Journal of Integer Sequences, Vol. 26 (2023), Article 23.3.6

On Sándor's Inequality for the Riemann Zeta Function

Horst Alzer
Morsbacher Straße 10
51545 Waldbröl
Germany
h.alzer@gmx.de
Man Kam Kwong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hunghom, Hong Kong
mankwong@connect.polyu.hk

Abstract

Let $\omega(n)$ denote the number of distinct prime factors of n. We prove an analogue of a recently published inequality of Sándor that relates a series involving $\omega(n)$ to a quotient of zeta functions.

1 Introduction and statement of the main results

The classical Riemann zeta function is defined for real numbers $s>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}} .
$$

There are several Dirichlet series whose coefficients are arithmetical functions which can be expressed in terms of the zeta function. As an example we have the elegant identity

$$
\begin{equation*}
\frac{\zeta^{2}(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}}, \quad s>1, \tag{1}
\end{equation*}
$$

where $\omega(n)$ denotes the number of distinct prime factors of n; see Apostol [1, p. 247], Hardy and Wright [2, p. 265]. The additive analogues of (1),

$$
\zeta^{2}(s)+\zeta(2 s)=2 \sum_{n=1}^{\infty} \frac{\zeta_{n}(s)}{n^{s}}, \quad s>1
$$

and

$$
\zeta^{2}(s)-\zeta(2 s)=2 \sum_{n=2}^{\infty} \frac{\zeta_{n-1}(s)}{n^{s}}, \quad s>1
$$

where $\zeta_{m}(s)=\sum_{k=1}^{m} 1 / k^{s}$, are due to Hassani and Rahimpour [3].
In 2018, Sándor [5] provided an interesting counterpart of (1),

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda^{\omega(n)}}{n^{s}}<\frac{\zeta^{\lambda}(s)}{\zeta(\lambda s)}, \quad \lambda>2, s>1 \tag{2}
\end{equation*}
$$

Two questions arise naturally. Is there a similar inequality which offers an upper bound for $\zeta^{\lambda}(s) / \zeta(\lambda s)$? Do there exist related results for real parameters λ with $1<\lambda<2$? The aim of this note is to give affirmative answers to both questions.

Our first theorem presents a complement of (2).
Theorem 1. For all real numbers $\lambda>2$ and $s>1$, we have

$$
\begin{equation*}
\frac{\zeta^{\lambda}(s)}{\zeta(\lambda s)}<\sum_{n=1}^{\infty} \frac{\left(2^{\lambda}-2\right)^{\omega(n)}}{n^{s}} \tag{3}
\end{equation*}
$$

Next, we provide upper and lower bounds for $\zeta^{\lambda}(s) / \zeta(\lambda s)$ which are valid for all real numbers λ with $1<\lambda<2$.
Theorem 2. Let $1<\lambda<2$ and $s>1$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(2^{\lambda}-2\right)^{\omega(n)}}{n^{s}}<\frac{\zeta^{\lambda}(s)}{\zeta(\lambda s)}<\sum_{n=1}^{\infty} \frac{\lambda^{\omega(n)}}{n^{s}} \tag{4}
\end{equation*}
$$

In the next section, we collect three lemmas. The proofs of the two theorems are given in Section 3.

2 Lemmas

A proof of the first lemma can be found in Hardy and Wright [2, p. 249].
Lemma 3. Let f be a multiplicative arithmetical function with $f(1)=1$ such that $\sum_{n=1}^{\infty} f(n) / n^{s}$ is absolutely convergent. Then

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}=\prod_{p \text { prime }}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\cdots\right)
$$

The next lemma might be known. Since we cannot give a reference, we include a proof.
Lemma 4. Let $a>0$ and $s>1$ be real numbers. The series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a^{\omega(n)}}{n^{s}} \tag{5}
\end{equation*}
$$

is convergent.
Proof. Let $s>1$. From (1) we conclude that if $0<a \leq 2$, then the series is convergent. Next, let $a>2$. A result of Robin [4] states that there exists a number $b \approx 1.384$ such that

$$
\omega(n) \leq b \frac{\log n}{\log \log n}, \quad n \geq 3
$$

This leads to

$$
\begin{equation*}
\frac{a^{\omega(n)}}{n^{s}} \leq \frac{a^{b \log n / \log \log n}}{n^{s}}, \quad n \geq 3 . \tag{6}
\end{equation*}
$$

Moreover, there exists a positive integer m such that

$$
\begin{equation*}
\frac{a^{b \log n / \log \log n}}{n^{s}} \leq \frac{1}{n^{(s+1) / 2}}, \quad n \geq m . \tag{7}
\end{equation*}
$$

From (6) and (7) we conclude that the series in (5) is convergent.
Lemma 5. Let c and x be real numbers.
(i) If $1<c<2$ and $0<x<1 / 2$, then

$$
\begin{equation*}
\frac{1+\left(2^{c}-3\right) x}{1-x}<\frac{1-x^{c}}{(1-x)^{c}}<\frac{1+(c-1) x}{1-x} \tag{8}
\end{equation*}
$$

(ii) If $c>2$ and $0<x<1 / 2$, then (8) holds with " $>$ " instead of " $<$ ".

Proof. Let $c>0$ and $0<x<1$. We define

$$
\begin{aligned}
u_{c}(x) & =\frac{1-x^{c}}{(1-x)^{c-1}} \\
v_{c}(x) & =\frac{u_{c}(x)-1}{x} \\
w_{c}(x) & =x u_{c}^{\prime}(x)-u_{c}(x)+1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
x^{2} v_{c}^{\prime}(x) & =w_{c}(x) \\
w_{c}^{\prime}(x) & =x u_{c}^{\prime \prime}(x)=\frac{(c-1) c x\left(1-x^{c-2}\right)}{(1-x)^{c+1}} .
\end{aligned}
$$

(i) Let $1<c<2$ and $0<x<1 / 2$. Then $w_{c}^{\prime}(x)<0$. Thus,

$$
w_{c}(x)<w_{c}(0)=0
$$

It follows that

$$
2^{c}-3=v_{c}(1 / 2)<v_{c}(x)<v_{c}(0)=u_{c}^{\prime}(0)=c-1 .
$$

This implies (8).
(ii) Let $c>2$ and $0<x<1 / 2$. Then $w_{c}^{\prime}(x)>0$ and $w_{c}(x)>w_{c}(0)=0$. This gives

$$
v_{c}(0)<v_{c}(x)<v_{c}(1 / 2)
$$

which is equivalent to (8) with ">" instead of " $<$ ".

3 Proof of the theorems

Proof. We follow the method of proof given in [5]. Let $a>0$ and $s>1$. For positive integers n, we define

$$
F_{a}(n)=a^{\omega(n)} .
$$

Since

$$
\omega(1)=0 \quad \text { and } \quad \omega(m n)=\omega(m)+\omega(n), \quad \operatorname{gcd}(m, n)=1,
$$

we obtain

$$
F_{a}(1)=1 \quad \text { and } \quad F_{a}(m n)=F_{a}(m) F_{a}(n), \quad \operatorname{gcd}(m, n)=1 .
$$

From Lemma 3 and Lemma 4 we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{F_{a}(n)}{n^{s}}=\prod_{p \text { prime }}\left(1+\frac{F_{a}(p)}{p^{s}}+\frac{F_{a}\left(p^{2}\right)}{p^{2 s}}+\cdots\right) \tag{9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{F_{a}\left(p^{n}\right)}{p^{n s}}=\sum_{n=1}^{\infty} \frac{a^{\omega\left(p^{n}\right)}}{p^{n s}}=\sum_{n=1}^{\infty} \frac{a}{p^{n s}}=a \frac{p^{-s}}{1-p^{-s}} \tag{10}
\end{equation*}
$$

(i) Let $1<\lambda<2$. Using (9), (10) and Lemma 5, part (i) with $x=p^{-s}$ yields

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(2^{\lambda}-2\right)^{\omega(n)}}{n^{s}}=\prod_{p \text { prime }} \frac{1+\left(2^{\lambda}-3\right) p^{-s}}{1-p^{-s}}<\prod_{p \text { prime }} \frac{1-p^{-s \lambda}}{\left(1-p^{-s}\right)^{\lambda}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda^{\omega(n)}}{n^{s}}=\prod_{p \text { prime }} \frac{1+(\lambda-1) p^{-s}}{\left(1-p^{-s}\right)^{\lambda}}>\prod_{p \text { prime }} \frac{1-p^{-s \lambda}}{\left(1-p^{-s}\right)^{\lambda}} \tag{12}
\end{equation*}
$$

From (11), (12) and

$$
\begin{equation*}
\zeta^{\lambda}(s)=\prod_{p \text { prime }} \frac{1}{\left(1-p^{-s}\right)^{\lambda}}, \quad \zeta(\lambda s)=\prod_{p \text { prime }} \frac{1}{1-p^{-\lambda s}} \tag{13}
\end{equation*}
$$

we conclude that (4) is valid.
(ii) Let $\lambda>2$. We apply Lemma 5, part (ii) with $x=p^{-s}$, then we obtain (11) with " $>$ " instead of " $<$ ". Using this result and (13) leads to (3).

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford University Press, 1959.
[3] M. Hassani and S. Rahimpour, L-Summing method, RGMIA Research Report Collection 7 (4) (2004), article 10.
[4] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367-389.
[5] J. Sándor, An inequality involving a ratio of zeta functions, Notes Number Th. Disc. Math. 24 (2018), 92-94.

2020 Mathematics Subject Classification: Primary 11M06; Secondary 11B83, 26D15.
Keywords: Riemann zeta function, prime omega function, inequality.
(Concerned with sequence A129251.)

Received January 8 2023; revised versions received March 3 2023; March 5 2023. Published in Journal of Integer Sequences, March 162023.

Return to Journal of Integer Sequences home page.

