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Abstract

This paper introduces a variation on an identity by Bruckman and Good. Using
this identity, we are able to derive various well-known sums involving reciprocals of
Fibonacci and Lucas numbers, including the case when the indices form an arithmetic
progression. Moreover, we provide generalizations of the Millin series.

1 Introduction

Define the generalized Lucas sequence (wy,)n>0 = wy(a,b; p, q) recursively by
wo=a, w;=0b, wW,=pw, 1 — qWp 2,

where a, b, p, and ¢ are complex numbers. Additionally, we define

un(p7Q) :wn(0>1;p7Q)> ’Un(paq) :wn<2apap7Q)a

as the Lucas sequence of the first kind and second kind, respectively. The usual Fibonacci
and Lucas numbers are given by F,, = u,(1,—1) and L, = v,(1,—1), respectively. Let «
and 3, with |a| > |B|, denote the roots of the characteristic equation 2? — pz + ¢ = 0. The
discriminant of this equation is D = p* — 4¢q # 0. Notably, we have o + 3 = p, a8 = ¢, and
o — 3 =+/D. The Binet formulas for w,, u,, and v, are given by

_ Aa" - Bp" . a — g
- O{—B 9 n O{—B’
where A=0—af and B =0b— aa.

wy, vp = + ",
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Many papers have been devoted to finding closed forms for sums involving reciprocals of
generalized Lucas sequences, with a particular focus on the Millin series. The series

.1 7-5
Z:;F?: 2

was proposed by Miller [24, p. 309] as a problem in Fibonacci Quarterly. It is worth noting
that this series appeared in earlier papers by Lucas [20, Eq. (126)] and Brady [4, Eq. (3)].
In fact, they both gave a more general formula. For instance, Lucas demonstrated that

0 q2ir _ g

o Ugi+1, ur’

where r > 1 is an integer. Other solutions include [7, 12, 16, 27].
On top of that, numerous authors have also taken interest in the sum when the indices
form an arithmetic progression, say

N 'rz'
> 7

i1 Wit sWr(i4+M)+s

and its corresponding infinite version. Some examples include [3, 17, 22]. Furthermore,
Adegoke [1] extended the sum to cases where the denominator contains two or more terms.

Traditionally, one can derive these results by applying telescoping sums to recurrence
relations of generalized Lucas sequences. An alternative was provided by Bruckman and
Good [7], via an identity that can be traced back to de Morgan, i.e.,

Lh+1Yk — Tklk+1 Y Yk+1
(@r = Ye) (The1 = Yor1) T =Yk a1 — Y1

However, Bruckman and Good only gave sums involving Fibonacci and Lucas numbers.
Further extensions to Lucas sequences were added by Farhi [9]. Finally, we have to mention
that de Morgan’s identity is a special case of a more general identity by Duverney and
Shiokawa [8, Cor. 4.1]. It could be worthwhile to use this identity to discover even more
extensive series involving Lucas sequences.

In this paper, we consider two variations on the identity by Bruckman and Good, enabling
us to establish numerous intriguing sums and rediscover some previously known ones. We will

make repeated use of the following telescoping summation identities. For positive integers
N and M, we have

Z(ﬂfz - $i+M) = Z(l’z - 56z‘+N)> (1)

and
oN oM

D (ED (@ = wiom) = Y (1) (@i — wigan). (2)

i=1 i=1

Note that the usual telescoping sum is obtained by setting M =1 in Eq. (1).
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2 New reciprocal series of Lucas sequences

Let A and B be arbitrary complex numbers. The identity provided by Bruckman and Good
[7] can be generalized for any sequences (z,,) and (y,) as follows:

A(iyjYi — TiYiry) _ Yi B Yi+j
(Az; — By;)(Aziyj — Byivj) Az, — By, Axiyj — Byiy

Since the RHS is telescoping, upon applications of Eq. (1) and Eq. (2), we obtain

N M

A(‘TH—Myi - xiyi—l-M) _ Z A(xz—&-Nyz - xzyz—i-N)
1 (sz By@)(szJrM BszrM) i1 (Al'z Byx)(AxHN - BszrN)

2N

, oM
(£1)" A(zivomyi — TiYitom) Z A(Zitonyi — TiYitan)
A:Ul

1 (Az; — By;)(Azivan — BYiyam) Byz (Aziyon — Byiran)

In particular, for any integer-valued function f,

i Az My F@) () f+M)) B i A@I N0 _ 6564y

i (AxT ) — Byf @) (Ax M) — Byf Gy — 2o (A — Byl @) (Azf+8) — Byl 6Ny’
% (£1) A2/ Myl — /Oy f@r200) % (1) A (22N 10 _ 3 G)f(i+2N))
Py (Axf®) — Byl D) (Ax/@+2M) — By f(i+2M)) — (Axf(®) — Byl @) (Azf(i+2N) — Byf+2N))’

By setting x = a and y = (3, we obtain the following theorems:

Theorem 1. For an integer-valued function f and positive integers M and N, we have

N i M i
Z ¢’ Dupiiian- s _ Z ¢’
=1 WrHWr(i+m) Py

U (i+N)~£(0)
WrEHWr+N)

Theorem 2. For an integer-valued function f and positive integers M and N, we have

2N i f(i 2M i
3 (E1)'¢ Dupiiponn-ra) _ 3 (1) ugram) sy
i—1 Wi W (i4+2M) P Wi Wy (i+2N)

In particular, if M = 1, then

5f(N+1)

N i
3 A Qupivn-riy _ A Vupven-p _ BIO
Wiy Wi OWINY W) WD

and

=1 W) Wf(i42) W) Wr(2N+1) Wyr2)Wf(2N+2)
5f(1) ﬁf(2N+1) gf(Z) 5f(2N+2)

2N i A 83
Z(il) A¢ gy g0 _ A Mgy s +Aqf(2)uf(2N+2)—f(2)

==

Wray  WieN+)  Wie)  WiEN+2)



Assuming further that f(i) — oo as i — co. By letting N — 0o, each term containing N on
the RHS vanishes, so we get the following infinite versions of the previous theorems.

Theorem 3. Suppose that f(i) — oo as i — oco. Then

o0

qu gy rey _ Y
o WiWrGi+1) Awgy

Remark 4. This was also derived by Hu et al. [17, Thm. 2]. For increments greater than 1,
refer to Farhi’s paper [9, Thm. 2].

Theorem 5. Suppose that f(i) — 0o as i — oo. Then

i(il)iqf(i)uf(i+2)—f(i) _ g | ) |
=1 wf(l)wf(l+2) Awf(Q) Awf(l)

It is immediate to deduce from Theorem 5 the next result.
Theorem 6. Suppose that f(i) — oo asi — co. Then
0 qf(i)

Z Uf(i42)—f(5)

= wiowrity  Awge)

i even

5f (2)

i qf(i)uf(i+2)ff(i) _ pro .
— wroWrasz)  Awpa)
i odd

3 Applications, Part I

3.1 When f(i) = ri+ s with integers r,s and r > 0

Using Theorems 1 to 5, we obtain the next corollaries as special cases.

Corollary 7. Letr, s, M, and N be integers with v, M, and N > 0. Then

N I M I
q q
Ur Z = UrN Z )
=7 WritsWr(i+M)+s =1 WritsWr(i+N)+s
2N (:I:l)zq” 2M (ﬂ:l)lq”
U M = U2rN Z .
iz1 WritsWr(i+2M)+s =1 WritsWr(i+2N)+s
Corollary 8. Let r and s be integers with r > 0. Then
e qri+s 6r+s
i—1 WritsWr(i41)+s - Aurwr—l-s’
00 (:l:l)iqri+s B B2r+s n Br-i-s

i—1 Wit sWr(i42)+s AuQrw2r+s Aquerrs
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Remark 9. These corollaries include the results of Adegoke et al. [3]. For example, if we
carry out the transformations M — 2M and s — s — rM, then the first sum in Corollary 7
becomes

i 2M
q q

Uy M E = UrN .
=1 Wr(i—M)+sWr(i+M)+s iz1 Wr(i—M)+sWr(i+ N—M)+s

T

This is equivalent to Theorem 1 of the aforementioned paper. The rest can be deduced
analogously.

Example 10. To apply our ideas to the case of Fibonacci and Lucas numbers, we set p = 1
and ¢ = —1, then a = ¢ = (1 +5)/2, B=1—¢ = (1 —+/5)/2, and D = 5. Corollary 8
gives

% () -
i1 Fri+sFr(i+1)+s FrFr+s 7
0 (_1)ri+s (1 _ S0)1"Jrs

i1 Lri+er(i+1)+s B \/ELTLT+S7
o (:tl>i(_1)ri+s B (1 o (,0)2T+5 N (1 o S0>T+S

)
i—1 Fri+sFr(i+2)+s FQTFQTJrs F2TFT'+S

i (:l:l)i(—l)TH_S _ (1 _ (p)Qr—l—s N (1 o S0)7’—1—5 |
“~ LrivsLrvoyes  VBForLors  VBFaLyys

Remark 11. The first two sums, when both r and s are even, can be found in Popov’s paper
[26, p. 263]. The general case for r being even and s # 0 was proved by Melham [22, Thms.
2, 3].

Example 12. Set p = e+ 1/e, g =1, A=1,and B = £1. Then o = e and § = 1/e.
Corollary 8 gives

o0

Z sinh r B 1
“— sinh(ri + s) sinh(r(i + 1) + s) ~ ertssinh(r +s)’
= sinhr 1

Z cosh(ri + s) cosh(r(i + 1) +s)  e+scosh(r + s)’

i=1
00

Z (£1)%sinh 2r B 1 N 1
— sinh(ri + s)sinh(r(i + 2) +s)  e2r+ssinh(2r +s) e s sinh(r +s)’

Z (£1)"sinh 2r B 1 " 1
“ cosh(ri + s) cosh(r(i + 2) + s) ~ e2rtscosh(2r + )~ ertscosh(r +s)



3.2 When f(i) = 2'r with integer r > 0
Using Theorems 1 to 5, we have the next results.

Corollary 13. Let r, s, M, and N be integers with r, M, and N > 0. Then

i M i
q* Ui nry iy _ @° Ui Ny iy

3
—1 UJQiT/IUQi—Q—]\/IT w21rw2z+N7n
=

i,20r i,2ir

% (Zl:].) q UQi+2M p_9iy ZM Zl:]. q U9i+2N y_9iy
=1

wgz w21+2N7.

WaiyWoi+2M 1
1=

Corollary 14. Let r > 0 be an integer. Then

7 U21 B>
ZZ Aw27‘ 7

w21 w21+lr
> z 2ty 4r 2r
Z )'q” U0, B 5
1 Wiy Woit2y A’UJ4T AUJQT
1=

Example 15. To apply our ideas to the case of Fibonacci and Lucas numbers, we set p = 1
and ¢ = —1,thena=¢, B =1—¢, and D = 5. Corollary 14 gives

i 1 (-¢)*
i—1 F2i+17. F ’

2r

i (il)iFS-Qir _ (1—p)* + (1—9)*
— FyipFoive, Fy Fy

i (E)' Faay _ (=) (1—¢)”
1 LQiTL2i+27” \/5L4r \/ELQT‘

Example 16. Set p = e+ 1/e, g =1, A =1, and B = +1, then a = e and § = 1/e.
Corollary 14 gives

> 1 1
Z sinh 2it1r €2 sinh 27’

=1

Z tanh 2Z o 1
P cosh 211y €27 cosh 21’
~ (£1)"sinh(3-2'r) 1 1

- smh 2irsinh 22 e4r sinh4r = €27 sinh 27’
1=




o0

Z (£1)*sinh(3 - 2'r) 1 n 1

- cosh 2ir cosh 2it2r 47 coshdr ~— e2" cosh 2r°

1=

Remark 17. The first sum was also discovered by Gould [13, Eq. 24].

3.3 When f(i) = 3'r with integer r > (

The application of Theorems 1 to 5 yields the next two corollaries.

Corollary 18. Letr, s, M, and N be integers with r, M, and N > 0. Then

N i M i

Z ¢ gy g Z Q° Ui Ny g
1 W3ipW3i+M,. 1 W3ipWgi+N . 7

i— —

% (:l:l)iqgiTUerzM,,_gir

W3ipWsgit2M .

2M

YV

W3ipW3i+2N

=1 i=1

Corollary 19. Let r > 0 be an integer. Then

& 3ty ) 3r
Z q- U3y B
1

W3ipW3it+1y Awgr’

iO: (il)iqgiru&gir _ ﬁQr N ﬁ3r
Wi Wyiva, Awg, ~ Aws,
Example 20. To apply our ideas to the case of Fibonacci and Lucas numbers, we set p = 1
and g = —1, then a = ¢, 5 =1— ¢, and D = 5. Corollary 19 gives

S ()L _ (0= g

i—1 F3it1, F3, ’

S (1=

i=1 Ly V5L,
S R _ (=0, (1= 0"
i=1 F3iTF3i+2T \/EFQ’!’ \/EF?)T ’
i (D) (=D Fagr _ (L=)™ | (1=9)”
i=1 L3i7"L3i+27‘ \/ELQ'I’ \/SL3T'

Remark 21. The first two sums appeared in the paper by Bruckman and Good [7, Eq. (11)].
Shar [28, p. 10] also discovered a similar series.



Example 22. Set p = e+ 1/e, g =1, A =1, and B = +1, then a = e and § = 1/e.
Corollary 19 gives

Z cosh 3ir B 1
sinh 3itlr  2¢3" sinh 3r’

Z Sinh 3%” . 1
cosh 31y 2¢3" cosh 37

i=1
i (£1)"sinh(8 - 3'r) 1 N 1
— sinh 3ir sinh 372 €9 sinh 9r ~ €37 sinh 37’
i (£1)?sinh(8 - 3'r) 1 N 1

- cosh 3ir cosh 3it2r €97 cosh Or ~ €37 cosh 3r

e

4 More reciprocal series of Lucas sequences

In this section, we will only deal with the Lucas sequences, (u,) and (v,), instead of the
generalized Lucas sequences, (w,,). Given any sequences (z,) and (y,), one checks that

@iy — TaYirg) (@iing — Yiving) (@i y)? (B £ yigy)?

(x; F yi)Q(xi—l-j + ?Jz'+j)2 (xz + yi)2 ($i+j + yi+j)2 .

Using the same procedure as in §2, we deduce the next two theorems.

Theorem 23. For an integer-valued function f and positive integers N and M, we have

Z FEAM)—F @)U G+M)+1() _ Z F+N)—F @) U (i4+N)+£ (i)
i—1 “?(z‘)“?(z‘w) i—1 “?(z‘)“?(z‘w) ’
Z FEAM)—F G UFG+M)+1() _ Z FEHN) T UGN ()
. ’U2 .’02 . - ’U2 .’02 .

i1 F@ Vs i1 FOVFG+N)

Theorem 24. For an integer-valued function f and positive integers N and M, we have

2N i i 2M i f(

3 (1) ¢! Dupionn—piyusivann sy 3 (£1)'q" Dup(ipan)— piytipisan )
IR w2 u, ’

i=1 (@) 7 f(i42M) i=1 F(@) 7 f(i42N)

2N i i 2M i f(i

3 (£ Dupgionn) - piyupirarn sy 3 (£1)'q" Vg pan)— piytpieon) )
02 02 V2,02 ‘

P ) Vr(ivann) P ) VF(i+an)

In Theorems 25 and 26, we assume further that f(i) — oo as i — co. When M = 1,
using the fact that v /u% — D as N — oo, Theorems 23 and 24 imply the following result:



Theorem 25. Suppose that f(i) — oo as i — co. Then

i 4g’ (")Uf(i+21)—f2(i>uf<i+1>+f(i) _ “Jz(l) _D.

i—1 Wiy Ur (it W)

i 4g"Oup sy s _ 1 Wy

Py Ut Vi) D i

Theorem 26. Suppose that f(i) — oo as i — co. Then

f: (&1)"4g” “)u§<i+2;—f(i>Uf(z‘+2>+f<z'> _ ”2(2) n “zfu) _D+1),
i1 (i) Us(it2) Uiy Yr)
i (£1)'4¢ (”u£(i+2;—f(i)ﬂf(i+2)+f(i) N _“Z(z) - “2(1) +Laa
P Vo) VFi+2) Vi) Yy D

5 Applications, Part II

5.1 When f(i) =i+ s with integers r,s and r > 0

The next results are direct consequences of Theorems 23 to 26.

Corollary 27. Letr, s, M, and N be integers with r, M, and N > 0. Then

N o rits M rits
q T Ur(2i4-M)+2s q " "Ur(2i+N)+2s
Ur M 2 2 = UrN 2 2 ’
i1 UritsUr(ivM)+s o1 UritsUr(i+N)+s
rits ri+s
q " Ur(2i4-M)+2s q " Ur(2i4+N)+2s
Uy M 2 2 = UrN ) 2 ’
(U Yl Vi VL
i=1 ri+s r(1,+M)+s i=1 ri+s T(Z+N)+8

:l:l 7 rz-i—su (i s :i:l 7 rz+su i <
“2’“MZ (£1)'q 2r(i+M)+2s _ . Z (+1)'q 2r(i+N)+2

2 2 2 2
i1 UritsUr(iraM)+s 7 UritsUr(ivaN)+s
2N i ri oM .
(£1)'q" uar(ran+as (£1)'q" " ugr(i Ny +2s
U2r M Z B} 3 = U2rN E 3 3 .
(S Vs Vi UE
i=1 ri+sr(i+2M)+s i=1 ri+8 " r(i+2N)+s

Corollary 28. Let r and s be integers with r > 0. Then

oo +s 2
46]” urur(21+1)+25 Uy D
g =———D,

i=1 rz+s r(z+1)+ Uy ts

00 + 2

Z 4qm Surur(21+1)+25 o 1 Uy s
- 2

i=1 rz+svr(z+1)+ D Urts



© i) 7 2 2

(:l: 1)24qu+5u2ru27«(i+1)+25 U27‘+8 UT‘+S
E : 2,2 =5+ 5 —D(+1),
i=1 uri+8u7’(i+2)+s Uy 45 Upys
©© i A T 2 2
E (il)Z4qm+su2ru2’"(i+1)+25 o Ugegs Uy + ! (I1+£1)

2 2 - T 9 p) ey .

i=1 Uri+svT(i+2)+5 Uy s Urts D

Example 29. To apply our ideas to the case of Fibonacci and Lucas numbers, we set p = 1
and ¢ = —1, then a = ¢, f =1— ¢, and D = 5. Corollary 28 gives

i (—1)""* Fraig1)4as _ L, 5

i=1 F7"2i+SFr2(i+1)+s 4F,F?,, AF)’

i (=1)"F* F(2i41) 125 1 F?.,

L2 L2, 20F 4R L2
i (jzl)i(_l)erngr(Hles _ L§T+s L72~+s B 5 Q1)
= FaFeas IRFZ,,  ARFZ, 4R )
i (£1)1 (= 1) Fapiy 1) 426 _ F3.., - F?., N 1 1)
i=1 LYiy LYoy rs AF, L3, " AFRL2,,  20F,

Remark 30. The first two sums were a problem in Fibonacci Quarterly, proposed and solved
by Gauthier [10, 11]. However, Gauthier made an error in the sign of the first sum. We
have also found several papers discussing similar results, but to our knowledge, none of them
provided the general form as in Corollary 28. The list of sources (not exhaustive) includes
[1, 2, 5,6, 14, 19, 25].

5.2 When f(i) = 2'r with integer r > 0
Applying Theorems 23 to 26, we get the next two corollaries.

Corollary 31. Letr, s, M, and N be integers with r, M, and N > 0. Then

2y M gy
q" Ugi+-My_9ipUit- My 9ip q~ " Ui+ Ny _9ipUgi+Npy iy
2 .2 o 2 .2 ’
i1 Ui, Wiy, i—1 Ui, Uiy N,
N 2y M gy
Z g~ Ugi+Mp_9ipUQi+Mpy 9ip . Z g~ Ugi+Np_2ipUQi+Npy iy
2 2 o 2 9,2 ?
i=1 U5i Vgt nry, i=1 U5i Vit Ny
2N i o 2M . o
Z (ﬂ:l)lQQ TU2i+2AIT_QiTU2i+2MT+2iT B Z (:l:l)lq2 ru2i+2NT_2¢Tu2i+2NT+2¢T
2 .2 - 2 2 ’
=1 UgipUgivan,. i=1 Ui, Uditan,
2N 2M

Z (:i:l)lqz T’LL2i+2MT_21T'LL2i+2MT+2iT (:l:l)lq2 T'LL2i+2NT_21T'LL2i+2NT+2¢T

3 2 2 .2
i1 VgipVgitam, i1 V9ipVgitan,



. Letr e an integer. en
Corollary 32. Letr >0 b t Th
4q TUQ’LTUS,2’LT U2’I“
w2, u? T2 D,
i=1 2ip 20t 1y 2r
o0 2ip, ) 2
Z 4(] U2ipU3.9iy . 1 Uy,
2 2 -7 20
i=1 Vi Vgit 1y, D Vo
o0 if 20 ) ) 2 2
(£1)'4¢" "uzgipusgir VR | U3,
3 = — + 5 — D(l + 1),
US; U, U U
i—1 i 22+2r 4r 2r
o0 if 20 ) ) 2 2
Z (j:l) 4q U3.9ipU5.2ip _u4r u27“ 4+ l(l :i: 1)
2 .2 2 2 .
Py Vdip Vi, vy vy D

Example 33. To apply our ideas to the case of Fibonacci and Lucas numbers, we set p = 1
and ¢ = —1, then a = ¢,  =1— ¢, and D = 5. Corollary 32 gives

<. Fyo, _ L3 5

— By Py, AFF 4

i F2iTF3,2ir o 1 F227”

=1 gi?”Lgi"’lr 20 4L%T 7
2 (£1) Fy9i, Froi, L2 L2 5
Z( )2 322 52 _ 42 :l: 2; ——(1:l:1),
i=1 F2i7"F2¢+2r 4F4T 4F27' 4
(£ Fyoi, Fyoir  FE  F3 1 .
> g =~z Tapz Uttt
i—1 ipHoit2, 4r 2r

6 Further discussion

It is possible to rewrite Theorems 3 to 6 in terms of a or even consider the more general

identity

(A+ B)(zi4Yi — TiYitj)

€

+ Y Titj + Yitj

(Az; — By;)(Aziyj — Byiyj) Az — By; - Az — Byi—i-j.

The results should be similar except that the limit does not vanish in this case. We leave it

to the readers to work it out.

Furthermore, we believe it is possible to further generalize the identity in §4 to include
generalized Lucas sequences as well. This will be be an interesting topic to pursue in future

research.
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