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Abstract

The author recently q-extended the approach of Qi, Wang, and Guo to derange-
ment numbers, and successfully applied this extended approach to obtain expressions
for certain types B and D of derangement polynomials as determinants of order n+1.
In this paper, we demonstrate that the q-extended approach is applicable to other gen-
erating functions, including the Eulerian polynomials An(t), Bn(t), and Dn(t) for types
A,B, and D, as well as the types A and B “inv” analogues of q-Eulerian polynomials
Ainv

n (t, q) and Binv
n (t, q). We also present a new recurrence relation for Binv

n (t, q).

1 Introduction

Certain mathematical quantities are expressible as determinants. See [12] for useful tools
for evaluating determinants, examples of evaluated determinants in context, and further
references. As far as the present work is concerned, a notable example is the nth classical
derangement number dn. Qi, Wang, and Guo [13], by exploiting Lemma 1 below, were able
to express dn as a tridiagonal determinant of order n+ 1. The involved generating function
of dn is of the exponential type. See Section 2 for undefined terms.

An inspection of the approach of Qi et al. reveals that it is q-generalizable. The author
[10], by coming up with a q-version of Lemma 1, obtained expressions for types B and D
of derangement polynomials dBn (q) :=

∑

σ∈DB
n
qfmaj(σ) and dDn (q) :=

∑

σ∈DD
n
qmaj(σ), studied

previously in [6, 8], as determinants of order n + 1, whose generating functions are of the
factorial type.
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The above mentioned derangement polynomials enumerate signed and even-signed de-
rangements according to a certain statistic. By extrapolating this idea, we can, in general,
consider generating functions that enumerate other combinatorial objects according to tu-
ples of statistics. For instance, one can consider the classical Eulerian polynomial An(x),
which is a univariate generating function of n-permutations by their descent numbers, or
q-Eulerian polynomials that are bivariate generating function of permutations by their de-
scent numbers and some other statistics. Examples of the latter include the types A and B
“inv” analogues of q-Eulerian polynomials, namely, Ainv

n (t, q) :=
∑

σ∈Sn
tdes(σ)+1qinv(σ) and

Binv
n (t, q) :=

∑

σ∈Bn
tdesB(σ)qinvB(σ).

The successes in [13, 9, 10] suggest that the original and extended approach of Qi et al.
readily apply to generating functions of the exponential or of factorial type and whose closed
form expressions are quotients, yielding determinantal expressions of them.

The purpose of this work is to show that the q-extended approach of Qi et al. applies to
finding determinantal expressions of k-variate generating functions, with k = 1, 2.

The organization of this work is as follows. In Section 2, we gather notation and unde-
fined terms that are needed in the rest of this paper. In Section 3, we compute determinantal
expressions of Eulerian polynomials of types A,B, and D. In Section 4, we compute deter-
minantal expressions of the q-Eulerian polynomials Ainv

n (t, q) and Binv
n (t, q). In Section 5, we

explore the relationship between Ainv
n (t, q) and Binv

n (t, q) and obtain a recurrence relation for
Binv

n (t, q). In Section 6, we end this work by raising two questions.

2 Notation and preliminaries

Let N, Q, and R denote the sets of non-negative integers, rational numbers, and real numbers,
respectively. Let a, b ∈ N. Define the interval of integers [a, b] by {a, a + 1, . . . , b}. In case
b < a, we have [a, b] = ∅, the empty set. Let #S denote the cardinality of a finite set S.

Let n ≥ 1. A square matrix A = (aij)1≤i,j≤n of order n is lower Hessenberg if all entries
above the superdiagonal are zeros.

LetSn denote the symmetric group of degree n, consisting of all permutations of 1, 2, . . . , n.
An element σ of Sn is represented by the associated word σ1σ2 · · · σn, where σi = σ(i) for
i = 1, 2, . . . , n. An n-permutation σ = σ1σ2 · · · σn is said to be a derangement if σi 6= i for
all i = 1, 2, . . . , n. Let Dn denote the set of n-derangements. Define the major index, the
descent number, and the inversion number of σ ∈ Sn by

maj(σ) :=
n−1
∑

i=1

iχ(σi > σi+1),

des(σ) :=
n−1
∑

i=1

χ(σi > σi+1),

inv(σ) :=
n−1
∑

i=1

n
∑

j=i+1

χ(σi > σj),
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respectively, where χ(P ) = 1 or 0 depending on whether the statement P is true or not. This
notion of major index applies to any permutations, signed or not. The nth classical Eulerian
polynomial is defined by An(x) :=

∑

σ∈Sn
xdes(σ)+1. It is well known that the exponential

generating function of (An(x))n>0 has the following expression:

A(x, z) :=
∑

n≥0

An(x)
zn

n!
=

1− x

1− xez(1−x)
, (1)

where A0(x) := 1 by convention.
Let Bn denote the nth hyperoctahedral group, consisting of all signed permutations of

1, 2, . . . , n, represented by the associated words. The above definition of derangements also
applies to signed permutations. Let DB

n denote the set of signed n-derangements. Three
needed statistics on Bn are the flag major index, the type B descent number, and the type
B inversion number, defined respectively by

fmaj(σ) := 2maj(σ) +N(σ),

desB(σ) :=
n−1
∑

i=0

χ(σi > σi+1),

invB(σ) := inv(σ) +
n

∑

i=1

|σi|χ(σi < 0),

where N(σ) := #{i : σi < 0} is the number of negative letters of σ, and σ0 := 0. The above
definition of flag major index is due to Adin-Brenti-Roichman [1], and those of desB and
invB are due to Brenti [5], who had also shown that invB ≡ lB, where lB is the type B length
function.

The nth type B Eulerian polynomial is defined by Bn(x) :=
∑

σ∈Bn
xdesB(σ). It is known

that the exponential generating function of (Bn(x))n>0 has the following expression:

B(x, z) :=
∑

n≥0

Bn(x)
zn

n!
=

(1− x)ez(1−x)

1− xe2z(1−x)
, (2)

where B0(x) := 1 by convention.
Let Dn denote the nth even-signed permutation group, consisting even-signed permuta-

tions of 1, 2, . . . , n of length n. An element σ of Dn is a signed n-permutation σ1σ2 · · · σn

with N(σ) even. Being a subgroup of Bn, the definition of derangements applies to Dn. Let
DD

n denote the set of even-signed n-derangements. The type D descent number of σ ∈ Dn

is defined by

desD(σ) :=
n−1
∑

i=0

χ(σi > σi+1),
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where σ0 := −σ2. The nth typeD Eulerian polynomial is defined byDn(x) :=
∑

σ∈Dn
xdesD(σ).

It is known that the exponential generating function of (Dn(x))n>0 has the following expres-
sion:

D(x, z) :=
∑

n≥0

Dn(x)
zn

n!
=

(1− x)
(

ez(1−x) − xze2z(1−x)
)

1− xe2z(1−x)
, (3)

where D0(x) := 1 by convention.
Those two classes of derangement polynomials mentioned in the Introduction are

dBn (q) :=
∑

σ∈DB
n

qfmaj(σ), and dDn (q) :=
∑

σ∈DD
n

qmaj(σ),

studied previously by the author [6, 8].
Let x and q be commuting indeterminates. Define

(x; q)n :=

{

(1− x)(1− xq) · · · (1− xqn−1) if n ≥ 1;

1 otherwise.

Q-integers, q-factorials and q-binomial coefficients are defined by

[n]q := 1 + q + · · ·+ qn−1,

[n]q! := [1]q[2]q · · · [n]q, and
[

n
k

]

q

:=
[n]q!

[k]q![n− k]q!
, 0 ≤ k ≤ n,

respectively.
The original approach of Qi et al. is based on Lemma 1, which is stated in [4, p. 40] as

an exercise. A solution of this Bourbaki exercise can be found in [9].

Lemma 1. Let u = u(x) and v = v(x) be two real functions that are n times differentiable

on an interval I ⊂ R. Then at every point where v(x) 6= 0, we have

dn

dxn

(

u

v

)

=
(−1)n

vn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u v 0 · · · 0 0
u′ v′ v · · · 0 0
u′′ v′′ 2v′ · · · 0 0
...

...
...

. . .
...

...

u(n−1) v(n−1)
(

n−1
1

)

v(n−2) · · ·
(

n−1
n−2

)

v′ v

u(n) v(n)
(

n

1

)

v(n−1) · · ·
(

n

n−2

)

v′′
(

n

n−1

)

v′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let {fn} be a sequence of numbers or k-variate formal power series independent of x,
where k ≥ 1. If the exponential generating function of {fn},

f(x) =
∑

n≥0

fn
xn

n!
,
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can be written as a quotient u(x)/v(x), then with Lemma 1, the approach of Qi et al. allows
us to express

fn =
∂n

∂xn
f(x)

∣

∣

∣

∣

x=0

as a determinant of order n+ 1.
The author [10] q-extended Lemma 1 to become Lemma 2, where for formal power series

f(t; q) ∈ Q[[t, q]] in t and q with rational coefficients, its q-derivative with respect to t is
defined as

Dqf(t; q) :=
f(tq; q)− f(t; q)

(q − 1)t
. (4)

It is easy to see that Dqt
n = [n]qt

n−1. See [2, §2.2] for details of q-calculus.

Lemma 2. Let n ≥ 1 and let u = u(t; q), v = v(t; q) ∈ Q[[t, q]] be such that their nth
q-derivatives Dn

q u(t; q) and Dn
q v(t; q) exist. Then at every point where v(t; q) 6= 0, we have

Dn
q

(

u

v

)

(t; q) =
(−1)n

vn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u v 0 · · · 0 0
Dqu Dqv v · · · 0 0
D2

qu D2
qv

[

2
1

]

q
Dqv · · · 0 0

...
...

...
. . .

...
...

Dn−1
q u Dn−1

q v
[

n−1
1

]

q
Dn−2

q v · · ·
[

n−1
n−2

]

q
Dqv v

Dn
q u Dn

q v
[

n
1

]

q
Dn−1

q v · · ·
[ n
n−2

]

q
D2

qv
[ n
n−1

]

q
Dqv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where all the formal power series on the right side are evaluated at (tq−n; q).

To simplify the expressions, we write in the sequel Dn
q u(tq

−n; q) to mean the result of
substituting the arguments of the nth q-derivative of u(t; q) by (tq−n; q), etc.

Let (fn)n>0 be a sequence of formal power series dependent on q and on some other
indeterminates but independent of x. If the factorial generating function of (fn)n>0,

f(x) =
∑

n≥0

fn
xn

[n]q!
,

can be written as a quotient u(x)/v(x), then with Lemma 2, the q-extended approach of Qi
et al. allows us to express

fn = Dn
q f(x)

∣

∣

x=0

as a determinant of order n+ 1, where Dn
q f(x) on the right denotes the nth q-derivative of

f(x) with respect to x.

3 Determinantal expressions of Eulerian polynomials

The goal of this section is to present determinantal expressions of the Eulerian polynomials
An(x), Bn(x), and Dn(x).
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Theorem 3. Let n ≥ 1. The Eulerian polynomial An(x) is expressible as the following lower
Hessenberg determinant of order n+ 1:

An(x) = (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
0 −x 1 · · · 0 0
0 −x(1− x) −2x · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 −x(1− x)n−2 −
(

n−1

1

)

x(1− x)n−3 · · · −
(

n−1

n−2

)

x 1

0 −x(1− x)n−1 −
(

n

1

)

x(1− x)n−2 · · · −
(

n

n−2

)

x(1− x) −
(

n

n−1

)

x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. By virtue of the exponential generating function (1) of (An(x))n>0, regarding x as a
parameter, we let u(z; x) = 1− x and v(z; x) = 1− xez(1−x). Then for k ≥ 1, ∂k

zu(z; x) = 0
and ∂k

z v(z; x) = −x(1− x)kez(1−x). Applying Lemma 1, and letting z → 0, we have

An(x) =
∂n

∂zn
A(x, z)

∣

∣

∣

∣

z=0

=
(−1)n

(1− x)n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− x 1− x 0 · · · 0 0
0 −x(1− x) 1− x · · · 0 0
0 −x(1− x)2 −2x(1− x) · · · 0 0
...

...
...

. . .
...

...

0 −x(1− x)n−1 −
(

n−1

1

)

x(1− x)n−2 · · · −
(

n−1

n−2

)

x(1− x) 1− x

0 −x(1− x)n −
(

n

1

)

x(1− x)n−1 · · · −
(

n

n−2

)

x(1− x)2 −
(

n

n−1

)

x(1− x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
0 −x 1 · · · 0 0
0 −x(1− x) −2x · · · 0 0
...

...
...

. . .
...

...

0 −x(1− x)n−2 −
(

n−1

1

)

x(1− x)n−3 · · · −
(

n−1

n−2

)

x 1

0 −x(1− x)n−1 −
(

n

1

)

x(1− x)n−2 · · · −
(

n

n−2

)

x(1− x) −
(

n

n−1

)

x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the last equality follows from dividing each column by 1− x.

Theorem 4. Let n ≥ 1. The type B Eulerian polynomial Bn(x) is expressible as the following
lower Hessenberg determinant of order n+ 1:

Bn(x) = (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
1− x −2x 1 · · · 0 0

(1− x)2 −22x(1− x) −22x · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(1− x)n−1 −2n−2x(1− x)n−2 −
(

n−1
1

)

2n−3x(1− x)n−3 · · · −
(

n−1
n−2

)

2x 1

(1− x)n −2nx(1− x)n−1 −
(

n
1

)

2n−2x(1− x)n−2 · · · −
(

n
n−2

)

22x(1− x) −
(

n
n−1

)

2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. By virtue of (2), let u(z; x) = (1 − x)ez(1−x) and v(z; x) = 1 − xe2z(1−x). Then for
k ≥ 1, ∂k

zu(z; x) = (1−x)k+1ez(1−x) and ∂k
z v(z; x) = −2kx(1−x)kez(1−x). Applying Lemma 1,
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letting z → 0, and followed by dividing each column by 1− x, we obtain

Bn(x) =
∂n

∂zn
B(x, z)

∣

∣

∣

∣

z=0

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
1− x −2x 1 · · · 0 0

(1− x)2 −22x(1− x) −22x · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

(1− x)n−1 −2n−2x(1− x)n−2 −
(

n−1
1

)

2n−3x(1− x)n−3 · · · −
(

n−1
n−2

)

2x 1

(1− x)n −2nx(1− x)n−1 −
(

n
1

)

2n−2x(1− x)n−2 · · · −
(

n
n−2

)

22x(1− x) −
(

n
n−1

)

2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem 5. Let n ≥ 1. The type D Eulerian polynomial Dn(x) is expressible as the
following lower Hessenberg determinant of order n+ 1:

Dn(x)

= (−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
(1 − 2x) −2x 1 · · · 0 0

(1 − x)(1 − 5x) −22x(1 − x) −22x · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(1 − x)n−2(1 − ((n − 1)2n−2 + 1)x) −2n−1x(1 − x)n−2
−

(

n−1

1

)

2n−2x(1 − x)n−3
· · · −

(

n−1

n−2

)

2x 1

(1 − x)n−1(1 − (n2n−1 + 1)x) −2nx(1 − x)n−1
−

(

n

1

)

2n−1x(1 − x)n−2
· · · −

(

n

n−2

)

22x(1 − x) −

(

n

n−1

)

2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. By virtue of (3), let u(z; x) = (1−x)
(

ez(1−x)−xze2z(1−x)
)

and v(z; x) = 1−xe2z(1−x).
For k ≥ 1,

∂k
zu(z; x) = (1− x)

(

(1− x)kez(1−x) − x(2k(1− x)kz +
(

k
1

)

2k−1(1− x)k−1)e2z(1−x)
)

,

∂k
z v(z; x) = −2kx(1− x)kez(1−x)

so that

∂k
zu(z; x)

∣

∣

z=0
= (1− x)k

(

1− (k2k−1 + 1)x)
)

, and ∂k
z v(z; x)

∣

∣

z=0
= −2kx(1− x)k.

Applying Lemma 1 with z → 0, we have

Dn(x) =
∂n

∂zn
D(x, z)

∣

∣

∣

∣

∣

z=0

= (−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
(1 − 2x) −2x 1 · · · 0 0

(1 − x)(1 − 5x) −22x(1 − x) −22x · · · 0 0

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

(1 − x)n−2(1 − ((n − 1)2n−2 + 1)x) −2n−1x(1 − x)n−2
−

(

n−1

1

)

2n−2x(1 − x)n−3
· · · −

(

n−1

n−2

)

2x 1

(1 − x)n−1(1 − (n2n−1 + 1)x) −2nx(1 − x)n−1
−

(

n

1

)

2n−1x(1 − x)n−2
· · · −

(

n

n−2

)

22x(1 − x) −

(

n

n−1

)

2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

4 Determinantal expressions of q-Eulerian polynomials

Bivariate extensions of An(x) and Bn(x) are available in the literature, namely, Ainv
n (t, q) :=

∑

σ∈Sn
tdes(σ)+1qinv(σ), whose factorial generating function was computed by Stanley [15]:

Ainv(x; t, q) :=
∑

n≥0

Ainv
n (t, q)

xn

[n]q!
=

1− t

1− te(x(1− t); q)
, (5)
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where e(x; q) :=
∑

n≥0
xn

[n]q !
is a q-exponential, and Binv

n (t, q) :=
∑

σ∈Bn
tdesB(σ)qinvB(σ).

Désarménien and Foata [11] showed that the following “semi” q-recurrence relation holds:

Ainv
n (t, q) =

n−1
∑

k=0

[

n
k

]

q

Ainv
k (t, q)t(1− t)n−1−k, (6)

“semi” in the sense that the summands on the right involve two factors one of which depends
on q and the other does not. The author [7] showed that Ainv

n (t, q) satisfies the following
“fully” q-recurrence relation:

Ainv
n+1(t, q) = (1 + tqn)Ainv

n (t, q) +
n−1
∑

k=1

[

n
k

]

q

qkAinv
n−k(t, q)A

inv
k (t, q).

As far as coefficient extraction is concerned, Ainv(x; t, q) enjoys the following property:

Dn
qA

inv(x; t, q)
∣

∣

x=0
= Ainv

n (t, q),

where the q-derivative is taken with respect to x. The key to the applicability of the approach
of Qi et al., the original or the q-extended one, is that the exponential or factorial generating
function be expressible as a quotient. That of (Ainv

n (t, q))n>0, i.e., (5), is definitely a quotient.
Applying the q-extended approach of Qi et al. readily yields Theorem 6.

Theorem 6. Let n ≥ 1. The q-Eulerian polynomial Ainv
n (t, q) is expressible as the following

lower Hessenberg determinant of order n+ 1:

Ainv(t, q) = (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
0 −t 1 · · · 0 0

0 −t(1− t) −
[

2
1

]

q
t · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 −t(1− t)n−2 −
[

n−1
1

]

q
t(1− t)n−3 · · · −

[

n−1
n−2

]

q
t 1

0 −t(1− t)n−1
[n
1

]

q
t(1− t)n−2 · · · −

[ n
n−2

]

q
t(1− t) −

[ n
n−1

]

q
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Let u(x; t, q) := 1 − t and v(x; t, q) := 1 − te(x(1 − t); q). It is clear that u(0; t, q) =
v(0; t, q) = 1 − t. For k ≥ 1, the kth q-derivatives of u(x; t, q) and v(x; t, q) with respect to
x are, respectively, Dk

qu(x; t, q) = 0 and

Dk
qv(x; t, q) = −t

∑

n≥k

(1− t)nxn−k

[n− k]q!
= −t(1− t)k

∑

n≥0

[x(1− t)]n

[n]q!
.

Evaluating them at (xq−n; t, q) followed by letting x → 0, we have Dk
qu(xq

−n; t, q)
∣

∣

x=0
= 0

8



and Dk
qv(xq

−n; t, q)
∣

∣

x=0
= −t(1− t)k. Applying Lemma 2 with x → 0, we obtain

Ainv(t, q)

=
(−1)n

(1− t)n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− t 1− t 0 · · · 0 0
0 −t(1− t) 1− t · · · 0 0

0 −t(1− t)2 −
[

2
1

]

q
t(1− t) · · · 0 0

...
...

...
. . .

...
...

0 −t(1− t)n−1 −
[

n−1
1

]

q
t(1− t)n−2 · · · −

[

n−1
n−2

]

q
t(1− t) 1− t

0 −t(1− t)n
[n
1

]

q
t(1− t)n−1 · · · −

[ n
n−2

]

q
t(1− t)2 −

[ n
n−1

]

q
t(1− t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
0 −t 1 · · · 0 0

0 −t(1− t) −
[

2
1

]

q
t · · · 0 0

...
...

...
. . .

...
...

0 −t(1− t)n−2 −
[

n−1
1

]

q
t(1− t)n−3 · · · −

[

n−1
n−2

]

q
t 1

0 −t(1− t)n−1
[n
1

]

q
t(1− t)n−2 · · · −

[ n
n−2

]

q
t(1− t) −

[ n
n−1

]

q
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the second equality follows from dividing each column by 1− t.

Let us now look at Binv
n (t, q), whose first three members are as follows:

Binv
1 (t, q) = 1 + qt,

Binv
2 (t, q) = 1 + (2q + 2q2 + 2q3)t+ q4t2,

Binv
3 (t, q) = 1 + (3q + 4q2 + 5q3 + 4q4 + 4q5 + 2q6 + q7)t

+ (q2 + 2q3 + 4q4 + 4q5 + 5q6 + 4q7 + 3q8)t2 + q9t3,

Reiner [14, Corollary 4.7] showed, in our terminology, that

∑

n≥0

xn
∑

π∈Bn
qinvB(π)tn−desB(π)

[2]q[4]q · · · [2n]q
=

(

1−
∑

n≥1

(t− 1)n−1xn

[n]q!

)−1
∑

n≥0

(t− 1)nxn

[2]q[4]q · · · [2n]q
.

Note that [2k]q = (1 + qk)[k]q = (1 + q)[k]q2 and that (1 + q)(1 + q2) · · · (1 + qn) = (−q; q)n.
The replacements x 7→ xt and t 7→ t−1 in the preceding factorial generating function identity
then yield

Binv(x; t, q) :=
∑

n≥0

Binv
n (t, q)

xn

(−q; q)n[n]q!

=

(

1−
t

1− t

∑

n≥1

(1− t)nxn

[n]q!

)−1
∑

n≥0

(1− t)nxn

(−q; q)n[n]q!
, (7)

9



which enjoys the following property:

Dn
qB

inv(x; t, q)
∣

∣

x=0
=

Binv
n (t, q)

(−q; q)n
.

The q-extended approach of Qi et al. readily applies to Binv(x; t, q), yielding Theorem 7.

Theorem 7. Let n ≥ 1. The type B q-Eulerian polynomial Binv
n (t, q) can be expressed as

the following lower Hessenberg determinant of order n+ 1:

Binv
n (t, q)

= (−1)n(−q; q)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
(1−t)
(−q;q)1

−t 1 · · · 0 0

(1−t)2

(−q;q)2
−t(1− t) −

[

2
1

]

q
t · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(1−t)n−1

(−q;q)n−1
−t(1− t)n−2 −

(

n−1
1

)

t(1− t)n−3 · · · −
[

n−1
n−2

]

q
t 1

(1−t)n

(−q;q)n
−t(1− t)n−1 −

[n
1

]

q
t(1− t)n−2 · · · −

[ n
n−2

]

q
t(1− t) −

[ n
n−1

]

q
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Let

u(x; t, q) :=
∑

n≥0

(1− t)nxn

(−q; q)n[n]q!
and v(x; t, q) := 1−

t

1− t

∑

n≥1

(1− t)nxn

[n]q!
.

It is easy to see that u(0; t, q) = 1 and v(0; t, q) = 1. For 1 ≤ k ≤ n, the kth q-derivatives of
u(x; t, q) and v(x; t, q) with respect to x are, respectively,

Dk
qu(x; t, q) =

∑

n≥k

(1− t)nxn−k

(−q; q)n[n− k]q!
= (1− t)k

∑

n≥0

(1− t)nxn

(−q; q)n+k[n]q!
,

Dk
qv(x; t, q) = −

t

1− t

∑

n≥k

(1− t)nxn−k

[n− k]q!
= −t(1− t)k−1

∑

n≥0

(1− t)nxn

[n]q!
.

It follows that

Dk
qu(xq

−n; t, q)
∣

∣

x=0
= lim

x→0
(1− t)k

∑

n≥0

(1− t)n(xq−n)n

(−q; q)n+k[n]q!
=

(1− t)k

(−q; q)k
,

Dk
qv(xq

−n; t, q)
∣

∣

x=0
= − lim

x→0
t(1− t)k−1

∑

n≥0

(1− t)n(xq−n)n

[n]q!
= −t(1− t)k−1.

Since letting x → 0 after evaluating at (xq−n; t, q) makes no difference to letting x → 0

10



directly, it now follows from Lemma 2 that

Binv
n (t, q) = (−q; q)nD

n
qB

inv(xq−n; t, q)
∣

∣

x=0

= (−1)n(−q; q)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 · · · 0 0
(1−t)
(−q;q)1

−t 1 · · · 0 0

(1−t)2

(−q;q)2
−t(1− t) −

[

2
1

]

q
t · · · 0 0

...
...

...
. . .

...
...

(1−t)n−1

(−q;q)n−1
−t(1− t)n−2 −

(

n−1
1

)

t(1− t)n−3 · · · −
[

n−1
n−2

]

q
t 1

(1−t)n

(−q;q)n
−t(1− t)n−1 −

[n
1

]

q
t(1− t)n−2 · · · −

[ n
n−2

]

q
t(1− t) −

[ n
n−1

]

q
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is clear that Binv
n (t, 1) = Bn(t). On the other hand, one can move the multiplicative

factor (−q; q)n of the determinantal expression in Theorem 7 into the determinant by mul-
tiplying each entry of the first column by (−q; q)n, the resulting quantities (−q; q)n/(−q; q)k
are q-analogues of powers of 2. In Theorem 4, powers of 2 are are distributed over the last n
columns of the determinant. When q → 1, the determinantal expression in Theorem 7 does
not reduce to become that in Theorem 4.

5 A recurrence relation for Binv
n (t, q)

Unlike its type A counterpart, a recurrence relation for Binv
n (t, q) was, up to now, apparently

not in the literature. The goal of this final section is to fill in this gap. Before doing so, it
is important to note that Ainv

n (t, q) and Binv
n (t, q) are closely related with each other.

Proposition 8. For n ≥ 1, we have

Binv
n (t, q) =

n
∑

k=0

[

n
k

]

q

(−q; q)n(1− t)n−kAinv
k (t, q)

(−q; q)n−k

, (8)

=
n

∑

k=0

[

n
k

]

q2

(−q; q)k(1− t)n−kAinv
k (t, q). (9)

Proof. An inspection of the denominator of Binv(x; t, q) reveals that

1−
t

1− t

∑

n≥1

(1− t)nxn

[n]q!
=

1− te(x(1− t); q)

1− t

so that

Binv(x; t, q) = Ainv(x; t, q)
∑

n≥0

(1− t)nxn

(−q; q)n[n]q!
. (10)

11



Extracting the coefficients of xn on both sides, we have

Binv
n (t, q)

(−q; q)n[n]q!
=

n
∑

k=0

Ainv
k (t, q)(1− t)n−k

[k]q!(−q; q)n−k[n− k]q!
,

whence (8). Since [2k]q! = (1 + q)k[k]q2 ! = (−q; q)k[k]q!, we have

[

n
k

]

q

=
(−q; q)k(−q; q)n−k

(−q; q)n

[

n
k

]

q2

. (11)

Substituting (11) into (8), equality (9) follows.

Based on Stanley’s factorial generating function (5), Björner and Brenti [3, §7.2] gener-
alized the factorial generating functions by descent numbers and lengths to other Coxeter
families of which (10) in the preceding proof is a concrete type B realization. Compare (10)
with [3, Exercise 7.2.5(b)].

Theorem 9. For n ≥ 1, Binv
n (t, q) satisfies the following recurrence relation:

Binv
n+1(t, q) =

n
∑

k=0

[

n+ 1
k

]

q2

(−q; q)k[(−q; q)n+1−kt+ (1− t)](1− t)n−kAinv
k (t, q).

Proof. Starting from (9) with n+ 1 in place of n, followed by using (6), we obtain

Binv
n+1(t, q) = (−q; q)n+1A

inv
n+1(t, q) +

n
∑

k=0

[

n+ 1
k

]

q2

(−q; q)k(1− t)n+1−kAinv
k (t, q)

= (−q; q)n+1

n
∑

k=0

[

n+ 1
k

]

q

t(1− t)n−kAinv
k (t, q)

+
n

∑

k=0

[

n+ 1
k

]

q2

(−q; q)k(1− t)n+1−kAinv
k (t, q)

= (−q; q)n+1

n
∑

k=0

[

n+ 1
k

]

q2

(−q; q)k(−q; q)n+1−k

(−q; q)n+1

t(1− t)n−kAinv
k (t, q)

+
n

∑

k=0

[

n+ 1
k

]

q2

(−q; q)k(1− t)n+1−kAinv
k (t, q)

=
n

∑

k=0

[

n+ 1
k

]

q2

(−q; q)k[(−q; q)n+1−kt+ (1− t)](1− t)n−kAinv
k (t, q).

It is not apparent that the sum on the right can be written as a combination of Binv
k (t, q).
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6 Two questions

In the preceding sections, we obtained expressions of Eulerian polynomials of types A,B,
and D, as well as the “inv” analogues of types A and B q-Eulerian polynomials, as lower
Hessenberg determinants.

Besides representing Eulerian polynomials, determinants also play important roles in the
theory of symmetric functions. For instance, the Jacobi-Trudi identity is a determinantal
representation of skew Schur functions in terms of homogeneous symmetric functions [16,
§7.16]. In view of the present work, it is natural to ask

Question 10. Can a given determinant be interpreted in terms of symmetric functions?

Another occurrence of determinants is in the classical definition of Schur functions [16]:

aλ+δ/aδ = sλ(x1, . . . , xn),

where λ is a partition of n with at most n parts, δ = (n − 1, n − 2, . . . , 0) and aλ+δ =
det

(

xλi+n−j
i

)n

i,j=1
. Note that neither aλ+δ nor aδ is symmetric in x1, . . . , xn, but aλ+δ/aδ is.

Extending Question 10, more generally, one can ask

Question 11. Can a given quotient of two determinants be interpreted in terms of symmetric
functions?
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