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For any integer k£ > 1, a non-trivial k-term arithmetic progression (abbreviated as k-AP) is
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Abstract

In this paper, we study k-term arithmetic progressions N, N +d,..., N + (k—1)d
of powerful numbers. Unconditionally, we exhibit infinitely many 3-term arithmetic
progressions of powerful numbers with d < 5N'/2. Assuming the abe-conjecture, we
obtain a nearly tight lower bound on the common difference. We also prove some
partial results when k& > 4 and pose some open questions.

Introduction and main results

a sequence of the form

with initial term N and common difference d > 0. Any single number or two different num-
bers can be considered as a 1-AP or 2-AP respectively. So, from now on, we will assume
k > 3. It is well-known that there are infinitely many 3-APs among perfect squares (e.g.,
1,25,49) but there is no 4-AP of perfect squares (first discovered by Fermat). One may
ask if there exist k-APs among other interesting arithmetic or polynomial sequences. For
instance, Green and Tao [5] recently proved that there are arbitrarily long arithmetic pro-
gressions among the prime numbers. In this paper, we are interested in studying arithmetic

N.N+d N+2d,...,N+(k—1)d

progressions of powerful numbers A001694 which are square-like.
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Definition 1. A number n is powerful if p* | n whenever p | n (i.e., its prime factorization
n = pi'ps? - - pi satisfies a; > 2 forall 1 < <r.)

For example, 72 = 23 - 32 is powerful but 24 = 23 - 3 is not. Another common name for
powerful number is squarefull number. A closely related concept is squarefree number.

Definition 2. A number n is squarefree if p* 4 n for all prime p | n (i.e., its prime factorization
n = pi'ps? - pi satisfies a; = 1 for all 1 <4 <r.).

For example, 30 = 2-3-5 is squarefree but 24 = 23.3 is not. By unique prime factorization,
one can show that any positive integer and any powerful number can be factored uniquely
as n = a’b and n = a?b?® respectively for some integer a > 1 and squarefree number b > 1.
Unlike perfect squares, there are arbitrarily long arithmetic progressions among powerful
numbers.

Theorem 3. For any integer k > 3, there is a k-term arithmetic progression of powerful
numbers.

The above theorem is not new (see remark 2 in [3] for example) but we include a proof for
completeness. For k = 3, there is a folklore conjecture concerning 3-AP of powerful numbers
which seems to have been first posed by Erdés [2].

Conjecture 4. There are no three consecutive powerful numbers.

Later, Mollin and Walsh [6] and Granville [4] reiterated the same conjecture and provided
some evidence and interesting consequences. Currently, we are far from being able to prove
Conjecture 4. However, Conjecture 4 follows from the famous abc-conjecture (see the first
half of the proof of Theorem 1.6 with d =1 and y = 3 in [1] for example). Let

k(m) =[] p
plm
denote the squarefree kernel or radical of an integer m.

Conjecture 5 (abc-conjecture). For any € > 0, there exists a constant C, > 0 such that, for
any integers a, b, ¢ with a + b = ¢ and ged(a, b) = 1, the bound

max{[al, o], ]} < C. - w(abe)+*
holds.

In other words, there is no 3-AP of powerful numbers with common difference d = 1 under
the abc-conjecture. Recently, the author [1] studied powerful numbers in short intervals, and
it can be deduced that, for any € > 0, there is no 3-AP of powerful numbers with d < N'/4-¢
for sufficiently large N under the abc-conjecture. On the other hand, for any integer m > 1,
the following three expressions

(2m? — 1)%,(2m? +2m + 1), (2m® + 4m + 1) (1)
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form a 3-AP of perfect squares with common difference d = 8m? + 12m? + 4m. Hence, there
are infinitely many 3-APs of powerful numbers with d < 6/N3/4. Thus, we are led to the
following natural question.

Question 6. We say that 0 < 6 < 1 is an admissible exponent if there exists Cp > 0 such
that there are infinitely many 3-APs of powerful numbers N, N + d, N + 2d with common
difference d < CyN?. Find the infimum, 5, among all such admissible exponents.

The above discussion yields }l <03 < i—i. We shall prove the following optimal result.
Theorem 7. Assuming the abc-conjecture, we have 03 = %

Analogously, one can define 6, for k-AP of powerful numbers when k£ > 4. We have the
following partial results.

Theorem 8. Assuming the abc-conjecture, we have

9
< < —
< b5 < 10’ and

1

<Op<1———
== 10360

4
§94§g>

DO | —
DO | —
DO | —

for k > 5.

Note that the upper bounds in Theorems 7 and 8 hold unconditionally and it is their
lower bounds that require the abc-conjecture.

It would be interesting to see if one can prove 6, > 1/2 under the abc-conjecture. Another
future direction would be narrowing the above ranges for 8, when & > 4. One can also ask if
there exist infinitely many 3-APs of powerful numbers with common difference d = o(v/ N).

1.1 Notation

Throughout the paper, the letters N, k, m, n, a, b, ¢ and d stand for positive integers while
the letters p, p;; and ¢;; stand for prime numbers. The symbol a | b means that a divides
b, the symbol a 1 b means that a does not divide b, and the symbol p"||a means that p™ | a
but p"*™ { a. The function v,(a) stands for the p-adic valuation of a (i.e., v,(a) = n when
p"|la). The symbol f(z) < g(z) is equivalent to |f(x)| < Cg(z) for some constant C' > 0.
The symbol f(z) <) g(z) means that the implicit constant may depend on A. Finally, the
symbol f(z) = o(g(z)) means that lim, , f(x)/g(x) = 0.

2 Proof of Theorem 3: long AP of powerful numbers

Proof. We apply induction on k. The base case k = 3 follows from (1) on 3-AP among
perfect squares. Suppose, for some k > 3, there is a k-AP among powerful numbers, say

aib? < asby < --- < a;by  with common difference d > 1.



Consider the number azb; + d = a*b for some integer a and squarefree number b. Then
aibib® < asbsb® < .-+ < aibib® < a’b’

is a (k+1)-AP of powerful numbers with common difference db*. This finishes the induction
proof. O]

3 Proof of Theorem 7: 3-AP upper bound
Proof. For the upper bound 03 < 1/2, we first consider the following 3-AP:
2 —2x —1,2% 2° + 22 + 1.

The last two terms are perfect squares. We want the first term to contain a large square
factor. The Pell equation
X?-2Yy? =1

has infinitely many integer solutions given by
X + V2V, = (1 +v2)?™*! with integer m > 1.
By setting n = X and %1 =Y, the generalized Pell equation
(r—1)*—2n* =2 (2)
has infinitely many integer solutions given by
r—1=2Y,, and n = X,,.

Then, equation (2) gives us infinitely many integers x such that 2> — 2z — 1 = 2n? for some
integer n. Therefore, we have infinitely many 3-APs of powerful numbers, namely

N=2*(2*-20—-1)=2n>, N+d=2%2" = (22)* , N+2d = 2*(2* + 20 + 1) = (2(z + 1))?

with common difference
d=2%12x+1) =8z +4 <5N/2

Hence, we have 65 < 1/2. O

4 Proof of Theorem 7: 3-AP lower bound

First, we need a simple observation.

Lemma 9. Suppose a and b are positive integers and p° | a®b® for some prime p and integer

d > 1. Then v,(ab) > 6/3.



Proof. From the definitions of divisibility and p-adic valuation, we have 6 < 2v,(a) + 3v,(b).
Dividing everything by 3, we have §/3 < 2v,(a)/3 + v,(b) < v,(a) + v,(b) = v,(ab). O

Proof of Theorem 7. Consider any 3-AP of powerful numbers N, N 4+ d, N + 2d with
N =aib}, N +d = a3b3, and N + 2d = a3b;

for some integers aq, as, az and squarefree numbers by, by, b3. If some prime p divides by, by
and b3, then we can consider the reduced 3-AP of powerful numbers

N N d N 2
R
If one could prove a lower bound d/p* > Cy(N/p?)? with some 0 < 6§ < 1 and Cy > 0 for the

reduced 3-AP, one would also have d > CyN? for the original 3-AP. Hence, we may assume
ng(bl, bg, bg) = 1.

Since (N + d)? = N(N + 2d) + d?, we have a3b§ = aib3a3b3 + d*. Let D? = ged(a3b$, d?)
which also equals to ged(a3b$, a?bia2b3) and ged(afbia3bs, d?). Note that as D | a3b3 and
D | d, we also have D | a3b} and D | a3b;. Dividing everything by D?  we have the equation

(Y7 (it (L’
D D D D

where the three terms are pairwise relatively prime. By the abc-conjecture, we have

N? azbyy 2 atby asbs a3b3 d\\ e
272) <~ T171 7272 7373 il
D2 = ( D ) —C€<“< D D D )“(D)) (3)

as k(mn) < k(m)k(n). If one simply bounds the right-hand side of (3) by

1+€ <N3/2d)1+e

< C. <a151&2b2a3b3%) D

solves for d, and applies D < d as in [1, Theorem1.6], one would obtain N 1/4—¢ <« d and
the lower bound 63 > 1/4 only. So, in order to prove Theorem 7, we need a finer analysis.
We claim that

(a%b? a%b% a%bi) < alblangOngg (4)
D D D J— D
which would follow from

b5 b3 b3
v (/1( D D D )) < vp(arbyasbeasbs) — v, (D) (5)

for any prime p. Firstly, if a prime p does not divide a;bjasbsagbs, then (5) is true as both
sides are 0. Secondly, if a prime p | ajbjasbsasbs but p 4 D, then left hand side of (5) is
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exactly 1 while the right-hand side of (5) is > 1—0. So, inequality (5) is true for such primes.
Thus, it remains to consider those primes p which divide both aib;asbsa3bs and D. Notice
that the left-hand side of (5) is at most 1 for such primes. Suppose we have the following
prime factorizations
(e Xlr /8 s
bl = P11 Diry, G = pllu .. ‘p17}11 . qlﬁlll e ql;l

_ 021 X2ry B21 B2s,
by = pa1 -+ - Dory, G2 = Doi' - *Pory” " 421 Gas,

o Q31 335-
b3 = p31 - P3ry, a3 = P3i* *- ‘pg}? : Q:f:fl T %s;
for some integers ri,79,73, 51, 82,53 > 0, a;; > 0, B3y > 1 and primes p;;, ¢;j» wWith g;;» # pij.
Now, consider a fixed prime p | D with § := 1,(D). Note that p does not divide all of the
bl, bg, b3 as ng(bl, bg, b3) =1.

Case 1: Suppose p does not divide any of the by, by, bs. Since D | a?b? for i = 1,2,3, we
must have p | a1, a2,a3. Say p = q1j, = @2, = q3j, for some 1 < j,, < s, for m = 1,2,3.
As p?||D? = ged(ash§, a?b3a3b3) and ged(p, bibabs) = 1, we have 26 = min(43, ,,2(81 4, +
Bsj,)) > 4. Hence, we have 2 < § = min(20s;,, 51, + F3j,) and

Vp(aibiasboagbs) — v, (D) > Bij, + Boj, + By — (Bujy + P3js) = Bojo > 1.
Case 2: Suppose p divides exactly one of the by, by, bs.

Subcase 1: Suppose 0 is even. Without loss of generality, say p | by, p t by, p 1 b3 as the
other cases are similar. Then, we have p | as, ag and p = ¢z, = g3, for some 1 < j, < s5 and
1 <j3<s3 Asp’|adbs, a3bi, we have §/2 < fBy;, and 6/2 < B3,. By Lemma 9, we have

Vp(a1b1a262a3b3) — I/p(D) Z max(5/3, 1) + ﬁ2j2 + 533‘3 — (5

< 14+0/2+6/2—0>1, when § = 2;
— 1 d/3+d/2+6/2—6>1, wheno > 4.

Subcase 2: Suppose 0 is odd. If p | by, p 1 ba, p 1 b3, then p | by, as,a3. We have
v,(a3hs) > 4 and v,(a3b3a3b3) > 5. Hence, we get § > 3 as p?||D? = ged(a3b§, a?b3a3b3) and
disodd. If p | by, ptp1, ptps, then p | by, ay, az. We have v,(a3bs) > 6 and v, (afbia3b3) > 4.
Hence, we get 6 > 3 by similar reasoning. If p | b, p 1 by, p 1 by, we also get § > 3 as it is
similar to p | by, p 1 ba, p 1 bs. Therefore, we obtain § > 3 in all circumstances.

Suppose p { b;, by for some 1 <7 <4’ < 3. Then p | a;,ay. Say p = ¢;;, = qu;, for some
1<j; <sjand 1 < jy < sy. Thus, we have 3 < <28;;, —1and 3 <6 <28y, —1asdis
odd. Hence, we have 3;;,, By;, > /2 +1/2 and

Vp(aibiagbrasbs) — vp(D) > 1+ Byj, + Birj, — 6 > 1.

Case 3: Suppose p divides exactly two of the by, bo, bs.
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Subcase 1: Suppose ¢ is even. Without loss of generality, say p | by, p | by, p 1 b3 as
the other cases are similar. Then p | a3 and p = p1j, = p2j, = ¢sj, for some 1 < j; < ry,
1<jp<rpand 1 < js <s3 Asp’ | albi, we have 6/2 < B35, Also, as p° | a?b?, a2b3, we
have 0 < 2ay;, + 2 and 6 < 2ay;, + 2 since ¢ is even. Hence, we have

vp(arbiasbaashs) — vy (D) = (onj, + 1) 4 (agj, +1) + P35 — 0 = P, = 1.

Subcase 2: Suppose ¢ is odd. If p | by, p | by, p { b3, then p | by, by, a3. We have
v,(a3bs) > 6 and v,(a3bia3b3) > 5. Hence, we get § > 3 as p?||D? = ged(ash§, a?b3a3b3) and
disodd. If p | by, ptbe, p|bs, then p | by, az,bs. We have v,(a3bs) > 4 and v, (a3b3a3b3) > 6.
Hence, we get § > 3 by similar reasoning. If p{ by, p | ba, p | b3, we also get § > 3 as it is
similar to the case p | by, p | ba, p 1 bs. Therefore, we obtain ¢ > 3 in all circumstances.

Suppose p t b; for some 1 < ¢ < 3. Then p | a; and p = g;;, for some 1 < j; <'s;. Thus,
we have 3 <0 <2f,;;, —1 as 0 is odd, and f3;;, > §/2+ 1/2. By Lemma 9, we have
) 1

)
vp(aibragbaasbs) — v, (D) > 3 + 3 + Bij, — 0 >

+ 0 > ! + S _ 1

2 62 6
Consequently, the right-hand side of (5) is at least 1 in all of the above cases. As a result,

we have inequalities (5) and (4). Putting (4) into (3), we obtain

N2 a1b1a2b2a3b3d I+e N3/2d Ite
ﬁgq( D2 > €<m>

as a?b?, a2b3, a2b? < N. Together with D > 1, we have N'/272¢ <« d and 63 > 1/2 as € can
be arbitrarily small. O]

5 Proof of Theorem 8

Proof. For k > 4, the lower bound 6 > 1/2 follows from the observation that 65 > 63 and
05 > 1/2 from Theorem 7 under the abc-conjecture.

For the upper bound 64 < 4/5, we construct 4-APs of powerful numbers as follows. With
positive integer a, the following four expressions

(z —a)*(z +a)?, (v —a)’z(z + a)?, (z — a)*(z + a)®, (v — a)*(x + a)*(x + 2a) (6)

form a 4-AP with common difference d = a(x — a)?*(x + a)?. Note that the first and third
terms give powerful numbers for any integer x. If x and z + 2a are powerful, then all four
polynomials would result in powerful numbers. We can pick a = 2. Note that the Pell
equation

X?—2Y?=1or2X? —4y? =2 0r 4X? =8Y* 4



has solutions

X + V2V, = (3 +2V2)™ for positive integer m.
By choosing z = 8Y,2 and = + 2a = z + 4 = 4X?, we turn (6) into our desired 4-AP of
powerful numbers. Observe that the common difference

d=2(x—2)%(z+2)* <3((x —2)3x +2)%)> = 3NY5
for large enough m (and hence N). We have 6, < 4/5.

For the upper bound 05 < 9/10, one can build upon our 3-AP and 4-AP constructions.
With positive integer a, the following five expressions

(y—2a)(y—a)*(y+a)®, (y—a)’(y+a)*, (y—a)’y(y+a)*, (y—a)*(y+a)’, (y—a)*(y+a)*(y+2a)

(7)
form a 5-AP with common difference d = a(y — a)*(y +a)?. Note that the second and fourth
terms give powerful numbers for any integer y. If y — 2a, y and y + 2a are powerful, then
all five terms would be powerful. From our 3-AP construction, we can find infinitely many
3-APs of powerful numbers

y—2a=2*2" -2z —1)=2°n?y=2%"= (20)% y+2a=2%(2* + 20 + 1) = (2(x + 1))?

with
20 = 2*(2x + 1) = 8z + 4.

With the above choices, we obtain the desired 5-AP of powerful numbers with common
difference

d = (4o + 2)(42* — 4o — 2)*(42? + 4z + 2)*

9/10
< 3((4:52 ~ 8w — 4)(42? — du — 2)2(4a? + 4 + 2)2) — 3N/10

for large enough = (and hence N). Thus, we have 05 < 9/10.

For the general upper bound 6, < 1 — 10.3%, we use induction on k > 5 similar to
Theorem 3. The base case #; <1 — 10_3% is true from 65 < 9/10. Suppose, for some k > 5,

there are infinitely many k-APs among powerful numbers with d < Cy N 1= o35 Say one
such AP is

1
N = a2b? < a2b3 < --- < alb}  with common difference 1 < d < C\,N' 103575

Consider the number a2b} + d = a?b for some integer a and squarefree number b. Multiply
everything by b2, the following k + 1 numbers

Ny = Nb* = a2b3b® < asbsb® < --- < aibib?® < a*b®
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form a (k + 1)-AP of powerful numbers with common difference db?. Note that
b<a’b=N +kd< (1+kCy)N.
Hence, we have

dblo-32k—4 < d(l + ka) 10-3216—4 N10-32’€—4
< Ck(l + ]{:Ck) 10-32k—4 le 10-31k—5+10-32k—4 = Ck;(l + k;C’k) 10-3216—4 le 1o<31k—4

and
1 1
db2 S Ck(l + ]CO]C)710~32’“_4 (Nb2>1_710-3k_4 — Ok+1N11 10.3(k+1)—5

with Cyyq = Ci(1 + kCy) w031 This completes the induction proof. O

6 Acknowledgment

The author would like to thank Prof. Lajos Hajdu for pointing out that Theorem 3 has long
been known and is even true for perfect powers only. The author also wants to thank the
anonymous referee for some helpful corrections.

References

[1] T. H. Chan, A note on powerful numbers in short intervals, Bull. Australian Math. Soc.,
2022. Available at https://doi.org/10.1017/S0004972722000995.

[2] P. Erdds, Consecutive integers, Fureka 38 (1975-76), 3-8.

[3] L. Hajdu, Perfect powers in arithmetic progression. A note on the inhomogeneous case,
Acta Arith. 113 (2004), 343-349.

[4] A. Granville, Powerful numbers and Fermat’s last theorem, C. R. Math. Rep. Acad. Sci.
Canada 8 (1986), 215-218.

[5] B. J. Green and T. C. Tao, The primes contain arbitrarily long arithmetic progressions,
Ann. of Math. (2) 167 (2008), 481-547.

[6] R. A. Mollin and P. G. Walsh, A note of powerful numbers, quadratic fields and the
Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 109-114.

2020 Mathematics Subject Classification: Primary 11N25.
Keywords: powerful number, k-full number, arithmetic progression, abc-conjecture.



https://doi.org/10.1017/S0004972722000995

(Concerned with sequence A001694.)

Received September 30 2022; revised versions received October 1 2022; October 3 2022;
December 13 2022. Published in Journal of Integer Sequences, December 14 2022.

Return to Journal of Integer Sequences home page.

10


https://oeis.org/A001694
https://cs.uwaterloo.ca/journals/JIS/

	Introduction and main results
	Notation

	Proof of Theorem 3: long AP of powerful numbers
	Proof of Theorem 7: 3-AP upper bound
	Proof of Theorem 7: 3-AP lower bound
	Proof of Theorem 8
	Acknowledgment

