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Abstract

Let ω(n) denote the number of distinct prime factors of n. We prove an analogue
of a recently published inequality of Sándor that relates a series involving ω(n) to a
quotient of zeta functions.

1 Introduction and statement of the main results

The classical Riemann zeta function is defined for real numbers s > 1 by

ζ(s) =
∞
∑

n=1

1

ns
=

∏

p prime

1

1− p−s
.

There are several Dirichlet series whose coefficients are arithmetical functions which can be
expressed in terms of the zeta function. As an example we have the elegant identity

ζ2(s)

ζ(2s)
=

∞
∑

n=1

2ω(n)

ns
, s > 1, (1)
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where ω(n) denotes the number of distinct prime factors of n; see Apostol [1, p. 247], Hardy
and Wright [2, p. 265]. The additive analogues of (1),

ζ2(s) + ζ(2s) = 2
∞
∑

n=1

ζn(s)

ns
, s > 1,

and

ζ2(s)− ζ(2s) = 2
∞
∑

n=2

ζn−1(s)

ns
, s > 1,

where ζm(s) =
∑m

k=1 1/k
s, are due to Hassani and Rahimpour [3].

In 2018, Sándor [5] provided an interesting counterpart of (1),

∞
∑

n=1

λω(n)

ns
<

ζλ(s)

ζ(λs)
, λ > 2, s > 1. (2)

Two questions arise naturally. Is there a similar inequality which offers an upper bound
for ζλ(s)/ζ(λs)? Do there exist related results for real parameters λ with 1 < λ < 2? The
aim of this note is to give affirmative answers to both questions.

Our first theorem presents a complement of (2).

Theorem 1. For all real numbers λ > 2 and s > 1, we have

ζλ(s)

ζ(λs)
<

∞
∑

n=1

(2λ − 2)ω(n)

ns
. (3)

Next, we provide upper and lower bounds for ζλ(s)/ζ(λs) which are valid for all real
numbers λ with 1 < λ < 2.

Theorem 2. Let 1 < λ < 2 and s > 1. Then
∞
∑

n=1

(2λ − 2)ω(n)

ns
<

ζλ(s)

ζ(λs)
<

∞
∑

n=1

λω(n)

ns
. (4)

In the next section, we collect three lemmas. The proofs of the two theorems are given
in Section 3.

2 Lemmas

A proof of the first lemma can be found in Hardy and Wright [2, p. 249].

Lemma 3. Let f be a multiplicative arithmetical function with f(1) = 1 such that
∑

∞

n=1 f(n)/n
s

is absolutely convergent. Then

∞
∑

n=1

f(n)

ns
=

∏

p prime

(

1 +
f(p)

ps
+

f(p2)

p2s
+ · · ·

)

.
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The next lemma might be known. Since we cannot give a reference, we include a proof.

Lemma 4. Let a > 0 and s > 1 be real numbers. The series

∞
∑

n=1

aω(n)

ns
(5)

is convergent.

Proof. Let s > 1. From (1) we conclude that if 0 < a ≤ 2, then the series is convergent.
Next, let a > 2. A result of Robin [4] states that there exists a number b ≈ 1.384 such that

ω(n) ≤ b
log n

log log n
, n ≥ 3.

This leads to
aω(n)

ns
≤

ab logn/ log logn

ns
, n ≥ 3. (6)

Moreover, there exists a positive integer m such that

ab logn/ log logn

ns
≤

1

n(s+1)/2
, n ≥ m. (7)

From (6) and (7) we conclude that the series in (5) is convergent.

Lemma 5. Let c and x be real numbers.

(i) If 1 < c < 2 and 0 < x < 1/2, then

1 + (2c − 3)x

1− x
<

1− xc

(1− x)c
<

1 + (c− 1)x

1− x
. (8)

(ii) If c > 2 and 0 < x < 1/2, then (8) holds with “>” instead of “<”.

Proof. Let c > 0 and 0 < x < 1. We define

uc(x) =
1− xc

(1− x)c−1
,

vc(x) =
uc(x)− 1

x
,

wc(x) = xu′

c(x)− uc(x) + 1.

Then

x2v′c(x) = wc(x),

w′

c(x) = xu′′

c (x) =
(c− 1)cx(1− xc−2)

(1− x)c+1
.
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(i) Let 1 < c < 2 and 0 < x < 1/2. Then w′

c(x) < 0. Thus,

wc(x) < wc(0) = 0.

It follows that

2c − 3 = vc(1/2) < vc(x) < vc(0) = u′

c(0) = c− 1.

This implies (8).

(ii) Let c > 2 and 0 < x < 1/2. Then w′

c(x) > 0 and wc(x) > wc(0) = 0. This gives

vc(0) < vc(x) < vc(1/2)

which is equivalent to (8) with “>” instead of “<”.

3 Proof of the theorems

Proof. We follow the method of proof given in [5]. Let a > 0 and s > 1. For positive
integers n, we define

Fa(n) = aω(n).

Since
ω(1) = 0 and ω(mn) = ω(m) + ω(n), gcd(m,n) = 1,

we obtain
Fa(1) = 1 and Fa(mn) = Fa(m)Fa(n), gcd(m,n) = 1.

From Lemma 3 and Lemma 4 we get

∞
∑

n=1

Fa(n)

ns
=

∏

p prime

(

1 +
Fa(p)

ps
+

Fa(p
2)

p2s
+ · · ·

)

. (9)

We have
∞
∑

n=1

Fa(p
n)

pns
=

∞
∑

n=1

aω(p
n)

pns
=

∞
∑

n=1

a

pns
= a

p−s

1− p−s
. (10)

(i) Let 1 < λ < 2. Using (9), (10) and Lemma 5, part (i) with x = p−s yields

∞
∑

n=1

(2λ − 2)ω(n)

ns
=

∏

p prime

1 + (2λ − 3)p−s

1− p−s
<

∏

p prime

1− p−sλ

(1− p−s)λ
(11)
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and
∞
∑

n=1

λω(n)

ns
=

∏

p prime

1 + (λ− 1)p−s

(1− p−s)λ
>

∏

p prime

1− p−sλ

(1− p−s)λ
. (12)

From (11), (12) and

ζλ(s) =
∏

p prime

1

(1− p−s)λ
, ζ(λs) =

∏

p prime

1

1− p−λs
(13)

we conclude that (4) is valid.

(ii) Let λ > 2. We apply Lemma 5, part (ii) with x = p−s, then we obtain (11) with “>”
instead of “<”. Using this result and (13) leads to (3).

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.

[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed.,
Oxford University Press, 1959.

[3] M. Hassani and S. Rahimpour, L-Summing method, RGMIA Research Report Collection

7(4) (2004), article 10.

[4] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et
grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42

(1983), 367–389.

[5] J. Sándor, An inequality involving a ratio of zeta functions, Notes Number Th. Disc.

Math. 24 (2018), 92–94.

2020 Mathematics Subject Classification: Primary 11M06; Secondary 11B83, 26D15.
Keywords: Riemann zeta function, prime omega function, inequality.

(Concerned with sequence A129251.)

Received January 8 2023; revised versions received March 3 2023; March 5 2023. Published
in Journal of Integer Sequences, March 16 2023.

Return to Journal of Integer Sequences home page.

5

https://oeis.org/A129251
https://cs.uwaterloo.ca/journals/JIS/

	Introduction and statement of the main results
	Lemmas
	Proof of the theorems

