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Abstract

Raised k-Dyck paths are a generalization of k-Dyck paths that may both begin
and end at nonzero height. In this paper, we develop closed formulas for the number
of raised k-Dyck paths from (0, α) to (ℓ, β), for all height pairs α, β ≥ 0, all lengths
ℓ ≥ 0, and all k ≥ 2. This represents a new approach to the enumeration of “simple
paths with linear boundaries of rational slope”, as discussed by Krattenthaler in his
Handbook of Enumerative Combinatorics. We then expand upon Krattenthaler’s results
by enumerating raised k-Dyck paths with a fixed number of returns to ground, a fixed
minimum height, and a fixed maximum height, presenting generating functions when
closed formulas are not tractable. Specializing our results to either k = 2 or to α < k

reveal further connections with preexisting results about height-bounded Dyck paths
and “Dyck paths with a negative boundary”, respectively.

1 Introduction

For k ≥ 2, a k-Dyck path of length ℓ and height h is an integer lattice path from (0, 0) to
(ℓ, h) that uses steps {U = (1, 1), D = (1, 1 − k)} and stays weakly above the line y = 0.
One may verify that the terminal point of every k-Dyck path must satisfy ℓ ≡ h (mod k).
Thus we restrict our attention to k-Dyck paths of length kn+ h and height h, denoting the
collection of all k-Dyck paths of length kn+ h and height h by Dk

n,h.1

It is well known that k-Dyck paths of length kn and height 0 are enumerated by the k-
Catalan numbers (or Fuss-Catalan numbers), a one-parameter generalization of the Catalan

1k-Dyck paths of length kn and height km are often referred to as k-Dyck paths of “semi-length” n and
“semi-height” m, with Dk

n,m also sometimes being used to refer to such paths.
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numbers given by Ck
n = 1

kn+1

(

kn+1
n

)

for all k ≥ 2 and n ≥ 0. In particular, |Dk
n,0| = Ck

n for
all k ≥ 2 and n ≥ 0. In the case of k = 2, this corresponds to the classic combinatorial
interpretation of the Catalan numbers by Dyck paths of length 2n and height 0. For more
information about the k-Catalan numbers and their combinatorial interpretations, see Hilton
and Pedersen [6], Heubach, Li, and Mansour [5], and Mansour and Ramirez [8]. For even
more details about the classic Catalan numbers, see Stanley [12].

Now let Ck(t) =
∑∞

n=0C
k
nt

n be the ordinary generating function for the k-Catalan
numbers. As shown by Hilton and Pedersen [6], the k-Catalan numbers satisfy Ck

n+1 =
∑

i1+···+ik=nCi1 · · ·Cik for all n ≥ 0, implying that these generating functions obey Ck(t) =

tCk(t)k + 1. If we use [tn]p(t) to denote the coefficient of tn in the power series p(t), an-
other standard result asserts |Dk

n,h| = [tn]Ck(t)h+1 for all n, h ≥ 0. See Figure 1 for the
decomposition that yields this result.

P0

P1 · · ·
Ph

Figure 1: A k-Dyck path P of height h decomposed into a sequence of h + 1 paths Pi of
height 0, according to the rightmost U steps at each height. Note that some of the Pi may
be empty.

Also proven by Hilton and Pedersen [6] is that [tn]Ck(t)r = r
kn+r

(

kn+r

n

)

= Rk,r(n) for all
k ≥ 2, n ≥ 0, and r ≥ 1. Here the notation Rk,r(n) corresponds to the Raney number
(two-parameter Fuss-Catalan number). This gives the closed formula

|Dk
n,h| = [tn]Ck(t)h+1 =

h+ 1

kn+ h+ 1

(

kn+ h+ 1

n

)

. (1)

The primary goal of this paper is to generalize the closed formula of (1) to generalized k-
Dyck paths that may begin (as well as end) at any non-zero height, objects that we informally
refer to as “raised k-Dyck paths”. These raised k-Dyck paths may be interpreted as a natural
generalization of the “k-Dyck paths with negative boundary” (or kt-Dyck paths) investigated
by Selkirk [10], Asinowski, Hackl, and Selkirk [1], and Prodinger [9], although our results
are developed in such a manner that we need not restrict our attention to starting heights
less than k. Raised k-Dyck paths may also be shown to be equivalent to “simple paths with
linear boundaries of rational slope”, as investigated by Krattenthaler [7, Section 10.4]

This paper is organized as follows. Section 2 is dominated by our derivation of gen-
erating functions and closed formulas for the number of raised k-Dyck paths of arbitrary
starting/ending height. This is accomplished via multivariate generating functions and uti-
lizes the generating functions Ck(t) for the k-Catalan numbers. In Section 3, we then develop
closed formulas for the number of raised k-Dyck paths with a fixed minimum height and a
fixed number of returns. In Section 4, we use our results to derive entirely new generating
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functions for the number of k-Dyck paths of bounded height, a topic where all previous inves-
tigations appear to be limited to the k = 2 case or do not account for general starting/ending
heights (see [3, 2] for recent discussions concerning k-Dyck paths of bounded height).

2 Raised k-Dyck paths

Once again fix k ≥ 2. For α, β ≥ 0, a raised k-Dyck path of length ℓ and shape (α, β) is an
integer lattice path from (0, α) to (ℓ, β) that uses steps {U = (1, 1), D = (1, 1−k)} and stays
weakly above the line y = 0. The terminal point of such a path must satisfy ℓ ≡ (β − α)
(mod k), justifying our restriction to k-Dyck paths of length kn + β − α and shape (α, β).
Denote the set of all k-Dyck paths of length kn+β−α and shape (α, β) by Dk

n,(α,β), and then

define |Dk
n,(α,β)| = Ck

n,(α,β). Notice that all elements of Dk
n,(α,β) contain precisely n+β−α up

steps and n down steps, meaning that the “n index” of a particular path corresponds to its
number of D steps.

It is clear that Dk
n,(0,β) = Dk

n,β. It is also clear that Dk
n,(β,β) is in bijection with integer

lattice paths from (0, 0) to (kn, 0) that use step set {U,D} and stay weakly above the line
y = −β. Horizontal reflection then places Dk

n,(β,β) in bijection with the kβ-Dyck paths of

Selkirk [10] and Asinowski, Hackl, and Selkirk [1]. More generally, whenever α ≥ β, the
set Dk

n,(α,β) is in bijection with generalized k-Dyck paths from (0, 0) to (kn+ β, 0) that stay
weakly above y = −β and begin with at least α consecutive U steps. This gives additional
bijections between our sets and some of the kβ-Dyck paths studied by Prodinger [9].

There also exists a bijection between Dk
n,(α,β) and the “simple paths with linear boundaries

of rational slope” considered by Krattenthaler [7]. For non-negative integers µ and a pair of
points (a, b), (c, d) satisfying a ≥ µb, c ≥ µd, Krattenthaler defines L((a, b) → (c, d) | x ≥ µy)
to be the set of integer lattice paths from (a, b) to (c, d) that use steps {E = (1, 0), N =
(0, 1)} and stay weakly below x = µy. One may show |Dk

n,(α,β)| = Ck
n(α,β) = |L((0,−β) →

(n, kn − α) | x ≥ ky)| via the bijection Ψ that takes the path P ∈ Dk
n,(α,β) with steps

P = s1s2 · · · sℓ to the lattice path Ψ(P ) ∈ L((0,−β) → (n, kn − α) | x ≥ ky) with steps
Ψ(P ) = ψ(sℓ) · · ·ψ(s2)ψ(s1), where ψ(U) = N and ψ(D) = E. For an example of this
bijection, see Figure 2.

Before proceeding to our enumerations, notice that a trivial path of length ℓ = 0 only
exists when n = 0 and α = β. In this case we have Ck

0,(β,β) = 1. Also note that Ck
n,(α,β) = 0

whenever kn + β − α < 0. This corresponds to the fact that every element of Dk
n,(α,β) with

α > β requires some minimal number of D steps in order to end at the correct height.
Fundamental to much of our approach is the following recurrence. In this and subsequent

results, we automatically set Ck
n,(α,β) = 0 whenever α < 0 or β < 0.

Proposition 1. For all k ≥ 2, n ≥ 0, and α, β ≥ 0 other than n = 0 and α = β, we have

Ck
n,(α,β) = Ck

n,(α+1,β) + Ck
n−1,(α−k+1,β).
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s1
s7 ⇔

(2, 3)

(0,−2)

ψ(s1)

ψ(s7)

Figure 2: An example of the bijection Ψ between raised k-Dyck paths Dk
n,(α,β) and simple

paths in L((0,−β) → (n, kn− α) | x ≥ ky). Here k = 3, n = 2, α = 1, and β = 2.

Proof. Observe that n = 0 and α = β corresponds to trivial paths, which cannot be de-
composed as outlined below. Excepting that case, let SU be the subset of Dk

n,(α,β) including

all paths that begin with a U step, and let SD be the subset of Dk
n,(α,β) including all paths

that begin with a D step. Eliminating the first step of every P ∈ SU gives a path of
length kn + β − α − 1 = kn + β − (α + 1) and shape (α + 1, β), placing SU in bijec-
tion with Dk

n,(α+1,β). Eliminating the first step of every P ∈ SD gives a path of length

kn+β−α− 1 = k(n− 1) +β− (α− k+ 1) and shape (α− k+ 1, β), placing SD in bijection
with Dk

n−1,(α−k+1,β).

Fully utilizing the recurrence of Proposition 1 requires multivariate generating functions.
Simultaneously accounting for all shapes (α, β), define Ck(q, r, t) =

∑

α,β,n≥0C
k
n,(α,β)q

αrβtn.
For reasons that will become clear in upcoming sections, we separately denote the ordi-
nary generating function for paths of fixed shape (α, β) by Ck,(α,β)(t) =

∑

n≥0C
k
n,(α,β)t

n =

[qαrβ]Ck(q, r, t).
For fixed shape (α, β), observe that the order of Ck,(α,β)(t) is the smallest non-negative

integer n that such n ≥ α−β

k−1
, corresponding to the minimal number of D steps in a path of

shape (α, β). In particular, if α ≤ β then Ck,(α,β)(t) has order 0. When α ≤ β, the minimal
coefficient is always [t0]Ck,(α,β)(t) = 1, corresponding to the unique path of shape (α, β) with
zero D steps. When α > β, the minimal coefficient of Ck,(α,β)(t) may or may not be 1.

Proposition 1 may be used to derive the following relationship for Ck(q, r, t):

Theorem 2. For all k ≥ 2, we have

Ck(q, r, t) =

∑

i≥0 (Ck(t)i+1 − qi+1) ri

1 − q + qkt
.

Proof. The recurrence of Proposition 1 is equivalent to Ck
n,(α,β) = Ck

n,(α−1,β) − Ck
n−1,(α−k,β)

for all n ≥ 0 and α ≥ 1. This suggests a relation that includes Ck(q, r, t) = qCk(q, r, t) −
qktCk(q, r, t). Accounting for the α = 0 case, where shape (0, β) paths are generated by
Ck(t)β+1, requires an additional

∑

i≥0Ck(t)i+1ri term on the right side. Also accounting for
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the trivial case of n = 0 and α = β, to which Proposition 1 doesn’t apply, we have the full
recurrence

Ck(q, r, t) = qCk(q, r, t) − qktCk(q, r, t) +
∑

i≥0

Ck(t)i+1ri −
∑

i≥0

qi+1ri. (2)

The generating function of Theorem 2 may be used to derive closed formulas for all of
the Ck

n,(α,β), regardless of starting height. In all that follows, we set
(

a

b

)

= 0 whenever a < 0
or b < 0.

Theorem 3. For all k ≥ 2 and n, α, β ≥ 0, we have

Ck
n,(α,β) =

(

∑

i≥0

(−1)i
β + 1

k(n− i) + β + 1

(

k(n− i) + β + 1

n− i

)(

α− (k − 1)i

i

)

)

− (−1)n
(

α− β − 1 − (k − 1)n

n

)

.

Proof. Specializing the formula of Theorem 2 to fixed β gives

[rβ]Ck(q, r, t) =
Ck(t)β+1 − qβ+1

1 − q + qkt

=
(

Ck(t)β+1 − qβ+1
) (

1 + (q − qkt) + (q − qkt)2 + · · ·
)

. (3)

One may verify that the coefficient of qα in (1 + (q − qkt) + (q − qkt)2 + · · · ) is

∑

i≥0

(−1)i
(

α− (k − 1)i

i

)

ti.

This implies that

[qαrβ]Ck(q, r, t) =

Ck(t)β+1
∑

i≥0

(−1)i
(

α− (k − 1)i

i

)

ti −
∑

i≥0

(−1)i
(

α− β − 1 − (k − 1)i

i

)

ti. (4)

As noted in Section 1, Ck(t)β+1 may be rewritten as Ck(t)β+1 =
∑

i≥0
β+1

ki+β+1

(

ki+β+1
i

)

ti.

This transforms the first term from the right side of (4) into a convolution of two power
series. Extracting the coefficient of qα from both terms of (4) yields our formula for
[qαrβtn]Ck(q, r, t) = Ck

n,(α,β).

Using the aforementioned bijection between Dk
n,(α,β) and L((0,−β) → (n, kn − α) | x ≤

ky), one may verify that the closed formula of Theorem 3 is in agreement with Kratten-
thaler [7, Theorem 10.4.7]. However, in addition to presenting a novel method of proof
for Krattenthaler’s result, our methodology is a more natural setting for the consideration
of standard path statistics such as “maximum height”, “number of returns”, “number of
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peaks”, and “number of valleys”. To the best of our knowledge, nothing from this point
forward is equivalent to anything in Krattenthaler [7] or appears elsewhere in the literature.

Inspecting the formula of Theorem 3, observe that the trailing term can only be nonzero
when α > β. Also, at least one of the binomial coefficients from each term of the summation
is zero unless i ≤ min(n, α

k
).

All of this means that the formula of Theorem 3 is much simpler when the starting height
α is relatively small. In particular, when 0 ≤ α ≤ k − 1, the leading summation contains
only a single nonzero term and we have the following.

Corollary 4. For all k ≥ 2, β ≥ 0, and 0 ≤ α ≤ k − 1, we have

Ck
n,(α,β) =











β+1
kn+β+1

(

kn+β+1
n

)

= Rk,β+1(n), if n > 0;

1, if n = 0 and α ≤ β;

0, if n = 0 and α > β.

Proof. When n > 0 and α ≤ k − 1, the final term from Theorem 3 is always zero and the
leading summation simplifies to a single term. When n = 0, Theorem 3 gives β+1

β+1

(

β+1
0

)

−
(

α−β−1
0

)

.

Still restricting our attention to 0 ≤ α ≤ k − 1, we can alternatively begin with (4) to
recast Corollary 4 is terms of the generating functions Ck,(α,β)(t) = [qαrβ]Ck(q, r, t):

Corollary 5. For all k ≥ 2, β ≥ 0, and 0 ≤ α ≤ k − 1, we have

Ck,(α,β)(t) =

{

Ck(t)β+1, if α ≤ β;

Ck(t)β+1 − 1, if α > β.

Proof. By (4), when 0 ≤ α ≤ k − 1 we have [qαrβ]Ck(q, r, t) = Ck(t)β+1
(

α

0

)

−
(

α−β−1
0

)

.

Corollaries 4 and 5 place our work in agreement with Selkirk [10] and Asinowski, Hackl,
and Selkirk [1], assuming we restrict ourselves to their range of 0 ≤ α ≤ k − 1. In this case,
observe that Corollaries 4 and 5 may also be proven by placing Dk

n,(α,β) in bijection with

Dk
n,(0,β) via the map that adds α consecutive U steps to the beginning of every P ∈ Dk

n,(α,β).

This bijection fails when α > k − 1, since it is no longer the case that every P ∈ Dk
n,(0,β)

must begin with α > k − 1 consecutive U steps.
Computation of Ck,(α,β)(t) becomes increasingly difficult as one extends above α = k− 1.

See Appendix A for a comparison of the sequences generated by Ck,(α,0)(t) to previously-
cataloged sequences in the OEIS (the On-Line Encyclopedia of Integer Sequences) [11], for
small k ≥ 2 and various shapes (α, β).
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2.1 Raised k-Dyck paths, k = 2 case

As with most combinatorial objects related to the k-Catalan numbers, investigating raised
k-Dyck paths becomes much easier in the case of k = 2. In this subsection, we present a
series of results involving the Ck

n,(α,β) that hold only when k = 2.
The primary reason the k = 2 case is simpler is the fact that the left-right reflection

of a raised 2-Dyck path still qualifies as a raised 2-Dyck path. In particular, reflecting
a 2-Dyck path of length 2n + β − α and shape (α, β) results in a 2-Dyck path of length
2n + β − α = 2(n + β − α) + α − β shape (β, α). In terms of generating functions, this
prompts:

Proposition 6. For all α, β ≥ 0, we have

C2,(β,α)(t) = tβ−αC2,(α,β)(t).

Notice that Proposition 6 holds even if β − α < 0. If α > β, then C2,(α,β)(t) has order
α−β and tβ−αC2,(α,β)(t) is a valid (order 0) power series. When dealing with the k = 2 case,
Proposition 6 allows us to restrict our attention to shapes (α, β) where β ≥ α.

Our next result is a replacement of the generating function equation (4) from the proof
of Theorem 3 that holds only when k = 2.

Theorem 7. For all α, β ≥ 0, we have

C2,(α,β)(t) =

min(α,β)
∑

i=0

tα−iC2(t)
α+β+1−2i.

Proof. For each n ≥ 0, we partition D2
n,(α,β) into sets Sn,0, . . . ,Sn,min(α,β), where Sn,i includes

all paths whose lowest point lies along y = i. As shown in Figure 3, every path P ∈ Si,n may
be decomposed into a sequence of (α− i) + (β− i) + 1 sub-paths of shape (0, 0). Notice that
this decomposition includes α − i “external” down steps that aren’t included within one of
the shape-(0, 0) sub-paths. If we define the generating function Si(t) =

∑

n≥0 |Sn,i|t
n, this

decomposition implies that Si(t) = tα−iC2(t)
α+β+1−2i.

· · ·
(0, 0)

(0, 0)

· · · (0, 0) · · ·

(0, 0)
(0, 0)

· · ·

Figure 3: The decomposition of a path P ∈ D2
n,(α,β) into a sequence of (α− i) + (β − i) + 1

sub-paths of shape (0, 0), as referenced in the proof of Theorem 7.
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If β ≥ α, the formula of Theorem 7 may be rewritten as C2,(α,β)(t) =
∑α

i=0 t
iC2(t)

β−α+2i+1.

Similarly, if α ≥ β, Theorem 7 may be rewritten as C2,(α,β)(t) =
∑β

i=0 t
α−β+iC2(t)

α−β+2i+1.
Together these identities ensure C2,(β,α)(t) = tβ−αC2,(α,β)(t), placing Theorem 7 in agreement
with Proposition 6.

Temporarily restricting our attention to the case of β ≥ α, also note that we may use
the identity C2(t) = tC2(t)

2 + 1 to rewrite the formula above as

C2,(α,β)(t) = C2(t)
β−α+1

α
∑

i=0

(tC2(t)
2)i = C2(t)

β−α+1

α
∑

i=0

(C2(t) − 1)i. (5)

More significantly, Theorem 7 may used to develop a closed formula for arbitrary C2
n,(α,β),

giving a simpler replacement of Theorem 3 that holds only when k = 2.

Theorem 8. For all n, α, β ≥ 0, we have

C2
n,(α,β) =

min(α,β)
∑

i=0

α + β + 1 − 2i

2n+ β − α + 1

(

2n+ β − α + 1

n− α + i

)

.

Proof. Fixing n ≥ 0 and applying the definition of Raney numbers, we have

[tn]tα−iC2(t)
α+β+1−2i = [tn−α+i]C2(t)

α+β+1−2i

=
α + β + 1 − 2i

2(n− α + i) + (α + β + 1 − 2i)

(

2(n− α + i) + (α + β + 1 − 2i

n− α + i

)

.

Our closed formula for C2
n,(α,β) = [tn]C2,(α,β)(t) follows from the summation of Theorem

7.

3 Raised k-Dyck paths, filtered by minimum height

and returns

For the rest of this paper, we focus upon the enumeration of raised k-Dyck paths that satisfy
additional conditions. We begin by developing formulas for the number of paths P ∈ Dk

n,(α,β)

that have a fixed minimum height and paths P ∈ Dk
n,(α,β) that have a certain number of

“returns to ground”. Enumerating raised k-Dyck paths that have a fixed maximum height
is delayed until Section 4.

3.1 Raised k-Dyck paths, by minimum height

For traditional k-Dyck paths, all of which necessarily begin at height y = 0, it is unnecessary
to categorize paths according to their minimum y-coordinate. For raised k-Dyck paths of
shape (α, β), this question becomes non-trivial when both α > 0 and β > 0.
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Take a path P ∈ Dk
n,(α,β). If P stays weakly above y = m, we say that P is bounded from

below by m. Then let Lk,m

n,(α,β) denote the collection of all P ∈ Dk
n,(α,β) that are bounded from

below by m. For any such set, there exists a clear bijection between Lk,m

n,(α,β) and Dk
n,(α−m,β−m)

whereby paths in Lk,m

n,(α,β) are shifted m units downward. As such, we focus upon enumerating
paths that actually obtain a fixed minimum height.

So once again take P ∈ Dk
n,(α,β). If P is bounded from below by m yet is not bounded

from below by m+ 1, meaning that m is the minimum y-coordinate among all points (xi, yi)
along P , we say that P has a minimum height of m. Then let mD

k
n,(α,β) to denote the set of

all raised k-Dyck paths of length kn+ β − α and shape (α, β) with minimum height m, and
set |mD

k
n,(α,β)| = mC

k
n,(α,β). For fixed shape (α, β) and fixed m, define the generating function

mCk,(α,β)(t) =
∑

n≥0 mC
k
n,(α,β)t

n.

Obviously, all P ∈ Dk
n,(α,β) have a minimum height that falls in the range 0 ≤ m ≤

min(α, β). It follows that Dk
n,(α,β) =

⋃min(α,β)
i=0 mD

k
n,(α,β) and hence that

Ck,(α,β)(t) =

min(α,β)
∑

i=0

mCk,(α,β)(t)

for all k ≥ 2 and all shapes (α, β). By construction, we also have mD
k
n,(α,β) = Lk,m

n,(α,β)−Lk,m+1
n,(α,β).

Using the bijection for the Lk,m

n,(α,β) mentioned above, this final fact gives:

Proposition 9. For all k ≥ 2, n, α, β ≥ 0 and 0 ≤ m ≤ min(α, β), we have

mC
k
n,(α,β) = Ck

n,(α−m,β−m) − Ck
n,(α−m−1,β−m−1).

The drawback with Proposition 9 is that it relies upon the extremely lengthy formula of
Theorem 3. This motivates the alternative characterization of mC

k
n,(α,β) given below, which

has the added benefit of relating all our results to enumerations of raised k-Dyck paths of
shape (α, 0).

Theorem 10. For all k ≥ 2, α, β ≥ 0 and 0 ≤ m ≤ min(α, β), we have

mCk,(α,β)(t) = Ck,(α−m,0)(t)Ck(t)β−m.

Proof. As shown in Figure 4, every path P ∈ mD
k
n,(α,β) may be decomposed according to the

rightmost point at its minimum height of y = m. When 0 ≤ m < β, this decomposition
gives the relationship mCk,(α,β)(t) = Ck,(α−m,0)(t)Ck,(0,β−m−1)(t). When m = β, we have the
relationship mCk,(α,β)(t) = Ck,(α−m,0)(t). Both cases simplify to the stated equation.
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(α−m, 0) (0, β−m−1) (α−β, 0)

Figure 4: The two possible decompositions of a path P ∈ mD
k
n,(α,β) with minimum height

m, one for m < β (left) and one for m = β (right). The (ai, bi) denote the effective shape of
each subpath.

Avoiding the even more involved calculation suggested by Proposition 9, we use Theorem
10 to develop an (admittedly still inelegant) closed formula for the mC

k
n,(α,β):

Theorem 11. For all k ≥ 2, n, α, β ≥ 0, and m ≤ 0 ≤ min(α, β), we have

mC
k
n,(α,β) =

(

∑

i≥0

(−1)i
2β −m+ 1

k(n− i) + 2β −m+ 1

(

k(n− i) + 2β −m+ 1

n− i

)(

α− (k − 1)i

i

)

)

−

(

∑

i≥0

(−1)i
β −m

k(n− i) + β −m

(

k(n− i) + β −m

n− i

)(

α−m− 1 − (k − 1)i

i

)

)

.

Proof. Applying (4) from the proof of Theorem 3 to our identity from Theorem 10, we see
that mC

k
n,(α,β) = Ck(t)β−mCk,(α−m,0)(t) may be rewritten as

Ck(t)2β−m+1
∑

i≥0

(−1)i
(

α−m− (k − 1)i

i

)

ti − Ck(t)β−m
∑

i≥0

(−1)i
(

α−m− 1 − (k − 1)i

i

)

ti.

(6)
Recalling the standard identity Ck(t)r =

∑

i≥0
r

ki+r

(

ki+r

i

)

ti, both of the terms from (6) are
transformed into convolutions, from which the two summations of the theorem may be
extracted.

As was the case in Section 2, all of these formulas become much simpler when we restrict
our attention to small α or to k = 2. When α−m ≤ k− 1 we may apply Corollary 5 to the
Ck,(α−m,0)(t) term from Theorem 10 and derive the following:

Corollary 12. For all k ≥ 2, n, β ≥ 0, and m,α ≥ 0 such that 0 ≤ α−m ≤ k− 1, we have

mC
k
n,(α,β) =

{

β−m+1
kn+β−m+1

(

kn+β−m+1
n

)

, if m = α;
β−m+1

kn+β−m+1

(

kn+β−m+1
n

)

− β−m

kn+β−m

(

kn+β−m

n

)

, if m < α ≤ k − 1 +m.

Proof. By Corollary 5 and Theorem 10, when m = α we have Ck,(α−m,0)(t) = Ck(t) and thus
that mCk,(α,β)(t) = Ck(t)β−m+1. Similarly, when m < α < k − 1 +m we have Ck,(α−m,0)(t) =
Ck(t) − 1 and thus that mCk,(α,β)(t) = Ck(t)β−m+1 − Ck(t)β−m. Our closed formulas then

follow from the identity [tn]Ck(t)r = r
kn+r

(

kn+r

n

)

.

10



As for the k = 2 case, in the course of proving Theorem 7 we already enumerated paths
in C2

n,(α,β) with minimal height m. It may be verified that the formula below corresponds to

[tn]tα−mC2(t)
α+β+1−2m = [tn]C2,(α−m)(t)C2(t)

β−m, placing it in agreement with Theorem 10.

Corollary 13. For all n, α, β ≥ 0 and 0 ≤ m ≤ min(α, β), we have

mC
2
n,(α,β) =

α + β + 1 − 2m

2n+ β − α + 1

(

2n+ β − α + 1

n− α +m

)

.

One unrelated consequence of Theorem 10 is the following decomposition of Ck,(α,β)(t)
into a sum that is indexed by minimal height:

Ck,(α,β)(t) =

min(α,β)
∑

i=0

Ck,(α−m,0)(t)Ck(t)β−m. (7)

Comparison of Proposition 9 and Theorem 10 also gives an unexpected equation whereby
shape (α, β) paths may enumerated in terms of paths with shapes of the form (α′, 0) and
(0, β′).

Corollary 14. For all k ≥ 2 and α, β ≥ 0, we have

Ck,(α,β)(t) =

min(α,β)
∑

i=0

Ck,(α−i,0)(t)Ck(t)β−i.

Proof. Equating the right sides of Theorem 10 and (a generating function-equivalent version
of) Proposition 9 when m = 0 gives the relation below, which holds whenever α > 0 and
β > 0:

Ck,(α,β)(t) = Ck,(α,0)(t)Ck(t)β + Ck,(α−1,β−1)(t). (8)

Repeated application of this relation until α = 0 or β = 0 yields the desired equation.

3.2 Raised k-Dyck paths, by returns

Our next goal is to enumerate paths P ∈ Dk
n,(α,β) with a specific number of “returns to

ground”. By a return to ground, we mean a D step whose right endpoint lies on the line
y = 0. When α = 0, the initial point (0, 0) of a path does not qualify as a return to ground.

Denote the set of all raised k-Dyck paths of length kn + β − α and shape (α, β) with
precisely ρ returns to ground by Dk

n,(α,β),ρ, and let |Dk
n,(α,β),ρ| = Ck

n,(α,β),ρ. As every path in

Dk
n,(α,β) contains precisely n down steps, Ck

n,(α,β),ρ = 0 if ρ > n. When α > 0, we may have

Ck
n,(α,β),ρ = 0 even if ρ ≤ n.

In this section it is once again beneficial to preemptively fix a shape (α, β) and deal with
the generating functions Ck,(α,β)(t) = [qαrβ]Ck(q, r, t). Filtering by the number of returns,
we then define Ck,(α,β)(t, z) =

∑

n,ρ≥0C
k
n,(α,β),ρt

nzρ.

11



In the classic case of α = 0, we quickly recap the standard result. Here, every path in
Dk

n,(0,β),ρ may be decomposed according to its returns as in Figure 5. This decomposition
gives

Proposition 15. For all k ≥ 2 and β ≥ 0, we have

Ck,(0,β)(t, z) =
∑

i≥0

zitiCk(t)β+i(k−1).

Proof. For paths P ∈ Dk
n,(0,β) with precisely ρ returns, the decomposition of Figure 5 yields

the generating function Ck,(0,β−1)(t)
(

tCk,(0,k−2)(t)
)ρ

= tρCk(t)β
(

Ck(t)k−1
)ρ

.

(0, k − 2) (0, k − 2) · · · (0, β − 1)

Figure 5: The general form of a path P ∈ Dk
n,(0,β) with precisely ρ returns to ground, along

with the effective shape of each subpath.

Theorem 16. For all k ≥ 2 and β, n, ρ ≥ 0, we have

Ck
n,(0,β),ρ =

kρ+ β − ρ

kn+ β − ρ

(

kn+ β − ρ

n− ρ

)

.

Proof. By Proposition 15, Ck
n,(0,β),ρ = [tn]tρCk(t)β+ρ(k−1) = [tn−ρ]Ck(t)β+ρ(k−1).

The case of α > 0 is similar yet slightly more complex, seeing as elements of Dk
n,(α,β),ρ

need not have a return to ground. This necessitates two distinct decompositions for elements
of Dk

n,(α,β),ρ, both of which are shown in Figure 6. As with Proposition 15, this decomposition
prompts

Proposition 17. For all k ≥ 2 and β ≥ 0 with α > 0, we have

Ck,(α,β)(t, z) = Ck,(α−1,β−1)(t) +
∑

i≥1

zitiCk,(α−1,k−2)(t)Ck(t)β+(i−1)(k−1).

Proof. The first term corresponds to the first decomposition in Figure 6. The sum corre-
sponds to the second decomposition in Figure 6, where paths P ∈ Dk

n,(α,β) with ρ returns
have generating function

Ck,(α−1,k−2)(t)
(

tCk,(0,k−2)(t)
)ρ−1

tCk,(0,β−1)(t) = tρCk,(α−1,k−2)(t)
(

Ck(t)k−1
)ρ−1

Ck(t)β.

12



(α−1, β−1) (α−1, k−2) (0, k − 2) · · · (0, β − 1)

Figure 6: The two possible decompositions for a path P ∈ Dk
n,(α,β) with α > 0, one for paths

with no returns (left) and one for paths with precisely ρ > 0 returns (right).

Theorem 18. For all k ≥ 2 and β, n, ρ ≥ 0 with α > 0, we have

Ck
n,(α,β),ρ =















Ck
n,(α−1,β−1), if ρ = 0;

n−ρ
∑

i=0

Ck
i,(α−1,k−2)Rk,β+(ρ−1)(k−1)(n− ρ− i), if ρ > 0.

Proof. Using Proposition 17, Ck
n,(α,β),0 = [tn]Ck,(α−1,β−1)(t) when ρ = 0. For ρ > 0 we have

Ck
n,(α,β),ρ = [tn]tρCk,(α−1,k−2)(t)Ck(t)β+(ρ−1)(k−1) = [tn−ρ]Ck,(α−1,k−2)(t)Ck(t)β+(ρ−1)(k−1). (9)

Given the complexity of the formula from Theorem 3, substituting closed formulas into
Theorem 18 becomes very lengthy for arbitrary (α, β). However, when 0 < α ≤ k, we can
apply Corollary 4 (or Corollary 5) to arrive at the much simpler identity shown below.

Corollary 19. For all k ≥ 2 and β, n, ρ ≥ 0 with 0 < α ≤ k, we have

Ck
n,(α,β),ρ =







kρ+β−ρ

kn+β−ρ

(

kn+β−ρ

n−ρ

)

, if 0 < α ≤ k − 1;

kρ+β−ρ

kn+β−ρ

(

kn+β−ρ

n−ρ

)

− kρ+β−ρ−(k−1)
kn+β−ρ−(k−1)

(

kn+β−ρ−(k−1)
n−ρ

)

, if α = k.

Proof. Applying Corollary 5 to the Ck,(α−1,k−2)(t) terms of Theorem 18, note that α−1 ≤ k−2
implies α ≤ k−1, whereas α−1 > k−2 along with α−1 ≤ k−1 together imply α = k.

As expected, the k = 2 case is also comparatively succinct. Not at all expected is that a
specialization of Theorem 18 to k = 2 gives a simpler result when ρ > 0 than when ρ = 0.

Corollary 20. For all β, n, ρ ≥ 0 with α > 0, we have

Ck
n,(α,β),ρ =



























min(α−1,β−1)
∑

i=0

α + β − 1 − 2i

2n+ β − α + 1

(

2n+ β − α + 1

n− α + 1 + i

)

, if ρ = 0;

α + β + ρ− 1

2n+ β − α− ρ+ 1

(

2n+ β − α− ρ+ 1

n− α− ρ+ 1

)

, if ρ > 0.
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Proof. The ρ = 0 case follows immediately from an application of Theorem 8 to Theorem
18. For the ρ > 0 case, by Proposition 6 we have C2

n,(α,β),ρ = [tn]tρC2,(α−1,0)(t)C2(t)
β+ρ−1.

Using Proposition 17 then gives the following, to which we apply the definition of Raney
numbers:

C2
n,(α,β),ρ = [tn]tρ+α−1C2,(0,α−1)(t)C2(t)

β+ρ−1 = [tn−ρ−α+1]C2(t)
α+β+ρ−1. (10)

4 Raised k-Dyck paths of bounded height

The results of Section 2 may also be used to enumerate (raised) k-Dyck paths of bounded
height. This allows for a derivation of easily-computable generating functions that hold for
all k ≥ 2 and shapes (α, β), expanding upon the discussions of non-raised, height-bounded
lattice paths in Baril and Prodinger [3], Bousquet-Mélou [4], or Bacher [2].

So take a raised k-Dyck path P ∈ Dk
n,(α,β). If P stays weakly below y = M , we say that

P is bounded from above by M . We use Uk,M

n,(α,β) to denote the collection of all P ∈ Dk
n(α,β)

that are bounded from above by M , and set |Uk,M

n,(α,β)| = U
k,M

n,(α,β). Clearly, Uk,M

n,(α,β) = 0 unless
α, β ≤M .

Fixing 0 ≤ α, β ≤M , we define the generating function UM
k,(α,β)(t) =

∑

n≥0 U
k,M

n,(α,β)t
n. The

primary goal of this section is to relate the UM
k,(α,β)(t) to the generating functions Ck,(α′,β′)(t)

of Section 2, from which one may derive closed formulas for the Uk,M

n,(α,β) using Theorem 3.

Before deriving a relationship for general UM
k,(α,β)(t), we consider the special case of β = M :

Lemma 21. For all k ≥ 2, α ≥ 0, and M ≥ 0, we have

UM
k,(α,M)(t) =

Ck,(α,M)(t)

1 + Ck,(M+1,M)(t)
.

Proof. Every path P ∈ Dk
n,(α,M) may be decomposed in one of the two ways shown in Figure

7, depending upon whether or not the path rises above y = M . This prompts the identity

Ck,(α,M)(t) = UM
k,(α,M)(t) + UM

k,(α,M)(t)Ck,(M+1,M)(t). (11)

Lemma 21 may still be applied to derive our general identity:

Theorem 22. For all k ≥ 2, M ≥ 0, and 0 ≤ α, β ≤M , we have

UM
k,(α,β)(t) = Ck,(α,β)(t) −

Ck,(α,M)(t)Ck,(M+1,β)(t)

1 + Ck,(M+1,M)(t)
.
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(α,M) (α,M)

(M+1,M)

Figure 7: The two decompositions for a path P ∈ Dk
n,(α,M), as used in the proof of Lemma

21.

Proof. Via an equivalent decomposition of paths P ∈ Dk
n,(α,β) to that in Figure 7, we have

Ck,(α,β)(t) = UM
k,(α,β)(t) + UM

k,(α,M)(t)Ck,(M+1,β)(t). (12)

Rearranging (12) and applying Lemma 21 then gives

UM
k,(α,β)(t) = Ck,(α,β)(t)−U

M
k,(α,M)(t)Ck,(M+1,β)(t) = Ck,(α,β)(t)−

Ck,(α,M)(t)Ck,(M+1,β)(t)

1 + Ck,(M+1,M)(t)
. (13)

Recall that the order of Ck,(α,β)(t) goes to ∞ and α → ∞. This implies that the order of

Ck,(α,M)(t)Ck,(M+1,β)(t) goes to ∞ as M → ∞, and thus that the order of
Ck,(α,M)(t)Ck,(M+1,β)(t)

1+Ck,(M+1,M)(t)

goes to ∞ as M → ∞. This allows us to conclude that number of initial terms for which
[tn]UM

k,(α,β)(t) = [tn]Ck,(α,β)(t) goes to ∞ and M → ∞, as one would expect for k-Dyck paths
with an arbitrarily high upper bound.

Also observe that, if M < k − 1, then we have both M + 1 ≤ k − 1 and α, β ≤M . This
means that we can apply Corollary 5 to the rightmost term from Theorem 22 as below:

Ck,(α,M)(t)Ck,(M+1,β)(t)

1 + Ck,(M+1,M)(t)
=
Ck(t)M+1

(

Ck(t)β+1 − 1
)

Ck(t)M+1
= Ck(t)β+1 − 1. (14)

When M < k − 1 and α ≤ β, this gives the expected result

UM
k,(α,β)(t) = Ck(t)β+1 −

(

Ck(t)β+1 − 1
)

= 1,

corresponding to the fact that only the “trivial” path (i.e., the unique path with zero D

steps) stays weakly below y = M when M < k − 1. When M < k − 1 and α > β, we
similarly get the expected result of UM

k,(α,β)(t) = 0, reflecting the fact that every path of such

a shape (α, β) must have at least one D step and thus can’t stay weakly below y = M .
Explicit calculations involving the generating function UM

k,(α,β)(t) become increasingly
difficult when M ≥ k − 1, but Theorem 22 may always be used with with Theorem 3
to calculate the sizes Uk,M

n,(α,β) = [tn]UM
k,(α,β)(t). See Appendix A for explicit calculations of

the sequences generated by the UM
k,(α,β)(t) for various k ≥ 2 and small M in the case of

(α, β) = (0, 0).
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For one final application, note that Theorem 22 may be used to enumerate the number of
raised k-Dyck paths that actually obtain a fixed maximum height. This follows immediately
from the fact that raised k-Dyck paths of maximum height M are precisely those paths that
stay weakly below y = M yet fail to stay weakly below y = M − 1.

So let Hk,M

n,(α,β) denote the set of all P ∈ Dk
n,(α,β) that obtain a maximum height of M , and

let |Hk,M

n,(α,β)| = H
k,M

n,(α,β). In terms of the generating function HM
k,(α,β)(t) =

∑

n≥0H
k,M

n,(α,β)t
n,

Theorem 22 immediately yields the following result.

Corollary 23. For all k ≥ 2, M ≥ 0 and 0 ≤ α, β ≤M , we have

HM
k,(α,β)(t) = UM

k,(α,β)(t) − UM−1
k,(α,β)(t) =

Ck,(α,M−1)(t)Ck,(M,β)(t)

1 + Ck,(M,M−1)(t)
−
Ck,(α,M)(t)Ck,(M+1,β)(t)

1 + Ck,(M+1,M)(t)
.

As with the UM
k,(α,β)(t), the HM

k,(α,β)(t) become increasing exhausting to calculate when M
becomes large. For M < k − 1, it is still easy to verify that we get the expected results of
HM

k,(α,β)(t) = 1 when α ≤ β and HM
k,(α,β)(t) = 0 when α > β. See Appendix A for explicit

calculations of the sequences generated by the HM
k,(α,β)(t) for various k ≥ 2 and M ≥ k in

the case of (α, β) = (0, 0).

A Appendix: Explicit Calculations

Below are comparisons of the sequences generated by Cn,(α,β)(t) to preexisting sequences in
the OEIS, for k = 2, 3, 4. All sequences were calculated on Maple 19 via (4) from the proof
Theorem 3. All listed sequences are identical up to shifting or the complete absence of (one
or more) initial terms.

Notice how Proposition 6 ensures that the k = 2 table is symmetric along the main
diagonal, whereas the k = 3, 4 tables are not symmetric along the main diagonal. For all
tables, Corollary 5 ensures that all sequences with α ≤ k − 1 correspond to convolutions of
the k−Catalan numbers.

β = 0 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7

α = 0 A000108 A000108 A000245 A002057 A000340 A003517 A000588 A003518

α = 1 A000108 A000108 A000245 A002057 A000340 A003517 A000588 A003518

α = 2 A000245 A000245 A026012 A026016 A026013 A026017 A026014 A026018

α = 3 A002057 A002057 A026016 A026029 A026026 A026030 A026027 A026031

α = 4 A000340 A000340 A026013 A026026 – – – –

α = 5 A003517 A003517 A026017 A026030 – – – –

α = 6 A000588 A000588 A026014 A026027 – – – –

α = 7 A003518 A003518 A026018 A026031 – – – –

Table 1: A comparison of the sequences generated by C2,(α,β)(t) to preexisting sequences in
the OEIS.
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https://oeis.org/A000108
https://oeis.org/A000108
https://oeis.org/A000245
https://oeis.org/A002057
https://oeis.org/A000340
https://oeis.org/A003517
https://oeis.org/A000588
https://oeis.org/A003518
https://oeis.org/A000108
https://oeis.org/A000108
https://oeis.org/A000245
https://oeis.org/A002057
https://oeis.org/A000340
https://oeis.org/A003517
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https://oeis.org/A000245
https://oeis.org/A026012
https://oeis.org/A026016
https://oeis.org/A026013
https://oeis.org/A026017
https://oeis.org/A026014
https://oeis.org/A026018
https://oeis.org/A002057
https://oeis.org/A002057
https://oeis.org/A026016
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https://oeis.org/A026026
https://oeis.org/A026030
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https://oeis.org/A026031
https://oeis.org/A000340
https://oeis.org/A000340
https://oeis.org/A026013
https://oeis.org/A026026
https://oeis.org/A003517
https://oeis.org/A003517
https://oeis.org/A026017
https://oeis.org/A026030
https://oeis.org/A000588
https://oeis.org/A000588
https://oeis.org/A026014
https://oeis.org/A026027
https://oeis.org/A003518
https://oeis.org/A003518
https://oeis.org/A026018
https://oeis.org/A026031


β = 0 β = 1 β = 2 β = 3 β = 4 β = 5

α = 0 A001764 A006013 A001764 A006629 A102893 A006630

α = 1 A001764 A006013 A001764 A006629 A102893 A006630

α = 2 A001764 A006013 A001764 A006629 A102893 A006630

α = 3 A334680 – A334680 – – –

α = 4 A336945 A030983 A336945 – – –

α = 5 A334976 A334977 A334976 – – –

Table 2: A comparison of the sequences generated by C3,(α,β)(t) to preexisting sequences in
the OEIS.

β = 0 β = 1 β = 2 β = 3 β = 4 β = 5

α = 0 A002293 A069271 A006632 A002293 A196678 A006633

α = 1 A002293 A069271 A006632 A002293 A196678 A006633

α = 2 A002293 A069271 A006632 A002293 A196678 A006633

α = 3 A002293 A069271 A006632 A002293 A196678 A006633

α = 4 A334682 – – A334682 – –

α = 5 – A334608 – – – –

Table 3: A comparison of the sequences generated by C4,(α,β)(t) to preexisting sequences in
the OEIS.

Below are comparisons of the sequences generated by UM
k,(0,0)(t) to preexisting sequences

in the OEIS, for k = 2, 3, 4. All sequences were calculated on Maple 19 via Theorem 22, and
are identical to the listed sequences up to shifting or the absence of (one or more) initial
terms.

k = 2 k = 3 k = 4

M = 0 1 1 1

M = 1 (1)n≥0 1 1

M = 2 (2n)n≥0 (1)n≥0 1

M = 3 A001519 (2n)n≥0 (1)n≥0

M = 4 A124302 (3n)n≥0 (2n)n≥0

M = 5 A080937 A001835 (3n)n≥0

M = 6 A024175 A081704 (4n)n≥0

M = 7 A080938 A083881 A004253

M = 8 A033191 – –

M = 9 A211216 – A261399

M = 10 – – A143648

M = 11 – – –

M = 12 – – –

Table 4: A comparison of the sequences generated by UM
k,(0,0)(t) to preexisting sequences in

the OEIS. An entry of 1 (without parentheses) corresponds to the sequence 1, 0, 0, 0, . . ..
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https://oeis.org/A001764
https://oeis.org/A006013
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https://oeis.org/A006629
https://oeis.org/A102893
https://oeis.org/A006630
https://oeis.org/A001764
https://oeis.org/A006013
https://oeis.org/A001764
https://oeis.org/A006629
https://oeis.org/A102893
https://oeis.org/A006630
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https://oeis.org/A002293
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https://oeis.org/A006633
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https://oeis.org/A196678
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https://oeis.org/A002293
https://oeis.org/A069271
https://oeis.org/A006632
https://oeis.org/A002293
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https://oeis.org/A006633
https://oeis.org/A334682
https://oeis.org/A334682
https://oeis.org/A334608
https://oeis.org/A001519
https://oeis.org/A124302
https://oeis.org/A080937
https://oeis.org/A001835
https://oeis.org/A024175
https://oeis.org/A081704
https://oeis.org/A080938
https://oeis.org/A083881
https://oeis.org/A004253
https://oeis.org/A033191
https://oeis.org/A211216
https://oeis.org/A261399
https://oeis.org/A143648
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