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Abstract

Let w(n) denote the number of distinct prime factors of n. We prove an analogue
of a recently published inequality of Sandor that relates a series involving w(n) to a

quotient of zeta functions.

1 Introduction and statement of the main results

The classical Riemann zeta function is defined for real numbers s > 1 by
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There are several Dirichlet series whose coefficients are arithmetical functions which can be
expressed in terms of the zeta function. As an example we have the elegant identity

CQ(S) B > 2w(n)
C(2s) _;F’ s> 1, (1)
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where w(n) denotes the number of distinct prime factors of n; see Apostol [1, p. 247], Hardy
and Wright [2, p. 265]. The additive analogues of (1),

C2(s) + C(2s) = Qi C’;L(j), s> 1,
n=1
and .
Cs) —clas) =23 ) sy
n=2

where (,,(s) = > -, 1/k®, are due to Hassani and Rahimpour [3].
In 2018, Séndor [5] provided an interesting counterpart of (1),
0 )\w(n) A
<C—(S), A>2, 5> 1. (2)
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Two questions arise naturally. Is there a similar inequality which offers an upper bound
for ¢(*(s)/¢(As)? Do there exist related results for real parameters A with 1 < A < 2?7 The
aim of this note is to give affirmative answers to both questions.

Our first theorem presents a complement of (2).

n=1

Theorem 1. For all real numbers A > 2 and s > 1, we have

Ms) N (22— 2+
g(As)<; —— (3)

Next, we provide upper and lower bounds for (*(s)/¢(\s) which are valid for all real
numbers A with 1 < \ < 2.

Theorem 2. Let 1 < A< 2 and s > 1. Then

0 (2)\_2)w(n) CA(S) 0 )\w(n)
el e !

n=1

In the next section, we collect three lemmas. The proofs of the two theorems are given
in Section 3.

2 Lemmas

A proof of the first lemma can be found in Hardy and Wright [2, p. 249].

Lemma 3. Let f be a multiplicative arithmetical function with f(1) = 1 such that ">~ | f(n)/n®
1s absolutely convergent. Then

g%: 11 (1+if)+@+m>.
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The next lemma might be known. Since we cannot give a reference, we include a proof.

Lemma 4. Let a > 0 and s > 1 be real numbers. The series
ye
nS
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18 convergent.

(5)

Proof. Let s > 1. From (1) we conclude that if 0 < a < 2, then the series is convergent.
Next, let @ > 2. A result of Robin [4] states that there exists a number b ~ 1.384 such that

1
w(n) < bﬂ, n > 3.
loglogn
This leads to
aw(n) ablog n/loglogn
< , n>3.
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Moreover, there exists a positive integer m such that

ab logn/loglogn 1
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From (6) and (7) we conclude that the series in (5) is convergent.

Lemma 5. Let ¢ and x be real numbers.

(i) Ifl<c<2and0<x <1/2, then

1+(2¢=3)x 1—2° 1+ (c—1)x
< < .
1—=z (1 —x)° 1—z

(i) If c>2 and 0 < x < 1/2, then (8) holds with “>" instead of “<”.

Proof. Let ¢ >0 and 0 < z < 1. We define

1—2z°
uc(x) = W’
ve(T) = %a

we(z) = zul,(r) — u.(z) + 1.
Then
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(i) Let 1 <ec<2and 0 <z < 1/2. Then w/(x) < 0. Thus,
we(z) < we(0) =0.
It follows that
2¢ =3 =0.(1/2) < ve(z) < v.(0) = u,(0) =c— 1.
This implies (8).
(ii) Let ¢ > 2 and 0 < 2 < 1/2. Then w.(x) > 0 and w.(x) > w.(0) = 0. This gives
ve(0) < vex) < ve(1/2)

which is equivalent to (8) with “>" instead of “<”.

3 Proof of the theorems

Proof. We follow the method of proof given in [5]. Let a > 0 and s > 1. For positive

integers n, we define
E,(n) = a*™.

Since
w(l)=0 and w(mn)=w(m)+wn), ged(m,n)=1,

we obtain
F,(1)=1 and F,(mn)= F,(m)F,(n), gecd(m,n)=1.

From Lemma 3 and Lemma 4 we get
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(i) Let 1 < X < 2. Using (9), (10) and Lemma 5, part (i) with x = p~* yields
= (2% —2)«() I 1+ (2*=3)p* 1—p=
Z s - —s < H —s\A (11)
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and

=@ I+(A=1)p® 1—p*

> =11 > I (12)
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From (11), (12) and

o= 11 g 9= I =5 (13)

p prime
we conclude that (4) is valid.

(ii)) Let A > 2. We apply Lemma 5, part (ii) with x = p~*, then we obtain (11) with “>”
instead of “<”. Using this result and (13) leads to (3).
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