

p−1
≤ n

p−1
; so in particular

≤ ⌊ n
p−1

⌋, giving at the same time the first part of (iii).

Let us prove the second part of (iii). To do so, we use Corollary 6. For i1, i2, . . . , in ∈ N
∗

satisfying i1+i2+· · ·+in ≤ 2n, we have that i1i2 · · · in | i1!i2! · · · in! | (i1+i2+· · ·+in)! | (2n)!.
Thus, lcm{i1i2 · · · in ; i1, i2, . . . , in ∈ N

∗, i1 + i2 + · · ·+ in ≤ 2n} | (2n)!; that is, according to
Corollary 6, σn | (2n)!.

Finally, Item (iv) follows from the fact that ϑp(σ2n+1) = ϑp(2σ2n) for primes p (distinguish
the two cases “p odd” and “p = 2”). This completes the proof of the proposition.

In the following proposition, we shall improve Item (iii) of Proposition 7.

Proposition 8. For natural numbers n, we have

(n+ 1)! | σn and σn | n! lcm(1, 2, . . . , n, n+ 1).

Proof. Let n ∈ N be fixed. We have to show that for primes p, one has

ϑp ((n+ 1)!) ≤ ϑp (σn) ≤ ϑp (n! lcm(1, 2, . . . , n, n+ 1)) . (9)

Let p be a fixed prime number and let us prove (9). By setting e the greatest nonnegative
integer satisfying pe ≤ n+ 1, we obtain

ϑp(n!) =
e∑

i=1

⌊ n
pi
⌋

and

ϑp((n+ 1)!) =
e∑

i=1

⌊n+ 1

pi
⌋

8



(according to the Legendre formula),

ϑp(σn) = ⌊ n

p− 1
⌋

(by definition of σn), and
ϑp(lcm(1, 2, . . . , n+ 1)) = e.

So (9) reduces to
e∑

i=1

⌊
n+ 1

pi

⌋
≤
⌊

n

p− 1

⌋
≤

e∑

i=1

⌊
n

pi

⌋
+ e. (10)

On the one hand, we have

e∑

i=1

⌊
n+ 1

pi

⌋
≤

e∑

i=1

n+ 1

pi
=

n+ 1

p− 1

(
1− 1

pe

)
≤ n

p− 1

(since pe ≤ n+ 1). But since
∑e

i=1⌊n+1
pi

⌋ is an integer, we derive the inequality

e∑

i=1

⌊
n+ 1

pi

⌋
≤
⌊

n

p− 1

⌋
,

confirming the left inequality in (10). On the other hand, by using the refined inequality
⌊a
b
⌋ ≥ a+1

b
− 1, which holds for all positive integers a, b, we have

⌊
n

p− 1

⌋
−

e∑

i=1

⌊
n

pi

⌋
≤ n

p− 1
−

e∑

i=1

(
n+ 1

pi
− 1

)

=
n

p− 1
− n+ 1

p− 1

(
1− 1

pe

)
+ e

=
1

p− 1

(
n+ 1

pe
− 1

)
+ e.

But from the definition of e, we have pe+1 > n + 1; that is, n+1
pe

< p. By inserting this into
the last estimate, we get ⌊

n

p− 1

⌋
−

e∑

i=1

⌊
n

pi

⌋
< e+ 1.

Next, since ⌊ n
p−1

⌋ −∑e
i=1⌊ n

pi
⌋ ∈ Z, we conclude

⌊
n

p− 1

⌋
−

e∑

i=1

⌊
n

pi

⌋
≤ e,

confirming the right inequality of (10). This completes this proof.

9



From Proposition 8, we derive an asymptotic estimate for the number log σn when n
tends to infinity.

Corollary 9. We have
log σn ∼+∞ n log n.

Proof. According to Proposition 8, for n ∈ N
∗ we have

log (n+ 1)! ≤ log σn ≤ log (n!) + log lcm(1, 2, . . . , n, n+ 1).

Then the asymptotic estimate of the corollary follows from the facts

log (n+ 1)! ∼+∞ log(n!) ∼+∞ n log n

according to Stirling’s formula, and

log lcm(1, 2, . . . , n, n+ 1) ∼+∞ n

according to the prime number theorem.

Note that the asymptotic estimate of the above corollary will be specified in Section 4.
We now turn to establish a result evaluating the p-adic valuations of the positive integers

σn

n!
(n ∈ N

∗) for sufficiently large prime numbers. We discover as a remarkable phenomenon
that primes of a special type play a vital role. We have the following theorem:

Theorem 10. Let n be a positive integer and p be a prime number such that
√
n+ 1 < p ≤ n+ 1.

Then we have

ϑp

(σn

n!

)
=

⌊
Sp(n)

p− 1

⌋
∈ {0, 1}.

Furthermore, the equality ϑp(
σn

n!
) = 1 holds if and only if Sp(n) ≥ p − 1, which holds if and

only if p has the form

p =
⌊n
k
+ 1
⌋
,

with k ∈ N
∗ and k <

√
n+ 1 + 1.

Proof. By the definition of σn and the Legendre formula (3), we have that

ϑp

(σn

n!

)
= ϑp (σn)− ϑp (n!)

=

⌊
n

p− 1

⌋
− n− Sp(n)

p− 1

=

⌊
n

p− 1
− n− Sp(n)

p− 1

⌋ (
since

n− Sp(n)

p− 1
= ϑp(n!) ∈ Z

)

=

⌊
Sp(n)

p− 1

⌋
. (11)
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Next, let us prove that ⌊Sp(n)

p−1
⌋ ∈ {0, 1}. The hypothesis on p insures that n < p2 − 1,

which implies that the representation of the positive integer n in base p has the form n =
a1a0(p), with a0, a1 ∈ {0, 1, . . . , p − 1} and (a0, a1) 6= (p − 1, p − 1). Consequently, we have

Sp(n) = a0+a1 < 2(p−1), implying that Sp(n)

p−1
< 2; hence

⌊
Sp(n)

p−1

⌋
∈ {0, 1}, as required. This

achieves the proof of the first part of the theorem, which immediately gives the equivalence
between ϑp(

σn

n!
) = 1 and Sp(n) ≥ p− 1. Now, let us prove the last part of the theorem.

Suppose that Sp(n) ≥ p − 1. As seen above, the representation of n in base p has the
form n = a1a0(p) = a0 + pa1, where a0, a1 ∈ {0, 1, . . . , p − 1} and (a0, a1) 6= (p − 1, p − 1).
We will show that k = a1 +1 is suitable for the required form of p. By supposition, we have
a0 + a1 ≥ p− 1, implying that

p− 1 ≤ a0 + a1p

a1 + 1
< p,

which is equivalent to ⌊
n

a1 + 1

⌋
= p− 1.

Thus,

p =

⌊
n

a1 + 1
+ 1

⌋
.

Furthermore, we have a1 = ⌊n
p
⌋ ≤ n

p
<

√
n+ 1 (since p >

√
n+ 1 > n√

n+1
). Thus, k = a1+1

satisfies the required properties; i.e., p = ⌊n
k
+ 1⌋ and k <

√
n+ 1 + 1.

Conversely, suppose that there exists k ∈ N
∗, with k <

√
n+ 1+1, such that p = ⌊n

k
+1⌋,

and let us show that Sp(n) ≥ p− 1. Setting a0 := n− (k− 1)p and a1 := k− 1, we first show
that the representation of n in base p is n = a1a0(p). Since it is immediate that n = a0+pa1,

it just remains to prove that a0, a1 ∈ {0, 1, . . . , p − 1}. Since k <
√
n+ 1 + 1 < p + 1 then

k − 1 < p; that is a1 ∈ {0, 1, . . . , p− 1}. Next, since p = ⌊n
k
+ 1⌋ then

p ≤ n

k
+ 1 < p+ 1,

implying that
p− k ≤ n− (k − 1)p < p.

Hence
p− k ≤ a0 < p.

But p − k = (p − 1) − a1 ≥ 0; thus a0 ∈ {0, 1, . . . , p − 1}. We have confirmed that the
representation of n in base p is n = a1a0(p). Consequently, we have

Sp(n) = a0 + a1 = n− (k − 1)(p− 1).

Then, since n ≥ k(p − 1) (because n
k
+ 1 ≥ ⌊n

k
+ 1⌋ = p), it follows that Sp(n) ≥ p − 1, as

required. This completes the proof of the theorem.

11



4 Analytic estimates of the numbers log ρn and log σn

Throughout this section, we let c denote the absolute positive constant given by

c :=
∑

p

log p

p(p− 1)
= 0.755 . . . .

Our goal is to find asymptotic estimates for log ρn and log σn as n tends to infinity. The
obtained main results are the following:

Theorem 11. We have

log ρn = n log n− (c+ 1)n+O
(√

n
)
.

Theorem 12. We have

log σn = n log n− n+ 2
√
n+ o(

√
n).

To establish Theorem 11, we need the auxiliary results below. Theorem 12 is derived
from Theorem 10 and a result of Bordellès et al. [1].

Lemma 13. For x ≥ 1, we have

∑

p>x

log p

p(p− 1)
= O

(
1

x

)
.

Proof. Since log p
p(p−1)

≤ 2 log p
p2

(for primes p), then it suffices to show that
∑

p>x
log p
p2

= O( 1
x
).

According to the Abel summation formula (see e.g., [5, Proposition 1.4]), for positive real
numbers x, y, with x < y we have

∑

x<p≤y

log p

p2
=

(
∑

x<p≤y

log p

)
1

y2
−

∫
y

x

(
∑

x<p≤t

log p

)(
1

t2

)′
dt

=
θ(y)− θ(x)

y2
+ 2

∫ y

x

θ(t)− θ(x)

t3
dt.

Then, by setting y to infinity, it follows (since θ(y) = O(y)) that

∑

p>x

log p

p2
= 2

∫ +∞

x

θ(t)− θ(x)

t3
dt = 2

∫ +∞

x

θ(t)

t3
dt− θ(x)

x2
.

Using finally θ(t) = O(t), we get

∑

p>x

log p

p2
= O

(∫ +∞

x

dt

t2

)
+O

(
1

x

)
= O

(
1

x

)
,

as required. The proof is complete.

12



Lemma 13 above is used in the proof of the following proposition:

Proposition 14. For positive integers n we have

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p = c · n+O

(√
n
)
.

Proof. Let n be a fixed positive integer. For primes p, let ep denote the greatest nonnegative
integer satisfying pep ≤ n; explicitly ep = ⌊ logn

log p
⌋. So we have pep+1 > n. On the one hand,

we have

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p ≤

∑

p

(
n

p2
+

n

p3
+ · · ·

)
log p =

∑

p

n

p(p− 1)
log p;

that is ∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p ≤ c · n. (12)

On the other hand, we have (according to the definition of the ep’s)

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p =

∑

p≤√
n

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·+

⌊
n

pep

⌋)
log p

≥
∑

p≤√
n

((
n

p2
− 1

)
+

(
n

p3
− 1

)
+ · · ·+

(
n

pep
− 1

))
log p

= n
∑

p≤√
n

(
1

p2
+

1

p3
+ · · ·+ 1

pep

)
log p−

∑

p≤√
n

(ep − 1) log p

= n
∑

p≤√
n

(
1

p(p− 1)
− 1

pep(p− 1)

)
log p−

∑

p≤√
n

(ep − 1) log p

= n
∑

p≤√
n

log p

p(p− 1)
− n

∑

p≤√
n

log p

pep(p− 1)
−
∑

p≤√
n

(ep − 1) log p

= n


c−

∑

p>
√
n

log p

p(p− 1)


− n

∑

p≤√
n

log p

pep(p− 1)
−
∑

p≤√
n

(ep − 1) log p;

that is,

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p ≥ c n− n

∑

p>
√
n

log p

p(p− 1)
− n

∑

p≤√
n

log p

pep(p− 1)

−
∑

p≤√
n

(ep − 1) log p. (13)

13



But, by using Lemma 13, we have

∑

p>
√
n

log p

p(p− 1)
= O

(
1√
n

)
. (14)

Next, by using the fact pep > n
p
(for primes p), we have

∑

p≤√
n

log p

pep(p− 1)
<

1

n

∑

p≤√
n

p

p− 1
log p ≤ 2

n

∑

p≤√
n

log p =
2

n
θ
(√

n
)
= O

(
1√
n

)
, (15)

and by using the fact ep − 1 < ep := ⌊ log n
log p

⌋ ≤ logn
log p

, we have

∑

p≤√
n

(ep − 1) log p <
∑

p≤√
n

log n = (log n)π(
√
n) = O

(√
n
)
. (16)

Then, by substituting (14), (15), and (16) into (13), we get

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p ≥ c n+O

(√
n
)
. (17)

Finally, (12) and (17) conclude to

∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p = c · n+O

(√
n
)
,

as required.

We are now able to prove Theorem 11.

Proof of Theorem 11. For sufficiently large integers n, we have, according to Legendre’s for-
mula,

log ρn =
∑

p

⌊
n

p

⌋
log p =

∑

p

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·

)
log p

−
∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p

= log(n!)−
∑

p

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p.

The weaker form of Stirling’s approximation formula log(n!) = n log n − n + O(log n) and
Proposition 14 imply that

log ρn = n log n− (c+ 1)n+O(
√
n),

as required.
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We now turn to estimate log σn. To do so, we rely on Theorem 10 and a result of Bordellès
et al. [1] (already conjectured by Kellner [4]), part of which is recalled below:

Theorem 15 (Corollary 1.6 of [1]). We have

∑

p>
√
n

Sp(n)≥p

1 =
2
√
n

log n
+ o

( √
n

log n

)

as n → +∞.

Proof of Theorem 12. For a given positive integer n, according to Theorem 10 we have

σn

n!
=

∏
√
n+1<p≤n+1
Sp(n)≥p−1

p =
∏

√
n+1<p≤n+1
Sp(n)=p−1

p ·
∏

p>
√
n+1

Sp(n)≥p

p

(remark that Sp(n) ≥ p implies p ≤ n). Thus,

log σn = log(n!) +
∑

√
n+1<p≤n+1
Sp(n)=p−1

log p+
∑

p>
√
n+1

Sp(n)≥p

log p. (18)

Now, on the one hand, we remark that n ≡ Sp(n) (mod (p−1)) (for primes p), so for a prime
p satisfying

√
n+ 1 < p ≤ n + 1, the condition Sp(n) = p − 1 is equivalent to (p − 1) | n.

Consequently,

∑
√
n+1<p≤n+1
Sp(n)=p−1

log p ≤
∑

d|n
log(d+ 1) ≤ τ(n) log(n+ 1) = O

(
n1/3 log n

)
(19)

(by (1)). On the other hand, by using Theorem 15, we have

∑

p>
√
n+1

Sp(n)≥p

log p =
∑

p>
√
n

Sp(n)≥p

log p+O (log n) =



∑

p>
√
n

Sp(n)≥p

1


 log n+O (log n) = 2

√
n+o

(√
n
)
. (20)

Then, by inserting (19) and (20) together with the Stirling approximation formula log(n!) =
n log n− n+O(log n) into (18), we conclude that

log σn = n log n− n+ 2
√
n+ o(

√
n),

as required.
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