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Abstract

We discuss the base 3/2 representation of the natural numbers. We prove that the
sum-of-digits function of the representation is a fixed point of a 2-block substitution on
an infinite alphabet, and that this implies that sum-of-digits function modulo 2 of the
representation is a fixed point x3/2 of a 2-block substitution on {0, 1}. We prove that
x3/2 is invariant for taking the binary complement, and present a list of conjectured
properties of x3/2, which we think will be hard to prove. Finally, we make a comparison
with a variant of the base 3/2 representation, and give a general result on p-q-block
substitutions.

1 Introduction

A natural number N is written in base 3/2 if N has the form

N =
∑

i≥0

di

(3

2

)i

, (1)

with digits di = 0, 1 or 2.
Base 3/2 representations are also known as sesquinary representations of the natural

numbers; see Propp [6]. We write these expansions as

SQ(N) = dR(N) · · · d1(N)d0(N) = dR · · · d1d0.

We have, for example, SQ(7) = 211, since 2 · (9/4) + (3/2) + 1 = 7. See A024629 for the
continuation of Table 1. Ignoring leading 0’s, the base 3/2 representation of a number N is
unique (see Section 3).
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N 0 1 2 3 4 5 6 7 8 9 10
SQ(N) 0 1 2 20 21 22 210 211 212 2100 2101

Table 1: Base 3/2 expansions for N = 1, . . . , 10.

For N ≥ 0 let

s3/2(N) :=
i=R
∑

i=0

di(N)

be the sum-of-digits function of the base 3/2 expansions. We have (see A244040)

s3/2 = 0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, 6, 5, 6, 7, 7, 8, 9, 5, 6, 7, 5, 6, 7, 7, 8, 9, 8, 9, 10, . . .

In this note we study the base 3/2 analogue of the Thue–Morse sequence A010060 (where
the base equals 2), i.e., the sequence (see A357448)

(x3/2(N)) := (s3/2(N) mod 2) = 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, . . .

The Thue Morse sequence is the fixed point starting with 0 of the substitution 0 →
01, 1→ 10. This might be called a 1-2-block substitution.

Let p ≤ q be two natural numbers. A p-q-block substitution κ on an alphabet A is a map
κ : Ap → Aq. A p-q-block substitution κ acts on (Ap)∗ by defining

κ(w1w2 · · ·wpm−1wpm) = κ(w1 · · ·wp) · · ·κ(wpm−p+1 · · ·wpm)

for w1w2 · · ·wpm−1wpm ∈ (Ap)∗ and m = 1, 2, . . .. Its action extends to infinite sequences
x = x0x1 · · · by defining κ : x 7→ y by yqm · · · yqm+q−1 = κ(xpm · · · xpm+p−1) for m = 0, 1, . . ..

Theorem 1. The sequence x3/2 is a fixed point of the 2-3-block substitution

κ :















00 → 010
01 → 010
10 → 101
11 → 101

Theorem 1 will be proved in Section 2.2.

2 Sum of digits function and Thue–Morse in base 3/2

2.1 Sum of digits function in base 3/2

Let s3/2 = (0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, . . .) be the sum-of-digits function of the
base 3/2 expansions. To describe this sequence, we extend the notion of a p-q-block substi-
tution to alphabets of infinite cardinality.
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Theorem 2. The sequence s3/2 is the fixed point starting with 0 of the 2-3-block substitution

given by

a, b 7→ a, a+ 1, a+ 2 for a = 0, 1, 2, . . . and b = 0, 1, 2, . . . .

Proof. We have d(0) = 0, d(1) = 1 and from the uniqueness of the base 3/2 expansions it
follows immediately that d(3N + r) = d(2N) + r for N ≥ 0 and r = 0, 1, 2.

Thus s3/2(3N) = s3/2(2N), s3/2(3N+1) = s3/2(2N)+1, and s3/2(3N+2) = s3/2(2N)+2.
This gives the result.

Remark 3. The base-4/3 version of this sequence is A244041; the base-2 version is A000120;
the base-3 version is A053735; the base-10 version is A007953.

2.2 Thue–Morse in base 3/2

Proof of Theorem 1. This follows directly from Theorem 2 by taking a and b modulo 2.

Although iterates of κ : 00 → 010, 01 → 010, 10 → 101, 11 → 101 are undefined, we can
generate the fixed point x3/2 by iteration of a map κ′ defined by κ′(w) = κ(w) if w has even
length, and κ′(v) = κ(w) if v = w0 or v = w1 has odd length.

The fact that the iterates of κ are undefined causes difficulty in establishing properties
of x3/2. This is similar to the lack of progress in the last 25 years to prove the conjectures on
the Kolakoski sequence, which is also a fixed point of a 2-block substitution (cf. the papers
[2, 3]). Here is a property that is open for the Kolakoski sequence A000002, but can be
proved for x3/2.

Proposition 4. If a word w occurs in x3/2, then its binary complement w defined by 0 =
1, 1 = 0, also occurs in x3/2.

Proof. First one checks this for all 16 words of length 6 that occur in x3/2. Note that then
also w occurs for all w with |w| ≤ 6, where |w| denotes the length of w. Let u be a word of
length m ≥ 7. By adding at most 3 letters at the beginning and/or end of u one can obtain
a word v with |v| = 3n that occurs in x3/2 at a position 0 modulo 3. But then Theorem 1
gives that v = κ(w) for at least one word w occurring in x3/2. The length of w is |w| = 2n.

Since κ(w) = κ(w) the result follows by induction on m = |u|. For example, for |u| = m = 7,
one has |v| = 9, and so |w| = 6.

Here are some conjectured properties of x3/2.

Conjecture 5. x3/2 is reversal invariant, i.e., if the word w = w1 · · ·wm occurs in x3/2 then
←−w = wm · · ·w1 occurs in x3/2.

Conjecture 6. x3/2 is uniformly recurrent, i.e., each word that occurs in x3/2 occurs infinitely
often, with bounded gaps between consecutive occurrences.

Conjecture 7. The frequencies µ[w] of the words w occurring in x3/2 exist. Two conjectured
values: µ[00] = 1/10, µ[01] = 4/10.
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Conjecture 8. µ is invariant for binary complements, i.e., µ[w] = µ[w] for all words w.

Conjecture 9. µ is reversal invariant, i.e., µ[w] = µ[←−w ] for all words w.

Conjecture 10. (Shallit) The critical exponent (=largest number of repeated blocks) of
x3/2 is 5.

3 Base 3/2 and base 1/2 · 3/2

Many authors refer to the paper [1] from Akiyama, Frougny, and Sakarovitch for the prop-
erties of base 3/2 expansions (see, e.g., Propp [6] and Rigo and Stipulanti [7]). However, the
q/p expansions studied in paper [1] are different from the 3/2 expansions that are usually
considered as in Equation (1). In the paper [1]:

N =
∑

i≥0

di
1

p

(q

p

)i

, (2)

with digits di = 0, 1 or 2. We write AFS(N) for the expansion of N .

Remark 11. There is a small notational problem here: Akiyama, Frougny, and Sakarovitch
write about p/q expansions with p > q, but in this note we consider q/p expansions with
p ≤ q. This fits better with the p-q-block substitutions, and with the order of p and q in the
alphabet.

Here is the table given in the paper [1] for the case 3/2:

N 0 1 2 3 4 5 6 7 8 9 10
AFS(N) ε 2 21 210 212 2101 2120 2122 21011 21200 21202

Table 2: Base 1/2 · 3/2 expansions for N = 1, . . . , 10.

These expansions will not even be found in the OEIS (at the moment).
The situation is clarified in the paper [5] by Frougny and Klouda. They consider both

representations, called, respectively, base p/q and base 1/q · p/q representations. In the
present note these are called respectively base q/p and base 1/p · q/p representations.

A combination of the results in [1] and [5] yields a proof of the uniqueness of the base
3/2 expansions (QS(N)). There is also a direct proof of uniqueness in the paper by Edgar
et al. [4]; see Theorem 1.1.

Note that AFS(N) = QS(2N) for N > 0. So uniqueness of the base 3/2 representation
implies immediately uniqueness of the 1/2 · 3/2 representation AFS(N). This observation
obviously extends to base q/p.

Next we consider the question whether also the sequence y3/2, the sum-of-digits function
modulo 2 of the base 1/2 · 3/2 representation, is a fixed point of a 2-block substitution. This
is indeed the case, and this 2-block substitution is given by Rigo and Stipulanti in [7].
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Theorem 12. ([7]) y3/2 is the fixed point with prefix 00 of the 2-3-block substitution

κ′ :















00 → 001
01 → 000
10 → 111
11 → 110

In the paper [7] the proof of Theorem 12 is based on a generalization of Cobham’s
theorem to what are called S-automatic sequences built on tree languages with a periodic
labeled signature. Here we consider a more direct route, based on a simple closure property
of p-q-block substitutions. Recall that a coding is a letter to letter map from one alphabet
to another.

Theorem 13. Let x = (x(N)) be a fixed point of a p-q-block substitution. Let r be a positive

integer. Then the sequence (x(rN)) is the fixed point of a coding of a p-q-block substitution.

Proof. If x is a fixed point of a p-q-block substitution, then x is also a fixed point of a pr-
qr-block substitution. As new alphabet, take the words of length r occurring in x. On this
alphabet, the pr-qr-block substitution induces a p-q-block substitution in an obvious way.
Mapping each word of length r to its first letter is a coding that gives the result.

Alternative proof for Theorem 12. Apply Theorem 13 with r = 2. The 4-6-block substitu-
tion is given by

0010→ 010101, 0100→ 010010, 0101→ 010010, 0110→ 010101,

1001→ 101010, 1010→ 101101, 1011→ 101101, 1101→ 101010.

Coding 00 7→ a, 01 7→ b, 10 7→ c, 11 7→ d, this induces the 2-3-block substitution

ac→ bbb, ba→ bac, bb→ bac, bc→ bbb, cb→ ccc, cc→ cdb, cd→ cdb, db→ ccc.

If we code further a, b 7→ 0, and c, d 7→ 1, then we obtain κ′ from Theorem 12.
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