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Abstract

In this paper, we study k-term arithmetic progressions N,N + d, . . . , N + (k − 1)d
of powerful numbers. Unconditionally, we exhibit infinitely many 3-term arithmetic
progressions of powerful numbers with d ≤ 5N1/2. Assuming the abc-conjecture, we
obtain a nearly tight lower bound on the common difference. We also prove some
partial results when k ≥ 4 and pose some open questions.

1 Introduction and main results

For any integer k ≥ 1, a non-trivial k-term arithmetic progression (abbreviated as k-AP) is
a sequence of the form

N,N + d,N + 2d, . . . , N + (k − 1)d

with initial term N and common difference d > 0. Any single number or two different num-
bers can be considered as a 1-AP or 2-AP respectively. So, from now on, we will assume
k ≥ 3. It is well-known that there are infinitely many 3-APs among perfect squares (e.g.,
1, 25, 49) but there is no 4-AP of perfect squares (first discovered by Fermat). One may
ask if there exist k-APs among other interesting arithmetic or polynomial sequences. For
instance, Green and Tao [5] recently proved that there are arbitrarily long arithmetic pro-
gressions among the prime numbers. In this paper, we are interested in studying arithmetic
progressions of powerful numbers A001694 which are square-like.
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Definition 1. A number n is powerful if p2 | n whenever p | n (i.e., its prime factorization
n = pa11 pa22 · · · parr satisfies ai ≥ 2 for all 1 ≤ i ≤ r.)

For example, 72 = 23 · 32 is powerful but 24 = 23 · 3 is not. Another common name for
powerful number is squarefull number. A closely related concept is squarefree number.

Definition 2. A number n is squarefree if p2 ∤ n for all prime p | n (i.e., its prime factorization
n = pa11 pa22 · · · parr satisfies ai = 1 for all 1 ≤ i ≤ r.).

For example, 30 = 2·3·5 is squarefree but 24 = 23·3 is not. By unique prime factorization,
one can show that any positive integer and any powerful number can be factored uniquely
as n = a2b and n = a2b3 respectively for some integer a ≥ 1 and squarefree number b ≥ 1.
Unlike perfect squares, there are arbitrarily long arithmetic progressions among powerful
numbers.

Theorem 3. For any integer k ≥ 3, there is a k-term arithmetic progression of powerful
numbers.

The above theorem is not new (see remark 2 in [3] for example) but we include a proof for
completeness. For k = 3, there is a folklore conjecture concerning 3-AP of powerful numbers
which seems to have been first posed by Erdős [2].

Conjecture 4. There are no three consecutive powerful numbers.

Later, Mollin and Walsh [6] and Granville [4] reiterated the same conjecture and provided
some evidence and interesting consequences. Currently, we are far from being able to prove
Conjecture 4. However, Conjecture 4 follows from the famous abc-conjecture (see the first
half of the proof of Theorem 1.6 with d = 1 and y = 3 in [1] for example). Let

κ(m) :=
∏

p|m

p

denote the squarefree kernel or radical of an integer m.

Conjecture 5 (abc-conjecture). For any ǫ > 0, there exists a constant Cǫ > 0 such that, for
any integers a, b, c with a+ b = c and gcd(a, b) = 1, the bound

max{|a|, |b|, |c|} ≤ Cǫ · κ(abc)1+ǫ

holds.

In other words, there is no 3-AP of powerful numbers with common difference d = 1 under
the abc-conjecture. Recently, the author [1] studied powerful numbers in short intervals, and
it can be deduced that, for any ǫ > 0, there is no 3-AP of powerful numbers with d ≤ N1/4−ǫ

for sufficiently large N under the abc-conjecture. On the other hand, for any integer m ≥ 1,
the following three expressions

(2m2 − 1)2, (2m2 + 2m+ 1)2, (2m2 + 4m+ 1)2 (1)
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form a 3-AP of perfect squares with common difference d = 8m3+12m2+4m. Hence, there
are infinitely many 3-APs of powerful numbers with d ≤ 6N3/4. Thus, we are led to the
following natural question.

Question 6. We say that 0 < θ < 1 is an admissible exponent if there exists Cθ > 0 such
that there are infinitely many 3-APs of powerful numbers N,N + d,N + 2d with common
difference d ≤ CθN

θ. Find the infimum, θ3, among all such admissible exponents.

The above discussion yields 1

4
≤ θ3 ≤ 3

4
. We shall prove the following optimal result.

Theorem 7. Assuming the abc-conjecture, we have θ3 =
1

2
.

Analogously, one can define θk for k-AP of powerful numbers when k ≥ 4. We have the
following partial results.

Theorem 8. Assuming the abc-conjecture, we have

1

2
≤ θ4 ≤

4

5
,
1

2
≤ θ5 ≤

9

10
, and

1

2
≤ θk ≤ 1− 1

10 · 3k−5

for k ≥ 5.

Note that the upper bounds in Theorems 7 and 8 hold unconditionally and it is their
lower bounds that require the abc-conjecture.

It would be interesting to see if one can prove θ4 > 1/2 under the abc-conjecture. Another
future direction would be narrowing the above ranges for θk when k ≥ 4. One can also ask if
there exist infinitely many 3-APs of powerful numbers with common difference d = o(

√
N).

1.1 Notation

Throughout the paper, the letters N , k, m, n, a, b, c and d stand for positive integers while
the letters p, pij and qij′ stand for prime numbers. The symbol a | b means that a divides
b, the symbol a ∤ b means that a does not divide b, and the symbol pn||a means that pn | a
but pn+1 ∤ a. The function νp(a) stands for the p-adic valuation of a (i.e., νp(a) = n when
pn||a). The symbol f(x) ≪ g(x) is equivalent to |f(x)| ≤ Cg(x) for some constant C > 0.
The symbol f(x) ≪λ g(x) means that the implicit constant may depend on λ. Finally, the
symbol f(x) = o(g(x)) means that limx→∞ f(x)/g(x) = 0.

2 Proof of Theorem 3: long AP of powerful numbers

Proof. We apply induction on k. The base case k = 3 follows from (1) on 3-AP among
perfect squares. Suppose, for some k ≥ 3, there is a k-AP among powerful numbers, say

a21b
3

1 < a22b
3

2 < · · · < a2kb
3

k with common difference d ≥ 1.
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Consider the number a2kb
3
k + d = a2b for some integer a and squarefree number b. Then

a21b
3

1b
2 < a22b

3

2b
2 < · · · < a2kb

3

kb
2 < a2b3

is a (k+1)-AP of powerful numbers with common difference db2. This finishes the induction
proof.

3 Proof of Theorem 7: 3-AP upper bound

Proof. For the upper bound θ3 ≤ 1/2, we first consider the following 3-AP:

x2 − 2x− 1, x2, x2 + 2x+ 1.

The last two terms are perfect squares. We want the first term to contain a large square
factor. The Pell equation

X2 − 2Y 2 = −1

has infinitely many integer solutions given by

Xm +
√
2Ym = (1 +

√
2)2m+1 with integer m ≥ 1.

By setting n = X and x−1

2
= Y , the generalized Pell equation

(x− 1)2 − 2n2 = 2 (2)

has infinitely many integer solutions given by

x− 1 = 2Ym and n = Xm.

Then, equation (2) gives us infinitely many integers x such that x2 − 2x− 1 = 2n2 for some
integer n. Therefore, we have infinitely many 3-APs of powerful numbers, namely

N = 22(x2 − 2x− 1) = 23n2, N + d = 22x2 = (2x)2, N + 2d = 22(x2 + 2x+ 1) = (2(x+ 1))2

with common difference
d = 22(2x+ 1) = 8x+ 4 ≤ 5N1/2.

Hence, we have θ3 ≤ 1/2.

4 Proof of Theorem 7: 3-AP lower bound

First, we need a simple observation.

Lemma 9. Suppose a and b are positive integers and pδ | a2b3 for some prime p and integer
δ ≥ 1. Then νp(ab) ≥ δ/3.
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Proof. From the definitions of divisibility and p-adic valuation, we have δ ≤ 2νp(a)+ 3νp(b).
Dividing everything by 3, we have δ/3 ≤ 2νp(a)/3 + νp(b) ≤ νp(a) + νp(b) = νp(ab).

Proof of Theorem 7. Consider any 3-AP of powerful numbers N,N + d,N + 2d with

N = a21b
3

1, N + d = a22b
3

2, and N + 2d = a23b
3

3

for some integers a1, a2, a3 and squarefree numbers b1, b2, b3. If some prime p divides b1, b2
and b3, then we can consider the reduced 3-AP of powerful numbers

N

p3
,
N

p3
+

d

p3
,
N

p3
+

2d

p3
.

If one could prove a lower bound d/p3 ≥ Cθ(N/p3)θ with some 0 < θ < 1 and Cθ > 0 for the
reduced 3-AP, one would also have d ≥ CθN

θ for the original 3-AP. Hence, we may assume
gcd(b1, b2, b3) = 1.

Since (N + d)2 = N(N + 2d) + d2, we have a42b
6
2 = a21b

3
1a

2
3b

3
3 + d2. Let D2 = gcd(a42b

6
2, d

2)
which also equals to gcd(a42b

6
2, a

2
1b

3
1a

2
3b

3
3) and gcd(a21b

3
1a

2
3b

3
3, d

2). Note that as D | a22b32 and
D | d, we also have D | a21b31 and D | a23b33. Dividing everything by D2, we have the equation

(a22b
3
2

D

)2

=
(a21b

3
1

D

a23b
3
3

D

)

+
( d

D

)2

where the three terms are pairwise relatively prime. By the abc-conjecture, we have

N2

D2
≤

(a22b
3
2

D

)2

≤ Cǫ

(

κ
(a21b

3
1

D

a22b
3
2

D

a23b
3
3

D

)

κ
( d

D

))1+ǫ

(3)

as κ(mn) ≤ κ(m)κ(n). If one simply bounds the right-hand side of (3) by

≤ Cǫ

(

a1b1a2b2a3b3
d

D

)1+ǫ

≪ Cǫ

(N3/2d

D

)1+ǫ

,

solves for d, and applies D ≤ d as in [1, Theorem1.6], one would obtain N1/4−ǫ ≪ǫ d and
the lower bound θ3 ≥ 1/4 only. So, in order to prove Theorem 7, we need a finer analysis.
We claim that

κ
(a21b

3
1

D

a22b
3
2

D

a23b
3
3

D

)

≤ a1b1a2b2a3b3
D

(4)

which would follow from

νp

(

κ
(a21b

3
1

D

a22b
3
2

D

a23b
3
3

D

))

≤ νp(a1b1a2b2a3b3)− νp(D) (5)

for any prime p. Firstly, if a prime p does not divide a1b1a2b2a3b3, then (5) is true as both
sides are 0. Secondly, if a prime p | a1b1a2b2a3b3 but p ∤ D, then left hand side of (5) is
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exactly 1 while the right-hand side of (5) is ≥ 1−0. So, inequality (5) is true for such primes.
Thus, it remains to consider those primes p which divide both a1b1a2b2a3b3 and D. Notice
that the left-hand side of (5) is at most 1 for such primes. Suppose we have the following
prime factorizations

b1 = p11 · · · p1r1 , a1 = pα11
11 · · · pα1r1

1r1
· qβ11

11 · · · qβ1s1
1s1

b2 = p21 · · · p2r2 , a2 = pα21
21 · · · pα2r2

2r2
· qβ21

21 · · · qβ2s2
2s2

b3 = p31 · · · p3r3 , a3 = pα31
31 · · · pα3r3

3r3
· qβ31

31 · · · qβ3s3
3s3

for some integers r1, r2, r3, s1, s2, s3 ≥ 0, αij ≥ 0, βij′ ≥ 1 and primes pij, qij′ with qij′ 6= pij.
Now, consider a fixed prime p | D with δ := νp(D). Note that p does not divide all of the
b1, b2, b3 as gcd(b1, b2, b3) = 1.

Case 1: Suppose p does not divide any of the b1, b2, b3. Since D | a2i b3i for i = 1, 2, 3, we
must have p | a1, a2, a3. Say p = q1j1 = q2j2 = q3j3 for some 1 ≤ jm ≤ sm for m = 1, 2, 3.
As p2δ||D2 = gcd(a42b

6
2, a

2
1b

3
1a

2
3b

3
3) and gcd(p, b1b2b3) = 1, we have 2δ = min(4β2,j2 , 2(β1,j1 +

β3j3)) ≥ 4. Hence, we have 2 ≤ δ = min(2β2j2 , β1j1 + β3j3) and

νp(a1b1a2b2a3b3)− νp(D) ≥ β1j1 + β2j2 + β3j3 − (β1j1 + β3j3) = β2j2 ≥ 1.

Case 2: Suppose p divides exactly one of the b1, b2, b3.

Subcase 1: Suppose δ is even. Without loss of generality, say p | b1, p ∤ b2, p ∤ b3 as the
other cases are similar. Then, we have p | a2, a3 and p = q2j2 = q3j3 for some 1 ≤ j2 ≤ s3 and
1 ≤ j3 ≤ s3. As p

δ | a22b32, a23b33, we have δ/2 ≤ β2j2 and δ/2 ≤ β3j3 . By Lemma 9, we have

νp(a1b1a2b2a3b3)− νp(D) ≥ max(δ/3, 1) + β2j2 + β3j3 − δ

≥
{

1 + δ/2 + δ/2− δ ≥ 1, when δ = 2;
δ/3 + δ/2 + δ/2− δ > 1, when δ ≥ 4.

Subcase 2: Suppose δ is odd. If p | b1, p ∤ b2, p ∤ b3, then p | b1, a2, a3. We have
νp(a

4
2b

6
2) ≥ 4 and νp(a

2
1b

3
1a

2
3b

3
3) ≥ 5. Hence, we get δ ≥ 3 as p2δ||D2 = gcd(a42b

6
2, a

2
1b

3
1a

2
3b

3
3) and

δ is odd. If p | b2, p ∤ p1, p ∤ p3, then p | b2, a1, a3. We have νp(a
4
2b

6
2) ≥ 6 and νp(a

2
1b

3
1a

2
3b

3
3) ≥ 4.

Hence, we get δ ≥ 3 by similar reasoning. If p | b3, p ∤ b1, p ∤ b2, we also get δ ≥ 3 as it is
similar to p | b1, p ∤ b2, p ∤ b3. Therefore, we obtain δ ≥ 3 in all circumstances.

Suppose p ∤ bi, bi′ for some 1 ≤ i < i′ ≤ 3. Then p | ai, ai′ . Say p = qiji = qi′j
i′
for some

1 ≤ ji ≤ si and 1 ≤ ji′ ≤ si′ . Thus, we have 3 ≤ δ ≤ 2βiji − 1 and 3 ≤ δ ≤ 2βi′j
i′
− 1 as δ is

odd. Hence, we have βiji , βi′j
i′
≥ δ/2 + 1/2 and

νp(a1b1a2b2a3b3)− νp(D) ≥ 1 + βiji + βi′j
i′
− δ > 1.

Case 3: Suppose p divides exactly two of the b1, b2, b3.
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Subcase 1: Suppose δ is even. Without loss of generality, say p | b1, p | b2, p ∤ b3 as
the other cases are similar. Then p | a3 and p = p1j1 = p2j2 = q3j3 for some 1 ≤ j1 ≤ r1,
1 ≤ j2 ≤ r2 and 1 ≤ j3 ≤ s3. As pδ | a23b33, we have δ/2 ≤ β3j3 . Also, as pδ | a21b31, a22b32, we
have δ ≤ 2α1j1 + 2 and δ ≤ 2α2j2 + 2 since δ is even. Hence, we have

νp(a1b1a2b2a3b3)− νp(D) ≥ (α1j1 + 1) + (α2j2 + 1) + β3j3 − δ ≥ β3j3 ≥ 1.

Subcase 2: Suppose δ is odd. If p | b1, p | b2, p ∤ b3, then p | b1, b2, a3. We have
νp(a

4
2b

6
2) ≥ 6 and νp(a

2
1b

3
1a

2
3b

3
3) ≥ 5. Hence, we get δ ≥ 3 as p2δ||D2 = gcd(a42b

6
2, a

2
1b

3
1a

2
3b

3
3) and

δ is odd. If p | b1, p ∤ b2, p | b3, then p | b1, a2, b3. We have νp(a
4
2b

6
2) ≥ 4 and νp(a

2
1b

3
1a

2
3b

3
3) ≥ 6.

Hence, we get δ ≥ 3 by similar reasoning. If p ∤ b1, p | b2, p | b3, we also get δ ≥ 3 as it is
similar to the case p | b1, p | b2, p ∤ b3. Therefore, we obtain δ ≥ 3 in all circumstances.

Suppose p ∤ bi for some 1 ≤ i ≤ 3. Then p | ai and p = qiji for some 1 ≤ ji ≤ si. Thus,
we have 3 ≤ δ ≤ 2βiji − 1 as δ is odd, and βiji ≥ δ/2 + 1/2. By Lemma 9, we have

νp(a1b1a2b2a3b3)− νp(D) ≥ δ

3
+

δ

3
+ βiji − δ ≥ 1

2
+

δ

6
≥ 1

2
+

3

6
= 1.

Consequently, the right-hand side of (5) is at least 1 in all of the above cases. As a result,
we have inequalities (5) and (4). Putting (4) into (3), we obtain

N2

D2
≤ Cǫ

(a1b1a2b2a3b3d

D2

)1+ǫ

≪ Cǫ

(N3/2d

D2

)1+ǫ

as a21b
3
1, a

2
2b

3
2, a

2
3b

2
3 ≪ N . Together with D ≥ 1, we have N1/2−2ǫ ≪ǫ d and θ3 ≥ 1/2 as ǫ can

be arbitrarily small.

5 Proof of Theorem 8

Proof. For k ≥ 4, the lower bound θk ≥ 1/2 follows from the observation that θk ≥ θ3 and
θ3 ≥ 1/2 from Theorem 7 under the abc-conjecture.

For the upper bound θ4 ≤ 4/5, we construct 4-APs of powerful numbers as follows. With
positive integer a, the following four expressions

(x− a)3(x+ a)2, (x− a)2x(x+ a)2, (x− a)2(x+ a)3, (x− a)2(x+ a)2(x+ 2a) (6)

form a 4-AP with common difference d = a(x − a)2(x + a)2. Note that the first and third
terms give powerful numbers for any integer x. If x and x + 2a are powerful, then all four
polynomials would result in powerful numbers. We can pick a = 2. Note that the Pell
equation

X2 − 2Y 2 = 1 or 2X2 − 4Y 2 = 2 or 4X2 = 8Y 2 + 4
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has solutions
Xm +

√
2Ym = (3 + 2

√
2)m for positive integer m.

By choosing x = 8Y 2
m and x + 2a = x + 4 = 4X2

m, we turn (6) into our desired 4-AP of
powerful numbers. Observe that the common difference

d = 2(x− 2)2(x+ 2)2 ≤ 3((x− 2)3(x+ 2)2)4/5 = 3N4/5

for large enough m (and hence N). We have θ4 ≤ 4/5.

For the upper bound θ5 ≤ 9/10, one can build upon our 3-AP and 4-AP constructions.
With positive integer a, the following five expressions

(y−2a)(y−a)2(y+a)2, (y−a)3(y+a)2, (y−a)2y(y+a)2, (y−a)2(y+a)3, (y−a)2(y+a)2(y+2a)
(7)

form a 5-AP with common difference d = a(y−a)2(y+a)2. Note that the second and fourth
terms give powerful numbers for any integer y. If y − 2a, y and y + 2a are powerful, then
all five terms would be powerful. From our 3-AP construction, we can find infinitely many
3-APs of powerful numbers

y − 2a = 22(x2 − 2x− 1) = 23n2, y = 22x2 = (2x)2, y + 2a = 22(x2 + 2x+ 1) = (2(x+ 1))2

with
2a = 22(2x+ 1) = 8x+ 4.

With the above choices, we obtain the desired 5-AP of powerful numbers with common
difference

d = (4x+ 2)(4x2 − 4x− 2)2(4x2 + 4x+ 2)2

≤ 3
(

(4x2 − 8x− 4)(4x2 − 4x− 2)2(4x2 + 4x+ 2)2
)9/10

= 3N9/10

for large enough x (and hence N). Thus, we have θ5 ≤ 9/10.

For the general upper bound θk ≤ 1 − 1

10·3k−5 , we use induction on k ≥ 5 similar to
Theorem 3. The base case θ5 ≤ 1− 1

10·35−5 is true from θ5 ≤ 9/10. Suppose, for some k ≥ 5,

there are infinitely many k-APs among powerful numbers with d ≤ CkN
1− 1

10·3k−5 . Say one
such AP is

N = a21b
3

1 < a22b
3

2 < · · · < a2kb
3

k with common difference 1 ≤ d ≤ CkN
1− 1

10·3k−5 .

Consider the number a2kb
3
k + d = a2b for some integer a and squarefree number b. Multiply

everything by b2, the following k + 1 numbers

N1 := Nb2 = a21b
3

1b
2 < a22b

3

2b
2 < · · · < a2kb

3

kb
2 < a2b3
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form a (k + 1)-AP of powerful numbers with common difference db2. Note that

b ≤ a2b = N + kd ≤ (1 + kCk)N.

Hence, we have

db
2

10·3k−4 ≤ d(1 + kCk)
2

10·3k−4N
2

10·3k−4

≤ Ck(1 + kCk)
2

10·3k−4N1− 1

10·3k−5+
2

10·3k−4 = Ck(1 + kCk)
2

10·3k−4N1− 1

10·3k−4

and

db2 ≤ Ck(1 + kCk)
2

10·3k−4 (Nb2)1−
1

10·3k−4 = Ck+1N
1− 1

10·3(k+1)−5

1

with Ck+1 := Ck(1 + kCk)
2

10·3k−4 . This completes the induction proof.
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