Journal of Integer Sequences, Vol. 26 (2023), Article 23.1.1

Arithmetic Progressions Among Powerful Numbers

Tsz Ho Chan
Mathematics Department
Kennesaw State University
Marietta, GA 30060
USA
tchan4@kennesaw.edu

Abstract

In this paper, we study k-term arithmetic progressions $N, N+d, \ldots, N+(k-1) d$ of powerful numbers. Unconditionally, we exhibit infinitely many 3 -term arithmetic progressions of powerful numbers with $d \leq 5 N^{1 / 2}$. Assuming the $a b c$-conjecture, we obtain a nearly tight lower bound on the common difference. We also prove some partial results when $k \geq 4$ and pose some open questions.

1 Introduction and main results

For any integer $k \geq 1$, a non-trivial k-term arithmetic progression (abbreviated as k-AP) is a sequence of the form

$$
N, N+d, N+2 d, \ldots, N+(k-1) d
$$

with initial term N and common difference $d>0$. Any single number or two different numbers can be considered as a 1-AP or 2-AP respectively. So, from now on, we will assume $k \geq 3$. It is well-known that there are infinitely many 3 -APs among perfect squares (e.g., $1,25,49)$ but there is no 4 -AP of perfect squares (first discovered by Fermat). One may ask if there exist k-APs among other interesting arithmetic or polynomial sequences. For instance, Green and Tao [5] recently proved that there are arbitrarily long arithmetic progressions among the prime numbers. In this paper, we are interested in studying arithmetic progressions of powerful numbers A001694 which are square-like.

Definition 1. A number n is powerful if $p^{2} \mid n$ whenever $p \mid n$ (i.e., its prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ satisfies $a_{i} \geq 2$ for all $1 \leq i \leq r$.)

For example, $72=2^{3} \cdot 3^{2}$ is powerful but $24=2^{3} \cdot 3$ is not. Another common name for powerful number is squarefull number. A closely related concept is squarefree number.

Definition 2. A number n is squarefree if $p^{2} \nmid n$ for all prime $p \mid n$ (i.e., its prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ satisfies $a_{i}=1$ for all $1 \leq i \leq r$.).

For example, $30=2 \cdot 3 \cdot 5$ is squarefree but $24=2^{3} \cdot 3$ is not. By unique prime factorization, one can show that any positive integer and any powerful number can be factored uniquely as $n=a^{2} b$ and $n=a^{2} b^{3}$ respectively for some integer $a \geq 1$ and squarefree number $b \geq 1$. Unlike perfect squares, there are arbitrarily long arithmetic progressions among powerful numbers.

Theorem 3. For any integer $k \geq 3$, there is a k-term arithmetic progression of powerful numbers.

The above theorem is not new (see remark 2 in [3] for example) but we include a proof for completeness. For $k=3$, there is a folklore conjecture concerning 3-AP of powerful numbers which seems to have been first posed by Erdős [2].

Conjecture 4. There are no three consecutive powerful numbers.
Later, Mollin and Walsh [6] and Granville [4] reiterated the same conjecture and provided some evidence and interesting consequences. Currently, we are far from being able to prove Conjecture 4. However, Conjecture 4 follows from the famous $a b c$-conjecture (see the first half of the proof of Theorem 1.6 with $d=1$ and $y=3$ in [1] for example). Let

$$
\kappa(m):=\prod_{p \mid m} p
$$

denote the squarefree kernel or radical of an integer m.
Conjecture 5 (abc-conjecture). For any $\epsilon>0$, there exists a constant $C_{\epsilon}>0$ such that, for any integers a, b, c with $a+b=c$ and $\operatorname{gcd}(a, b)=1$, the bound

$$
\max \{|a|,|b|,|c|\} \leq C_{\epsilon} \cdot \kappa(a b c)^{1+\epsilon}
$$

holds.
In other words, there is no 3-AP of powerful numbers with common difference $d=1$ under the $a b c$-conjecture. Recently, the author [1] studied powerful numbers in short intervals, and it can be deduced that, for any $\epsilon>0$, there is no 3 -AP of powerful numbers with $d \leq N^{1 / 4-\epsilon}$ for sufficiently large N under the $a b c$-conjecture. On the other hand, for any integer $m \geq 1$, the following three expressions

$$
\begin{equation*}
\left(2 m^{2}-1\right)^{2},\left(2 m^{2}+2 m+1\right)^{2},\left(2 m^{2}+4 m+1\right)^{2} \tag{1}
\end{equation*}
$$

form a 3 -AP of perfect squares with common difference $d=8 m^{3}+12 m^{2}+4 m$. Hence, there are infinitely many 3 -APs of powerful numbers with $d \leq 6 N^{3 / 4}$. Thus, we are led to the following natural question.
Question 6. We say that $0<\theta<1$ is an admissible exponent if there exists $C_{\theta}>0$ such that there are infinitely many 3 -APs of powerful numbers $N, N+d, N+2 d$ with common difference $d \leq C_{\theta} N^{\theta}$. Find the infimum, θ_{3}, among all such admissible exponents.

The above discussion yields $\frac{1}{4} \leq \theta_{3} \leq \frac{3}{4}$. We shall prove the following optimal result.
Theorem 7. Assuming the abc-conjecture, we have $\theta_{3}=\frac{1}{2}$.
Analogously, one can define θ_{k} for k-AP of powerful numbers when $k \geq 4$. We have the following partial results.

Theorem 8. Assuming the abc-conjecture, we have

$$
\frac{1}{2} \leq \theta_{4} \leq \frac{4}{5}, \frac{1}{2} \leq \theta_{5} \leq \frac{9}{10}, \text { and } \frac{1}{2} \leq \theta_{k} \leq 1-\frac{1}{10 \cdot 3^{k-5}}
$$

for $k \geq 5$.
Note that the upper bounds in Theorems 7 and 8 hold unconditionally and it is their lower bounds that require the $a b c$-conjecture.

It would be interesting to see if one can prove $\theta_{4}>1 / 2$ under the $a b c$-conjecture. Another future direction would be narrowing the above ranges for θ_{k} when $k \geq 4$. One can also ask if there exist infinitely many 3-APs of powerful numbers with common difference $d=o(\sqrt{N})$.

1.1 Notation

Throughout the paper, the letters N, k, m, n, a, b, c and d stand for positive integers while the letters $p, p_{i j}$ and $q_{i j^{\prime}}$ stand for prime numbers. The symbol $a \mid b$ means that a divides b, the symbol $a \nmid b$ means that a does not divide b, and the symbol $p^{n}| | a$ means that $p^{n} \mid a$ but $p^{n+1} \nmid a$. The function $\nu_{p}(a)$ stands for the p-adic valuation of a (i.e., $\nu_{p}(a)=n$ when $\left.p^{n}| | a\right)$. The symbol $f(x) \ll g(x)$ is equivalent to $|f(x)| \leq C g(x)$ for some constant $C>0$. The symbol $f(x)<_{\lambda} g(x)$ means that the implicit constant may depend on λ. Finally, the symbol $f(x)=o(g(x))$ means that $\lim _{x \rightarrow \infty} f(x) / g(x)=0$.

2 Proof of Theorem 3: long AP of powerful numbers

Proof. We apply induction on k. The base case $k=3$ follows from (1) on 3-AP among perfect squares. Suppose, for some $k \geq 3$, there is a k-AP among powerful numbers, say

$$
a_{1}^{2} b_{1}^{3}<a_{2}^{2} b_{2}^{3}<\cdots<a_{k}^{2} b_{k}^{3} \quad \text { with common difference } d \geq 1
$$

Consider the number $a_{k}^{2} b_{k}^{3}+d=a^{2} b$ for some integer a and squarefree number b. Then

$$
a_{1}^{2} b_{1}^{3} b^{2}<a_{2}^{2} b_{2}^{3} b^{2}<\cdots<a_{k}^{2} b_{k}^{3} b^{2}<a^{2} b^{3}
$$

is a $(k+1)$ - AP of powerful numbers with common difference $d b^{2}$. This finishes the induction proof.

3 Proof of Theorem 7: 3-AP upper bound

Proof. For the upper bound $\theta_{3} \leq 1 / 2$, we first consider the following 3-AP:

$$
x^{2}-2 x-1, x^{2}, x^{2}+2 x+1
$$

The last two terms are perfect squares. We want the first term to contain a large square factor. The Pell equation

$$
X^{2}-2 Y^{2}=-1
$$

has infinitely many integer solutions given by

$$
X_{m}+\sqrt{2} Y_{m}=(1+\sqrt{2})^{2 m+1} \text { with integer } m \geq 1
$$

By setting $n=X$ and $\frac{x-1}{2}=Y$, the generalized Pell equation

$$
\begin{equation*}
(x-1)^{2}-2 n^{2}=2 \tag{2}
\end{equation*}
$$

has infinitely many integer solutions given by

$$
x-1=2 Y_{m} \text { and } n=X_{m} .
$$

Then, equation (2) gives us infinitely many integers x such that $x^{2}-2 x-1=2 n^{2}$ for some integer n. Therefore, we have infinitely many 3-APs of powerful numbers, namely
$N=2^{2}\left(x^{2}-2 x-1\right)=2^{3} n^{2}, N+d=2^{2} x^{2}=(2 x)^{2}, N+2 d=2^{2}\left(x^{2}+2 x+1\right)=(2(x+1))^{2}$
with common difference

$$
d=2^{2}(2 x+1)=8 x+4 \leq 5 N^{1 / 2}
$$

Hence, we have $\theta_{3} \leq 1 / 2$.

4 Proof of Theorem 7: 3-AP lower bound

First, we need a simple observation.
Lemma 9. Suppose a and b are positive integers and $p^{\delta} \mid a^{2} b^{3}$ for some prime p and integer $\delta \geq 1$. Then $\nu_{p}(a b) \geq \delta / 3$.

Proof. From the definitions of divisibility and p-adic valuation, we have $\delta \leq 2 \nu_{p}(a)+3 \nu_{p}(b)$. Dividing everything by 3 , we have $\delta / 3 \leq 2 \nu_{p}(a) / 3+\nu_{p}(b) \leq \nu_{p}(a)+\nu_{p}(b)=\nu_{p}(a b)$.

Proof of Theorem 7. Consider any 3-AP of powerful numbers $N, N+d, N+2 d$ with

$$
N=a_{1}^{2} b_{1}^{3}, N+d=a_{2}^{2} b_{2}^{3}, \text { and } N+2 d=a_{3}^{2} b_{3}^{3}
$$

for some integers a_{1}, a_{2}, a_{3} and squarefree numbers b_{1}, b_{2}, b_{3}. If some prime p divides b_{1}, b_{2} and b_{3}, then we can consider the reduced 3-AP of powerful numbers

$$
\frac{N}{p^{3}}, \frac{N}{p^{3}}+\frac{d}{p^{3}}, \frac{N}{p^{3}}+\frac{2 d}{p^{3}} .
$$

If one could prove a lower bound $d / p^{3} \geq C_{\theta}\left(N / p^{3}\right)^{\theta}$ with some $0<\theta<1$ and $C_{\theta}>0$ for the reduced 3-AP, one would also have $d \geq C_{\theta} N^{\theta}$ for the original 3-AP. Hence, we may assume $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$.

Since $(N+d)^{2}=N(N+2 d)+d^{2}$, we have $a_{2}^{4} b_{2}^{6}=a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}+d^{2}$. Let $D^{2}=\operatorname{gcd}\left(a_{2}^{4} b_{2}^{6}, d^{2}\right)$ which also equals to $\operatorname{gcd}\left(a_{2}^{4} b_{2}^{6}, a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right)$ and $\operatorname{gcd}\left(a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}, d^{2}\right)$. Note that as $D \mid a_{2}^{2} b_{2}^{3}$ and $D \mid d$, we also have $D \mid a_{1}^{2} b_{1}^{3}$ and $D \mid a_{3}^{2} b_{3}^{3}$. Dividing everything by D^{2}, we have the equation

$$
\left(\frac{a_{2}^{2} b_{2}^{3}}{D}\right)^{2}=\left(\frac{a_{1}^{2} b_{1}^{3}}{D} \frac{a_{3}^{2} b_{3}^{3}}{D}\right)+\left(\frac{d}{D}\right)^{2}
$$

where the three terms are pairwise relatively prime. By the $a b c$-conjecture, we have

$$
\begin{equation*}
\frac{N^{2}}{D^{2}} \leq\left(\frac{a_{2}^{2} b_{2}^{3}}{D}\right)^{2} \leq C_{\epsilon}\left(\kappa\left(\frac{a_{1}^{2} b_{1}^{3}}{D} \frac{a_{2}^{2} b_{2}^{3}}{D} \frac{a_{3}^{2} b_{3}^{3}}{D}\right) \kappa\left(\frac{d}{D}\right)\right)^{1+\epsilon} \tag{3}
\end{equation*}
$$

as $\kappa(m n) \leq \kappa(m) \kappa(n)$. If one simply bounds the right-hand side of (3) by

$$
\leq C_{\epsilon}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \frac{d}{D}\right)^{1+\epsilon} \ll C_{\epsilon}\left(\frac{N^{3 / 2} d}{D}\right)^{1+\epsilon}
$$

solves for d, and applies $D \leq d$ as in [1, Theorem1.6], one would obtain $N^{1 / 4-\epsilon}<_{\epsilon} d$ and the lower bound $\theta_{3} \geq 1 / 4$ only. So, in order to prove Theorem 7 , we need a finer analysis. We claim that

$$
\begin{equation*}
\kappa\left(\frac{a_{1}^{2} b_{1}^{3}}{D} \frac{a_{2}^{2} b_{2}^{3}}{D} \frac{a_{3}^{2} b_{3}^{3}}{D}\right) \leq \frac{a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}}{D} \tag{4}
\end{equation*}
$$

which would follow from

$$
\begin{equation*}
\nu_{p}\left(\kappa\left(\frac{a_{1}^{2} b_{1}^{3}}{D} \frac{a_{2}^{2} b_{2}^{3}}{D} \frac{a_{3}^{2} b_{3}^{3}}{D}\right)\right) \leq \nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) \tag{5}
\end{equation*}
$$

for any prime p. Firstly, if a prime p does not divide $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$, then (5) is true as both sides are 0 . Secondly, if a prime $p \mid a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$ but $p \nmid D$, then left hand side of (5) is
exactly 1 while the right-hand side of (5) is $\geq 1-0$. So, inequality (5) is true for such primes. Thus, it remains to consider those primes p which divide both $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$ and D. Notice that the left-hand side of (5) is at most 1 for such primes. Suppose we have the following prime factorizations

$$
\begin{aligned}
& b_{1}=p_{11} \cdots p_{1 r_{1}}, a_{1}=p_{11}^{\alpha_{11}} \cdots p_{1 r_{1}}^{\alpha_{1 r_{1}}} \cdot q_{11}^{\beta_{11}} \cdots q_{1 s_{1}}^{\beta_{1 s_{1}}} \\
& b_{2}=p_{21} \cdots p_{2 r_{2}}, a_{2}=p_{21}^{\alpha_{21}} \cdots p_{2 r_{2}}^{\alpha_{2 r_{2}}} \cdot q_{21}^{\beta_{21}} \cdots q_{2 s_{2}}^{\beta_{2}} \\
& b_{3}=p_{31} \cdots p_{3 r_{3}}, a_{3}=p_{31}^{\alpha_{31}} \cdots p_{3 r_{3}}^{\alpha_{3 r_{3}}} \cdot q_{31}^{\beta_{31}} \cdots q_{3 s_{3}}^{\beta_{3 s_{3}}}
\end{aligned}
$$

for some integers $r_{1}, r_{2}, r_{3}, s_{1}, s_{2}, s_{3} \geq 0, \alpha_{i j} \geq 0, \beta_{i j^{\prime}} \geq 1$ and primes $p_{i j}, q_{i j^{\prime}}$ with $q_{i j^{\prime}} \neq p_{i j}$. Now, consider a fixed prime $p \mid D$ with $\delta:=\nu_{p}(D)$. Note that p does not divide all of the b_{1}, b_{2}, b_{3} as $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$.

Case 1: Suppose p does not divide any of the b_{1}, b_{2}, b_{3}. Since $D \mid a_{i}^{2} b_{i}^{3}$ for $i=1,2,3$, we must have $p \mid a_{1}, a_{2}, a_{3}$. Say $p=q_{1 j_{1}}=q_{2 j_{2}}=q_{3 j_{3}}$ for some $1 \leq j_{m} \leq s_{m}$ for $m=1,2,3$. As $p^{2 \delta} \| D^{2}=\operatorname{gcd}\left(a_{2}^{4} b_{2}^{6}, a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right)$ and $\operatorname{gcd}\left(p, b_{1} b_{2} b_{3}\right)=1$, we have $2 \delta=\min \left(4 \beta_{2, j_{2}}, 2\left(\beta_{1, j_{1}}+\right.\right.$ $\left.\left.\beta_{3 j_{3}}\right)\right) \geq 4$. Hence, we have $2 \leq \delta=\min \left(2 \beta_{2 j_{2}}, \beta_{1 j_{1}}+\beta_{3 j_{3}}\right)$ and

$$
\nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) \geq \beta_{1 j_{1}}+\beta_{2 j_{2}}+\beta_{3 j_{3}}-\left(\beta_{1 j_{1}}+\beta_{3 j_{3}}\right)=\beta_{2 j_{2}} \geq 1
$$

Case 2: Suppose p divides exactly one of the b_{1}, b_{2}, b_{3}.
Subcase 1: Suppose δ is even. Without loss of generality, say $p \mid b_{1}, p \nmid b_{2}, p \nmid b_{3}$ as the other cases are similar. Then, we have $p \mid a_{2}, a_{3}$ and $p=q_{2 j_{2}}=q_{3 j_{3}}$ for some $1 \leq j_{2} \leq s_{3}$ and $1 \leq j_{3} \leq s_{3}$. As $p^{\delta} \mid a_{2}^{2} b_{2}^{3}, a_{3}^{2} b_{3}^{3}$, we have $\delta / 2 \leq \beta_{2 j_{2}}$ and $\delta / 2 \leq \beta_{3 j_{3}}$. By Lemma 9, we have

$$
\begin{aligned}
\nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) & \geq \max (\delta / 3,1)+\beta_{2 j_{2}}+\beta_{3 j_{3}}-\delta \\
& \geq \begin{cases}1+\delta / 2+\delta / 2-\delta \geq 1, & \text { when } \delta=2 ; \\
\delta / 3+\delta / 2+\delta / 2-\delta>1, & \text { when } \delta \geq 4 .\end{cases}
\end{aligned}
$$

Subcase 2: Suppose δ is odd. If $p \mid b_{1}, p \nmid b_{2}, p \nmid b_{3}$, then $p \mid b_{1}, a_{2}, a_{3}$. We have $\nu_{p}\left(a_{2}^{4} b_{2}^{6}\right) \geq 4$ and $\nu_{p}\left(a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right) \geq 5$. Hence, we get $\delta \geq 3$ as $p^{2 \delta} \| D^{2}=\operatorname{gcd}\left(a_{2}^{4} b_{2}^{6}, a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right)$ and δ is odd. If $p \mid b_{2}, p \nmid p_{1}, p \nmid p_{3}$, then $p \mid b_{2}, a_{1}, a_{3}$. We have $\nu_{p}\left(a_{2}^{4} b_{2}^{6}\right) \geq 6$ and $\nu_{p}\left(a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right) \geq 4$. Hence, we get $\delta \geq 3$ by similar reasoning. If $p \mid b_{3}, p \nmid b_{1}, p \nmid b_{2}$, we also get $\delta \geq 3$ as it is similar to $p \mid b_{1}, p \nmid b_{2}, p \nmid b_{3}$. Therefore, we obtain $\delta \geq 3$ in all circumstances.

Suppose $p \nmid b_{i}, b_{i^{\prime}}$ for some $1 \leq i<i^{\prime} \leq 3$. Then $p \mid a_{i}, a_{i^{\prime}}$. Say $p=q_{i j_{i}}=q_{i^{\prime} j_{i^{\prime}}}$ for some $1 \leq j_{i} \leq s_{i}$ and $1 \leq j_{i^{\prime}} \leq s_{i^{\prime}}$. Thus, we have $3 \leq \delta \leq 2 \beta_{i j_{i}}-1$ and $3 \leq \delta \leq 2 \beta_{i^{\prime} j_{i^{\prime}}}-1$ as δ is odd. Hence, we have $\beta_{i j_{i}}, \beta_{i^{\prime} j_{i^{\prime}}} \geq \delta / 2+1 / 2$ and

$$
\nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) \geq 1+\beta_{i j_{i}}+\beta_{i^{\prime} j_{i^{\prime}}}-\delta>1 .
$$

Case 3: Suppose p divides exactly two of the b_{1}, b_{2}, b_{3}.

Subcase 1: Suppose δ is even. Without loss of generality, say $p\left|b_{1}, p\right| b_{2}, p \nmid b_{3}$ as the other cases are similar. Then $p \mid a_{3}$ and $p=p_{1 j_{1}}=p_{2 j_{2}}=q_{3 j_{3}}$ for some $1 \leq j_{1} \leq r_{1}$, $1 \leq j_{2} \leq r_{2}$ and $1 \leq j_{3} \leq s_{3}$. As $p^{\delta} \mid a_{3}^{2} b_{3}^{3}$, we have $\delta / 2 \leq \beta_{3 j_{3}}$. Also, as $p^{\delta} \mid a_{1}^{2} b_{1}^{3}, a_{2}^{2} b_{2}^{3}$, we have $\delta \leq 2 \alpha_{1 j_{1}}+2$ and $\delta \leq 2 \alpha_{2 j_{2}}+2$ since δ is even. Hence, we have

$$
\nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) \geq\left(\alpha_{1 j_{1}}+1\right)+\left(\alpha_{2 j_{2}}+1\right)+\beta_{3 j_{3}}-\delta \geq \beta_{3 j_{3}} \geq 1
$$

Subcase 2: Suppose δ is odd. If $p\left|b_{1}, p\right| b_{2}, p \nmid b_{3}$, then $p \mid b_{1}, b_{2}, a_{3}$. We have $\nu_{p}\left(a_{2}^{4} b_{2}^{6}\right) \geq 6$ and $\nu_{p}\left(a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right) \geq 5$. Hence, we get $\delta \geq 3$ as $p^{2 \delta} \| D^{2}=\operatorname{gcd}\left(a_{2}^{4} b_{2}^{6}, a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right)$ and δ is odd. If $p\left|b_{1}, p \nmid b_{2}, p\right| b_{3}$, then $p \mid b_{1}, a_{2}, b_{3}$. We have $\nu_{p}\left(a_{2}^{4} b_{2}^{6}\right) \geq 4$ and $\nu_{p}\left(a_{1}^{2} b_{1}^{3} a_{3}^{2} b_{3}^{3}\right) \geq 6$. Hence, we get $\delta \geq 3$ by similar reasoning. If $p \nmid b_{1}, p\left|b_{2}, p\right| b_{3}$, we also get $\delta \geq 3$ as it is similar to the case $p\left|b_{1}, p\right| b_{2}, p \nmid b_{3}$. Therefore, we obtain $\delta \geq 3$ in all circumstances.

Suppose $p \nmid b_{i}$ for some $1 \leq i \leq 3$. Then $p \mid a_{i}$ and $p=q_{i j_{i}}$ for some $1 \leq j_{i} \leq s_{i}$. Thus, we have $3 \leq \delta \leq 2 \beta_{i j_{i}}-1$ as δ is odd, and $\beta_{i j_{i}} \geq \delta / 2+1 / 2$. By Lemma 9 , we have

$$
\nu_{p}\left(a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}\right)-\nu_{p}(D) \geq \frac{\delta}{3}+\frac{\delta}{3}+\beta_{i j_{i}}-\delta \geq \frac{1}{2}+\frac{\delta}{6} \geq \frac{1}{2}+\frac{3}{6}=1
$$

Consequently, the right-hand side of (5) is at least 1 in all of the above cases. As a result, we have inequalities (5) and (4). Putting (4) into (3), we obtain

$$
\frac{N^{2}}{D^{2}} \leq C_{\epsilon}\left(\frac{a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} d}{D^{2}}\right)^{1+\epsilon} \ll C_{\epsilon}\left(\frac{N^{3 / 2} d}{D^{2}}\right)^{1+\epsilon}
$$

as $a_{1}^{2} b_{1}^{3}, a_{2}^{2} b_{2}^{3}, a_{3}^{2} b_{3}^{2} \ll N$. Together with $D \geq 1$, we have $N^{1 / 2-2 \epsilon}<_{\epsilon} d$ and $\theta_{3} \geq 1 / 2$ as ϵ can be arbitrarily small.

5 Proof of Theorem 8

Proof. For $k \geq 4$, the lower bound $\theta_{k} \geq 1 / 2$ follows from the observation that $\theta_{k} \geq \theta_{3}$ and $\theta_{3} \geq 1 / 2$ from Theorem 7 under the abc-conjecture.

For the upper bound $\theta_{4} \leq 4 / 5$, we construct 4 -APs of powerful numbers as follows. With positive integer a, the following four expressions

$$
\begin{equation*}
(x-a)^{3}(x+a)^{2},(x-a)^{2} x(x+a)^{2},(x-a)^{2}(x+a)^{3},(x-a)^{2}(x+a)^{2}(x+2 a) \tag{6}
\end{equation*}
$$

form a 4-AP with common difference $d=a(x-a)^{2}(x+a)^{2}$. Note that the first and third terms give powerful numbers for any integer x. If x and $x+2 a$ are powerful, then all four polynomials would result in powerful numbers. We can pick $a=2$. Note that the Pell equation

$$
X^{2}-2 Y^{2}=1 \text { or } 2 X^{2}-4 Y^{2}=2 \text { or } 4 X^{2}=8 Y^{2}+4
$$

has solutions

$$
X_{m}+\sqrt{2} Y_{m}=(3+2 \sqrt{2})^{m} \text { for positive integer } m
$$

By choosing $x=8 Y_{m}^{2}$ and $x+2 a=x+4=4 X_{m}^{2}$, we turn (6) into our desired 4-AP of powerful numbers. Observe that the common difference

$$
d=2(x-2)^{2}(x+2)^{2} \leq 3\left((x-2)^{3}(x+2)^{2}\right)^{4 / 5}=3 N^{4 / 5}
$$

for large enough m (and hence N). We have $\theta_{4} \leq 4 / 5$.
For the upper bound $\theta_{5} \leq 9 / 10$, one can build upon our 3 - AP and 4 - AP constructions. With positive integer a, the following five expressions

$$
\begin{equation*}
(y-2 a)(y-a)^{2}(y+a)^{2},(y-a)^{3}(y+a)^{2},(y-a)^{2} y(y+a)^{2},(y-a)^{2}(y+a)^{3},(y-a)^{2}(y+a)^{2}(y+2 a) \tag{7}
\end{equation*}
$$

form a 5 -AP with common difference $d=a(y-a)^{2}(y+a)^{2}$. Note that the second and fourth terms give powerful numbers for any integer y. If $y-2 a, y$ and $y+2 a$ are powerful, then all five terms would be powerful. From our 3-AP construction, we can find infinitely many 3-APs of powerful numbers

$$
y-2 a=2^{2}\left(x^{2}-2 x-1\right)=2^{3} n^{2}, y=2^{2} x^{2}=(2 x)^{2}, y+2 a=2^{2}\left(x^{2}+2 x+1\right)=(2(x+1))^{2}
$$

with

$$
2 a=2^{2}(2 x+1)=8 x+4
$$

With the above choices, we obtain the desired 5-AP of powerful numbers with common difference

$$
\begin{aligned}
d & =(4 x+2)\left(4 x^{2}-4 x-2\right)^{2}\left(4 x^{2}+4 x+2\right)^{2} \\
& \leq 3\left(\left(4 x^{2}-8 x-4\right)\left(4 x^{2}-4 x-2\right)^{2}\left(4 x^{2}+4 x+2\right)^{2}\right)^{9 / 10}=3 N^{9 / 10}
\end{aligned}
$$

for large enough x (and hence N). Thus, we have $\theta_{5} \leq 9 / 10$.
For the general upper bound $\theta_{k} \leq 1-\frac{1}{10 \cdot 3^{k-5}}$, we use induction on $k \geq 5$ similar to Theorem 3. The base case $\theta_{5} \leq 1-\frac{1}{10 \cdot 3^{55-5}}$ is true from $\theta_{5} \leq 9 / 10$. Suppose, for some $k \geq 5$, there are infinitely many k-APs among powerful numbers with $d \leq C_{k} N^{1-\frac{1}{10 \cdot 3^{k-5}}}$. Say one such AP is

$$
N=a_{1}^{2} b_{1}^{3}<a_{2}^{2} b_{2}^{3}<\cdots<a_{k}^{2} b_{k}^{3} \quad \text { with common difference } 1 \leq d \leq C_{k} N^{1-\frac{1}{10.3^{k-5}}}
$$

Consider the number $a_{k}^{2} b_{k}^{3}+d=a^{2} b$ for some integer a and squarefree number b. Multiply everything by b^{2}, the following $k+1$ numbers

$$
N_{1}:=N b^{2}=a_{1}^{2} b_{1}^{3} b^{2}<a_{2}^{2} b_{2}^{3} b^{2}<\cdots<a_{k}^{2} b_{k}^{3} b^{2}<a^{2} b^{3}
$$

form a $(k+1)$-AP of powerful numbers with common difference $d b^{2}$. Note that

$$
b \leq a^{2} b=N+k d \leq\left(1+k C_{k}\right) N .
$$

Hence, we have

$$
\begin{aligned}
d b \frac{2}{10 \cdot 3^{k-4}} & \leq d\left(1+k C_{k}\right)^{\frac{2}{10 \cdot 3^{k-4}}} N^{\frac{2}{10 \cdot 3^{k-4}}} \\
& \leq C_{k}\left(1+k C_{k}\right)^{\frac{2}{10 \cdot 3^{k-4}}} N^{1-\frac{1}{10 \cdot 3^{k-5}}+\frac{2}{10 \cdot 3^{k-4}}}=C_{k}\left(1+k C_{k}\right)^{\frac{2}{10 \cdot 3^{k-4}}} N^{1-\frac{1}{10 \cdot 3^{k-4}}}
\end{aligned}
$$

and

$$
d b^{2} \leq C_{k}\left(1+k C_{k}\right)^{\frac{2}{10 \cdot 3^{k-4}}}\left(N b^{2}\right)^{1-\frac{1}{10 \cdot 3^{k-4}}}=C_{k+1} N_{1}^{1-\frac{1}{10 \cdot 3^{(k+1)-5}}}
$$

with $C_{k+1}:=C_{k}\left(1+k C_{k}\right)^{\frac{2}{10 \cdot 3^{k-4}}}$. This completes the induction proof.

6 Acknowledgment

The author would like to thank Prof. Lajos Hajdu for pointing out that Theorem 3 has long been known and is even true for perfect powers only. The author also wants to thank the anonymous referee for some helpful corrections.

References

[1] T. H. Chan, A note on powerful numbers in short intervals, Bull. Australian Math. Soc., 2022. Available at https://doi.org/10.1017/S0004972722000995.
[2] P. Erdős, Consecutive integers, Eureka 38 (1975-76), 3-8.
[3] L. Hajdu, Perfect powers in arithmetic progression. A note on the inhomogeneous case, Acta Arith. 113 (2004), 343-349.
[4] A. Granville, Powerful numbers and Fermat's last theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 215-218.
[5] B. J. Green and T. C. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), 481-547.
[6] R. A. Mollin and P. G. Walsh, A note of powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 109-114.

2020 Mathematics Subject Classification: Primary 11N25.
Keywords: powerful number, k-full number, arithmetic progression, abc-conjecture.
(Concerned with sequence $\underline{\text { A001694.) }}$

Received September 30 2022; revised versions received October 1 2022; October 3 2022;
December 13 2022. Published in Journal of Integer Sequences, December 142022.

Return to Journal of Integer Sequences home page.

