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Abstract

Building on work by Yang and Gao, we explore links between the enumeration
of lattice paths with steps (1, 1), (1,−1), (1, 0) and (2, 0), Riordan arrays, continued
fractions and a conjectured link to Somos-4 sequences. The study gives insights into
the Pascal rhombus and its Riordan array generalizations. We rely on the A-matrix
definition of Riordan arrays first defined by Merlini, Rogers, Sprugnoli, and Verri for
many of our results.

1 Introduction

By a Motzkin-Schröder path we shall understand a lattice path, going from (0, 0) to (n, 0)
using four types of step, U = (1, 1), D = (1,−1), h = (1, 0) and H = (2, 0), that does not go
below the axis y = 0 (see Figure 1). Such paths have been called 2-Motzkin paths, but this
term has been also used to describe Motzkin paths with two types of horizontal h steps [3, 4].
These paths have also been called 2-generalized Motzkin paths [12]. To avoid confusion, we
use the term Motzkin-Schröder path in this note. A Motzkin-Schröder path with no H-steps
is an ordinary Motzkin path, while a Motzkin-Schröder path of length 2n with no h-steps is
an ordinary Schröder path. Lattice paths in the positive quadrant from (0, 0) to (n, 0) with
only the steps (1, 1) and (1,−1) are called Dyck paths of length n.

Known sequences will be referred to by their On-Line Encyclopedia of Integer Sequences
(OEIS) numbers [13, 16]. All number triangles in this note are of infinite extent; we show
suitable truncations in relevant cases.
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Dyck paths of length n are enumerated by the Catalan numbers Cn = 1
n+1

(

2n
n

)

A000108,
governed by the recurrence

Cn =
n−1
∑

i=0

CiCn−i−1, C0 = 1.

Motzkin paths of length n are enumerated by the Motzkin numbers Mn =
∑⌊n

2
⌋

k=0

(

n

2k

)

Ck

A001006, governed by the recurrence

Mn = Mn−1 +
n−2
∑

i=0

MiMn−2−i, M0 = 1,M1 = 1.

Schröder paths of length 2n are enumerated by the large Schröder numbers Sn =
∑n

k=0

(

n+k

2k

)

Ck

A06318, governed by the recurrence

Sn = 3Sn−1 +
n−2
∑

i=1

SiSn−i−1, S0 = 1, S1 = 2.

Proposition 1. The number An = An(r, s, t) of Motzkin-Schröder paths of length n where
the horizontal steps h can be of r colors, the horizontal steps H can be of s colors and the
up steps (1, 1) can be of t colours is given by the following recurrence

An = rAn−1 + sAn−2 + t

n−2
∑

i=0

AiAn−2−i, A0 = 1, A1 = r. (1)

Proof. The first term on the right covers the case where the path, which ends at (n, 0), has
a final h step. The second term covers the case where the path ends with a final H step.
This leaves the case where the path ends with a final down (1,−1) step. Thus at some stage
there was an up-step from the line y = 0, which accounts for the multiplier t, and this up
step factors the part of the path from level 1 up into two paths of length i and n− 2− i.

We have for instance, the following instances of An(r, s, t) (where “aerated” signifies a
sequence whose odd-indexed terms are 0. Such a sequence will have a generating function
with only even powers of x).

An(r, s, t) sequence OEIS
An(1, 1, 1) 1, 1, 3, 6, 16, 40, . . . A128720
An(1, 0, 0) 1, 1, 1, 1, 1, 1, . . . A000012
An(0, 1, 0) 1, 0, 1, 0, 1, 0, . . . A059841
An(0, 0, 1) 1, 0, 1, 0, 2, 0, . . . A000108 aerated
An(1, 1, 0) 1, 1, 2, 3, 5, 8, . . . A000045
An(1, 0, 1) 1, 1, 2, 4, 9, 21, . . . A001006
An(0, 1, 1) 1, 0, 2, 0, 6, 0, . . . A006318 aerated
An(1, 0, 2) 1, 1, 3, 7, 21, 61, . . . A025235
An(0, 1, 2) 1, 0, 3, 0, 15, 0, . . . A103210 aerated
An(1, 1, 2) 1, 1, 4, 9, 31, 92, . . . −−−
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Figure 1: Motzkin-Schröder paths for n = 0, 1, 2, 3

2 Generating functions, continued fractions and Rior-

dan arrays

By translating the recurrence (1) into an equation for the generating function, we obtain the
following proposition.

Proposition 2. Let g(x) = g(x; r, s, t) =
∑∞

n=0 An(r, s, t)x
n. Then we have

• g(x) = 1
1−rx−sx2 c

(

tx2

(1−rx−sx2)2

)

, where c(x) = 1−
√
1−4x
2x

is the generating function of the

Catalan numbers,

• g(x) = 1
1−(r−

√
t)x−sx2m

( √
tx

1−(r−
√
t)x−sx2

)

, where m(x) is the generating function of the

Motzkin numbers.

Before proving this result, we recall some results about Riordan arrays [1, 14, 15]. A
Riordan array can be defined by a pair of power series g(x), f(x) where

g(x) = g0 + g1x+ g2x
2 + · · · ,

where g0 6= 0, and
f(x) = f1x+ f2x

2 + f3x
3 + · · · ,

where f0 = 0 and f1 6= 0. Such pairs (g(x), f(x)) then constitute a group for the product

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x))).

The pair (g(x), f(x)) acts on a power series h(x) by weighted composition as follows.

(g(x), f(x)) · h(x) = g(x)h(f(x)).
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This operation is generally referred to as the fundamental theorem of Riordan arrays. The
pair of power series (g(x), f(x)) has a matrix representation given by the matrix (tn,k)0≤i,j≤∞
where

tn,k = [xn]g(x)f(x)k.

Here, [xn] is the linear functional that extracts the coefficient of xn in the power series. The
matrix (tn,k) is then the Riordan array representing the Riordan group element (g(x), f(x)).
By an abuse of language, we often refer to the pair (g(x), f(x)) as a Riordan array. By
construction, Riordan arrays are invertible lower-triangular matrices, and the group product
above translates into matrix multiplication in the matrix representation.

Riordan arrays have several sequence characterizations. For instance, (tn,k) is a Riordan
array if and only if we can express tn+1,k+1 as a (fixed) linear combination of the elements in
the row above it and starting with tn,k. The coefficients of this linear combination constitute
what is referred to as the A sequence of the array. An alternative A matrix characterization
exists, and we shall see some examples of this later in this note.

Proof. The generating function g(x) satisfies the equation

g(x) = 1 + rxg(x) + sx2g(x) + tx2g(x)2.

Solving this equation for g(x), we find that

g(x) =
1− rx− sx2 −

√

(1− rx− sx2)2 − 4tx2

2tx2
.

With c(x) = 1−
√
1−4x
2x

, this last expression is then equal to

1

1− rx− sx2
c

(

tx2

(1− rx− sx2)2

)

.

Similarly, with

m(x) =
1− x−

√
1− 2x− 3x2

2x2

we can verify that

g(x) =
1

1− (r −
√
t)x− sx2

m

(
√
tx

1− (r −
√
t)x− sx2

)

.

Corollary 3. The generating function g(x; r, s, t) is the result of operating on the generating
function of the Motzkin numbers m(x) by the Riordan array

(

1

1− (r −
√
t)x− sx2

,

√
tx

1− (r −
√
t)x− sx2

)

.
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Proof. This follows from the proposition and the fundamental theorem of Riordan arrays
[15], which takes the form (u(x), v(x)) · g(x) = u(x)g(v(x)).

Corollary 4. The generating function g(x; r, s, t) is the result of operating on the generating
function of the Catalan numbers c(x) by the stretched Riordan array

(

1

1− rx− sx2
,

tx2

(1− rx− sx2)2

)

.

Corollary 5. We have

An(r, s, t) =
n

∑

k=0

n−2k
∑

j=0

(

2k + j

j

)(

j

n− 2k − j

)

sn−2k−jr2(k+j)−ntkCk.

The generating function c(x) of the Catalan numbers can be expressed as the following
Stieltjes-type continued fraction [17].

c(x) =
1

1−
x

1−
x

1− · · ·

.

Operating on this by the stretched Riordan array
(

1
1−rx−sx2 ,

tx2

(1−rx−sx2)2

)

and simplifying,

gives us the following result.

Proposition 6. We let g(x; r, s, t) be the generating function of generalized Motzkin-Schröder
lattice paths where the h steps have r colors, the H steps have s colors and the up steps have
t colors. Then we have

g(x) =
1

1− rx− sx2 −
tx2

1− rx− sx2 −
tx2

1− rx− · · ·

.

Proof. Solving the equation

u =
1

1− rx− sx2 − tx2u

gives u(x) = g(x).
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3 Number triangles

We express

g(x; r, s, t) =
1− rx− sx2 −

√

1− 2rx+ (r2 − 2s− 4t)x2 + 2rsx3 + s2x4

2tx2

=
1− rx− sx2 −

√

(1− rx− sx2)2 − 4tx2

2tx2

as

g(x; r, s, t) =
∞
∑

n=0

∞
∑

k=0

Tn,k(s, t)r
kxn.

Then the matrix (Tn,k(s, t)) begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0

s+ t 0 1 0 0 0 0
0 2s+ 3t 0 1 0 0 0

(s+ t)(s+ 2t) 0 3(s+ 2t) 0 1 0 0
0 3s2 + 12ts+ 10t2 0 2(2s+ 5t) 0 1 0

(s+ t) (s2 + 5ts+ 5t2) 0 6 (s2 + 5ts+ 5t2) 0 5(s+ 3t) 0 1





















.

For instance, when s = t = 1, the row sums of this triangle (corresponding to r = 1), give
the numbers of Motzkin-Schröder paths of length n 1, 1, 3, 6, 16, 40, . . .. Thus we have





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 5 0 1 0 0 0
6 0 9 0 1 0 0
0 25 0 14 0 1 0
22 0 66 0 20 0 1





















·





















1
1
1
1
1
1
1





















=





















1
1
3
6
16
40
109





















.

This triangle is A132277.
The first column of the matrix (Tn,k(s, t)) has its generating function given by g(x; 0, s, t),

or

g(x; 0, s, t) =
1− sx2 −

√

(1− sx2)− 4tx2

2tx2
.

This expands to give the aerated sequence

1, 0, s+ t, 0, s2 + 3st+ 2t2, 0, s3 + 6s2t+ 10st2 + 5t3, 0, . . . .

When s = t = 1, this gives the aerated large Schröder numbers 1, 0, 2, 0, 6, 0, 22, 0, . . .. We
have the following related continued fraction.
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Proposition 7. The generating function g(
√
x; 0, s, t) can be expressed as the following

Thron-type continued fraction [9]

g(
√
x; 0, s, t) =

1

1− sx−
tx

1− sx−
tx

1− sx− · · ·

.

Proof. Solving the equation u = 1
1−sx−txu

yields

u(x) =
1− sx−

√

1− 2(s+ 2t)x+ s2x2

2tx
= g(

√
x; 0, s, t).

Thus g(
√
x; 0, s, t) is the generating function of Schröder paths whose level steps have s

colors and whose up steps have t colors. The generating function g(
√
x; 0, s, t) expands to

give the sequence that begins

1, s+ t, s2 + 3st+ 2t2, s3 + 6s2t+ 10st2 + 5t3, . . . .

In matrix terms, this gives us, for instance













1 0 0 0 0
t 1 0 0 0
2t2 3t 1 0 0
5t3 10t2 6t 1 0
14t4 35t3 30t2 10t 1

























1
s
s2

s3

s4













=













1
s+ t

s2 + 3st+ 2t2

s3 + 6s2t+ 10st2 + 5t3

· · ·













.

The matrix that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
5 10 6 1 0 0 0
14 35 30 10 1 0 0
42 126 140 70 15 1 0
132 462 630 420 140 21 1





















is A060693, whose (n, k)-th element counts the number of Schröder paths from (0, 0) to
(2n, 0) having k peaks.
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4 Hankel transform

The Hankel transform hn(r, s, t) of An(r, s, t), given by hn = |Ai+j(r, s, t)|0≤i,j≤n, begins

1, s+t, r2st+t(s+t)2, t2(r4st+(s+t)4), t4(r6st2+r4s(s3−3st2−2t3)+3r2s(s+t)4+(s+t)6), . . . .

We have the following conjecture [2].

Conjecture 8. Let An(r, s, t) be the sequence giving the number of Motzkin-Schröder paths
whose h steps have r colors, whose H steps have s colors, and whose up steps have t colors.
Then the Hankel transform hn(r, s, t) of An(r, s, t) is a ((rt)2, t2((s + t)2 − r2t)) Somos-4
sequence.

Here, by an (α, β) Somos-4 sequence we mean a sequence sn [6] such that

αsn−1sn−3 + βs2n−4 = snsn−4.

Example 9. The sequenceAn(1, 1, 1) is the sequence 1, 1, 3, 6, 16, 40, . . . that counts Motzkin-
Schröder paths, A128720. Its Hankel transform hn(1, 1, 1) is given by A174168. This se-
quence begins

1, 2, 5, 17, 109, 706, 9529, 149057, 3464585, . . . .

It is a (1, 3) Somos-4 sequence.

5 The Pascal rhombus and the A-matrix

In this section we let g(x) = g(x; 1, 1, 1). Thus

g(x) =
1− x− x2 −

√
1− 2x− 5x2 + 2x3 + x4

2x2
=

1− x− x2 −
√

(1− x− x2)2 − 4x2

2x2
.

The Riordan array (Rn,k) of Bell type given by (g(x), xg(x)) begins
















1 0 0 0 0 0
1 1 0 0 0 0
3 2 1 0 0 0
6 7 3 1 0 0
16 18 12 4 1 0
40 53 37 18 5 1

















.

This is A132276. This Riordan array is known in the literature as the left-bounded Pascal
rhombus [8, 12, 18]. The rhombus appellation comes from the following property.

Rn,k =



















0, if k < 0;

0k, if n = 0;
(

1
k

)

, if n = 1;

Rn−1,k−1 +Rn−1,k +Rn−1,k+1 +Rn−2,k, otherwise.
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Thus this is a Riordan array with A-matrix [5, 10] given by

(

0 1 0
1 1 1

)

.

The row sums of this matrix, which begin

1, 2, 6, 17, 51, 154, 473, 1464, . . .

are given by A059398, which counts the left factors of Motzkin-Schröder paths (or equiv-
alently, the number of symmetric Motzkin-Schröder paths of length 2n). The generating

function of the row sums of a Bell matrix (g(x), xg(x)) is the INVERT transform g(x)
1−xg(x)

of

g(x). We deduce that the generating function of A059398 can be expressed as the generating
function

1

1− 2x− x2 −
x2

1− x− x2 −
x2

1− x− x2 − · · ·

.

In fact, we have the following proposition.

Proposition 10. The generating function g(x)
1−xyg(x)

of the left-bounded Pascal rhombus can
be expressed as the following continued fraction.

G(x, y) =
1

1− (y + 1)x− x2 −
x2

1− x− x2 −
x2

1− x− x2 − · · ·

.

Proof. We have that

G(x, y) =
1

1− (y + 1)x− x2 − x2g(x)
.

Simplifying the right hand side shows that G(x, y) = g(x)
1−xyg(x)

.

We note that the generating function given by the continued fraction

1

1− x− (y + 1)x2 −
x2

1− x− x2 −
x2

1− x− x2 − · · ·

9
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is the generating function of the stretched Riordan array (g(x), x2g(x)) which begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
3 1 0 0 0 0 0
6 2 0 0 0 0 0
16 7 1 0 0 0 0
40 18 3 0 0 0 0
109 53 12 1 0 0 0





















.

The row sums
1, 1, 4, 8, 24, 61, 175, 486, 1405, 4059, . . .

of this matrix are thus the diagonal sums of the left-bounded Pascal rhombus. This sequence
is A190156. It thus has generating function given by

1

1− x− 2x2 −
x2

1− x− x2 −
x2

1− x− x2 − · · ·

.

Proposition 11. The generating function

1

1− x− x2 −
(y + 1)x2

1− x− x2 −
x2

1− x− x2 − · · ·
is that of the triangle with general term Tn,2k where (Tn,k) is the left-bounded Pascal rhombus
(g(x), xg(x)). The row sums of this matrix have generating function

1

1− x− x2 −
2x2

1− x− x2 −
x2

1− x− x2 − · · ·

.

The array (Tn,2k) begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
3 1 0 0 0 0 0
6 3 0 0 0 0 0
16 12 1 0 0 0 0
40 37 5 0 0 0 0
109 120 25 1 0 0 0





















.
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The row sums
1, 1, 4, 9, 29, 82, 255, 773, 2410, 7499, . . .

are the main diagonal of the Pascal rhombus A059317.

This row sums sequence is then given by A059345. We recall that the (left-justified)
Pascal rhombus begins





















1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 2 4 2 1 0 0 0 0 0 0 0 0
1 3 8 9 8 3 1 0 0 0 0 0 0
1 4 13 22 29 22 13 4 1 0 0 0 0
1 5 19 42 72 82 72 42 19 5 1 0 0
1 6 26 70 146 218 255 218 146 70 26 6 1





















,

where we have high-lighted the main diagonal elements. The generating function of the
Pascal rhombus (Rn,k) is 1

1−x−xy−xy2−x2y2
. We briefly examine the bisection Rn,2k of the

Pascal rhombus, which begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 8 8 1 0 0 0
1 13 29 13 1 0 0
1 19 72 72 19 1 0
1 26 146 255 146 26 1





















.

Conjecture 12. The generating function of the bisection (Rn,2k) of the Pascal rhombus is
given by

1− (y + 1)x+ yx2

1− 2(y + 1)x+ (1− y + y2)x2 + 2y(y + 1)x3 + y2x4
.

Based on this conjecture, we can further posit that the row sums of this triangle, which
begin

1, 2, 6, 18, 57, 184, 601, 1974, 6502, 21446, . . . ,

have generating function
1− 2x− x2

1− 4x+ x2 + 4x3 + x4
,

and the diagonal sums, which begin

1, 1, 2, 5, 10, 22, 50, 112, 254, 579, . . . ,

have generating function

1− x− x2 − x3

(1 + x+ x2)(1− 3x+ x2 + x3 + x4)
.
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Example 13. We consider the number triangle (R̃n,k) defined as follows.

R̃n,k =



















0, if k < 0;

0k, if n = 0;
(

1
k

)

+
(

0
k

)

, if n = 1;

R̃n−1,k−1 + 2R̃n−1,k + R̃n−1,k+1 + R̃n−2,k, otherwise.

This array begins




















1 0 0 0 0 0 0
2 1 0 0 0 0 0
6 4 1 0 0 0 0
18 16 6 1 0 0 0
58 60 30 8 1 0 0
194 224 134 48 10 1 0
670 836 570 248 70 12 1





















.

The first column sequence R̃n,0

1, 2, 6, 18, 58, 194, . . .

counts Motzkin-Schröder paths with two kinds of h steps. It is essentially A085139. We
deduce that

R̃n,0 =
n+1
∑

k=0

(n+k−1
2

n−k+1
2

)

1− (−1)n−k

2
Ck.

The Hankel transform of the sequence R̃n,0 is the sequence 2⌊
(n+1)2

3
⌋ that begins

1, 2, 8, 32, 256, 4096, 65536, . . . .

This sequence satisfies the (simplified) Somos-4 relation

sn =
4sn−1sn−3

sn−4

.

Example 14. We consider the number triangle (R̄n,k) defined as follows.

R̄n,k =



















0, if k < 0;

0k, if n = 0;
(

1
k

)

+ 2
(

0
k

)

, if n = 1;

R̄n−1,k−1 + 3R̄n−1,k + R̄n−1,k+1 + R̄n−2,k, otherwise.
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The matrix (R̄n,k) begins





















1 0 0 0 0 0 0
3 1 0 0 0 0 0
11 6 1 0 0 0 0
42 31 9 1 0 0 0
168 150 60 12 1 0 0
696 709 351 98 15 1 0
2965 3324 1920 672 145 18 1





















.

The first column sequence R̄n,0 (essentially A084782), counts Motzkin-Schröder paths with
three types of h step. The generating function of the sequence R̄n,0 can be expressed as

c
(

x
1−x−x2

)

− 1

x
.

The Hankel transform of this sequence begins

1, 2, 13, 97, 901, 29186, 1647721, 93837697, . . . .

By our conjecture this is a (9,−5) Somos-4 sequence (A184019).
Note that the matrix R̄ is a Bell-type Riordan array with A-matrix

(

0 3 0
1 1 1

)

.

We finish this section by noting that the matrix product (Rn,k) ·
(

(−1)n−k
(

n

k

))

begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
1 4 0 1 0 0 0
7 2 6 0 1 0 0
10 18 3 8 0 1 0
37 24 33 4 10 0 1





















.

It is a Riordan array whose row sums enumerate the Motzkin-Schröder paths. The triangle
itself enumerates Motzkin-Schröder paths of length n according to the number of h steps at
level 0.

6 The A-matrix and continued fractions

The governing result concerning the A-matrix approach to Riordan arrays is as follows [5, 10].
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Theorem 15. A lower-triangular array (tn,k)0≤n,k≤∞ is a Riordan array if and only if there
exists another array A = (ai,j)i,j∈N0 with a0,0 6= 0, and a sequence (ρj)j∈N0 such that

tn+1,k+1 =
∑

i≥0

∑

j≥0

ai,jtn−i,k+j +
∑

j≥0

ρjtn+1,k+j+2.

The power series definition of a Riordan array is as follows. A Riordan array is defined
by a pair of power series, g(x) and f(x), where

g(x) = g0 + g1x+ g2x
2 + · · · , g0 6= 0,

and
f(x) = f1x+ f2x

2 + f3x
3 + · · · , f0 = 0 and f1 6= 0.

We then have
tn,k = [xn]g(x)f(x)k,

where [xn] is the functional that extracts the coefficient of xn. The relationship between
f(x) and the pair (A, ρ) is given by the following key equation.

f(x)

x
=

∑

i≥0

xiR(i)(f(x)) +
f(x)2

x
ρ(f(x)),

where R(i) is the generating series of the i-th row of A, and ρ(x) is the generating series of
the sequence ρn.

We consider the case

A =

(

1 b d
1 a c

)

,

with ρn = 0 for all n. To find u = f(x), we solve the equation

u

x
= 1 + bu+ du2 + x(1 + au+ cu2).

We obtain

u(x) =
1− ax− bx2 −

√

(1− ax− bx2)2 − 4x2(1 + x)(d+ cx)

2x(d+ cx)
.

We can express this as

u(x)

x
=

(1 + x)

1− ax− bx2
ct

(

x2(1 + x)(d+ cx)

(1− ax− bx2)2

)

.

Thus we can express this as the following continued fraction.

u(x)

x
=

1

1− ax− bx2 −
x2(1 + x)(d+ cx)

1− ax− bx2 −
x2(1 + x)(d+ cx)

1− ax− bx2 − · · ·

.
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We now look at the 8 cases defined by the A-matrix

(

a b c
1 1 1

)

for a, b, c ∈ {0, 1}.

• The case

(

0 0 0
1 1 1

)

. This gives us the equation

u

x
= 1 + u+ u2,

with solution

f(x) = u(x) =
1− x−

√
1− 2x− 3x2

2x
=

1− x−
√

(1− x)2 − 4x2

2x
= xm(x).

The corresponding equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1

gives us the Bell Riordan array (m(x), xm(x)) that begins
















1 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
4 5 3 1 0 0
9 12 9 4 1 0
21 30 25 14 5 1

















.

The generating functionm(x) is that of the Motzkin numbers A001006 and the Riordan
array is A064189.

• The case

(

0 0 1
1 1 1

)

. We obtain

f(x) = u(x) =
1− x−

√
1− 2x− 3x2 − 4x3

2x(1 + x)
=

1− x−
√

(1− x)2 − 4x2(1 + x)

2x(1 + x)
.

This case corresponds to lattice paths with steps (1, 1), (1,−1), (1, 0) and a second

up step (2, 1). The generating function g(x) = f(x)
x

is that of the so-called horse
permutations [7]. The equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k+1

yields the Bell-type Riordan array that begins
















1 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
5 5 3 1 0 0
12 14 9 4 1 0
31 38 28 14 5 1

















.
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Figure 2: “Horse” paths for n = 0, 1, 2, 3

The generating function g(x) expands to give the sequence A071359 which begins

1, 1, 2, 5, 12, 31, 83 . . . .

The Riordan array is A190252. The matrix given by (g(x), xg(x)) ·
(

1
1+x

, x
1+x

)

where

the second array is the inverse binomial array
(

(−1)n−k
(

n

k

))

begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 2 0 1 0 0 0
4 4 3 0 1 0 0
11 9 6 4 0 1 0
28 26 15 8 5 0 1





















.

This counts such “horse” paths [7, 10] (see Figure 2) in terms of the number of flat
steps at level 0. These paths are governed by the following recurrence

Hn = Hn−1 +
n−2
∑

i=0

HiHn−2−i +
n−3
∑

i=0

HiHn−3−i, H0 = 1, H1 = 1, H2 = 2. (2)

Equivalently, we have the following equation for the generating function gh(x).

gh(x) = 1 + xgh(x) + x2gh(x)
2 + x3gh(x)

2.

• The case

(

0 1 0
1 1 1

)

is that of the Motzkin-Schröder paths. Thus

u(x) = f(x) =
1− x− x2 −

√
1− 2x− 5x2 + 3x3 + x4

2x

=
1− x− x2 −

√

(1− x− x2)2 − 4x2

2x
.
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Then the equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k

yields the Bell-type Riordan array (g(x), xg(x)) with f(x) = xg(x) which begins

















1 0 0 0 0 0
1 1 0 0 0 0
3 2 1 0 0 0
6 7 3 1 0 0
16 18 12 4 1 0
40 53 37 18 5 1

















.

This is A132276.

• The case

(

0 1 1
1 1 1

)

gives us

u(x) = f(x) =
1− x− x2 −

√
1− 2x− 5x2 − 2x3 + x4

2x(1 + x)

=
1− x− x2 −

√

(1− x− x2)2 − 4x2(1 + x)

2x(1 + x)
.

The equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k + Tn−2,k+1

yields the Bell-type Riordan array that begins

















1 0 0 0 0 0
1 1 0 0 0 0
3 2 1 0 0 0
7 7 3 1 0 0
19 20 12 4 1 0
53 61 40 18 5 1

















.

The sequence that begins
1, 1, 3, 7, 19, 53, 153, . . .

is A078481.

• The case

(

1 0 0
1 1 1

)

gives us

u(x) = f(x) =
1− x−

√
1− 2x− 3x2 − 4x3

2x
.
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The corresponding equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k + Tn−2,k−1

leads to the Riordan array (g(x), (1 + x)xg(x)) where f(x) = x(1 + x)g(x). This array
begins

















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 7 5 1 0 0
12 19 16 7 1 0
31 52 49 29 9 1

















.

This is not of Bell-type. The sequence 1, 1, 2, 5, 12, . . . is A071359. The generating
function f(x)/x expands to give the sequence that begins

1, 2, 3, 7, 17, 43, . . . .

This is A143013.

• The case

(

1 0 1
1 1 1

)

gives us

u(x) = f(x) =
1− x−

√
1− 2x− 3x2 − 8x3 − 4x4

2x(1 + x)
=

1− x−
√

(1 + x)2 − 4x2(1 + x)2

2x(1 + x)
.

The corresponding equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k + Tn−2,k−1

leads to the Riordan array (g(x), (1+x)xg(x)) (where f(x) = x(1+x)g(x)) that begins
















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
6 7 5 1 0 0
16 21 16 7 1 0
44 64 52 29 9 1

















.

This is not a Bell-type Riordan array.

• The case

(

1 1 0
1 1 1

)

gives us

u(x) = f(x) =
1− x− x2 −

√
1− 2x− 5x2 − 2x3 + x4

2x

=
1− x− x2 −

√

(1− x− x2)2 − 4x2(1 + x)

2x
.
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The corresponding equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k + Tn−2,k

leads to the Riordan array (g(x), (1+x)xg(x)) where f(x) = x(1+x)g(x), that begins

















1 0 0 0 0 0
1 1 0 0 0 0
3 3 1 0 0 0
7 9 5 1 0 0
19 27 19 7 1 0
53 81 67 33 9 1

















.

The sequence 1, 1, 3, 7, 19, . . . is A078481. The generating function f(x)/x expands to
give the sequence that begins

1, 2, 4, 10, 26, 72, 206, 606, 1820,

which is essentially A102407.

• The case

(

1 1 1
1 1 1

)

gives us

u(x) = f(x) =
1− x− x2 −

√
1− 2x− 5x2 − 6x3 − 3x4

2x(1 + x)

=
1− x− x2 −

√

(1− x− x2)2 − 4x2(1 + x)2

2x(1 + x)
.

The corresponding equation

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−2,k−1 + Tn−2,k + Tn−2,k+1

leads to the Riordan array (g(x), (1+x)xg(x)) where f(x) = x(1+x)g(x), that begins

















1 0 0 0 0 0
1 1 0 0 0 0
3 3 1 0 0 0
8 9 5 1 0 0
23 29 19 7 1 0
69 93 70 33 9 1

















.

In this case, the generating function f(x)/x expands to give the sequence that begins

1, 2, 4, 11, 31, 92, 283, 893, 2875, . . . .

This is essentially A247333.
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To each of the cases above, we can associate an elliptic curve.

• To the case of

(

0 0 0
1 1 1

)

we can associate the curve of equation

y2 + xy − y = −x2.

Solving this for y gives y = 1−x−
√
1−2x−3x2

2
. Equivalently, the solution to

xy2 + xy − y = −x

gives y = 1−x−
√
1−2x−3x2

2x
.

• To the case of

(

0 0 1
1 1 1

)

we can associate the curve of equation

y2 + xy − y = −x3 − x2,

which yields

y =
1− x−

√
1− 2x− 3x2 − 4x3

2
.

Note then that

(1 + x)2x2y2 + (1 + x)x2y − (1 + x)y = −x3 − x2

gives

y =
1− x−

√
1− 2x− 3x2 − 4x3

2x2(1 + x)
.

• To the case of

(

0 1 0
1 1 1

)

we can associate the curve of equation

y2 + x2y + xy − y = −x2.

This yields

y =
1− x− x2 −

√

(1− x− x2)2 − 4x2

2
.

Alternatively,
xy2 + x2y + xy − y = −x

yields

y =
1− x− x2 −

√

(1− x− x2)2 − 4x2

2x
.
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• To the case of

(

0 1 1
1 1 1

)

we can associate the curve of equation

y2 + x2y + xy − y = −x3 − x2,

which gives

y =
1− x− x2 −

√
1− 2x− 5x2 − 2x3 + x4

2
.

Alternatively we have the curve with equation

(xy(1 + x))2 + x2(xy(1 + x)) + x(xy(1 + x))− (xy(1 + x)) = −x3 − x2,

which gives

y =
1− x− x2 −

√
1− 2x− 5x2 − 2x3 + x4

2x(1 + x)
.

• To the case of

(

1 0 0
1 1 1

)

we can associate the curve of equation

y2 + xy − y = −x3 − x2.

• To the case of

(

1 0 1
1 1 1

)

we can associate the curve of equation

y2 + xy − y = −x4 − 2x3 − x2,

which yields

y =
1− x−

√
1− 2x− 3x2 − 8x3 − 4x4

2
.

• To the case of

(

1 1 0
1 1 1

)

we can associate the curve of equation

y2 + x2yxy − y = −x3 − x2.

• To the case of

(

1 1 0
1 1 1

)

we can associate the curve of equation

y2 + x2y + xy − y = −x4 − 2x3 − x2,

which yields

y =
1− x− x2 −

√
1− 2x− 5x2 − 6x3 − 3x4

2
.

The change of variable y → xy(1 + x) then yields y = f(x) as

y =
1− x− x2 −

√
1− 2x− 5x2 − 6x3 − 3x4

2x(1 + x)
.
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7 3-generalized Motzkin paths

Using the nomenclature of [12], we shall understand by a 3-generalized Motzkin path a path
with unit up and down steps given, respectively, by (1, 1) and (1,−1), and three horizontal
steps h,H, and H of lengths, respectively, of 1, 2, and 3. Such paths are enumerated by the
sequence which begins

1, 1, 3, 7, 18, 48, 132, 372, 1069, 3121, 9232, 27610, . . . .

We find that the generating function g3(x) of these 3-generalized Motzkin paths is given by
the continued fraction expression

g3(x) =
1

1− x− x2 − x3 −
x2

1− x− x2 − x3 −
x2

1− x− x2 − x3 − · · ·

.

Solving the equation

u =
1

1− x− x2 − x3 − x2u
,

we find that

u = u(x) = g3(x) =
1− x− x2 − x3 −

√
1− 2x− 5x2 + 3x4 + 2x5 + x6

2x2
,

or equivalently [18]

g3(x) =
1− x− x2 − x3 −

√

(1− x− x2 − x3)2 − 4x2

2x2
.

The number triangle given by the Riordan array (g3(x), xg3(x)) begins

















1 0 0 0 0 0
1 1 0 0 0 0
3 2 1 0 0 0
7 7 3 1 0 0
18 20 12 4 1 0
48 59 40 18 5 1

















.

The A-matrix for this Riordan array is then given by





0 1 0
0 1 0
1 1 1



 .
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8 Conclusions

In this note, we have studied the enumeration of Motzkin-Schröder paths in the broader

context of Riordan arrays defined by an A-matrix of the form A =

(

a b c
1 1 1

)

. The

key equation for Riordan arrays defined by an A-matrix has allowed us to find generating
functions for the resulting generalized lattice paths. In the case of the Motzkin-Schröder
paths, this resulting generating function is also given by a defining recurrence. Because of the
appearance of the generating function of the Catalan numbers (due to the quadratic nature of
the equations), the generating functions studied all admit continued fraction expressions, and
we conjecture that in each case, the Hankel transform of the expansions of these generating
functions give Somos-4 sequences.
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