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Abstract

We use exponential generating functions to study the relationship between Bernoulli

and Euler numbers with k-Jacobsthal numbers, k-Jacobsthal-Lucas numbers, and bi-

variate Fibonacci, Lucas, Pell and Pell-Lucas polynomials.

1 Introduction and preliminaries

Recently, there has been some study of special numbers and polynomials, especially the
Bernoulli numbers and Euler numbers, by virtue of their applications in almost all branches
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of mathematics, computer algorithms, engineering, and other areas. (For other numbers
see [5, 6, 8, 14, 15]).

Bernoulli and Euler polynomials are famous mathematical objects and are fairly well un-
derstood. They are, respectively, defined by the exponential generating functions as follows:

∞
∑

n=0

Bn
zn

n!
=

z

exp(z)− 1
, |z| < 2π, (1)

∑

n>0

En
zn

n!
=

2 exp(z)

exp(2z) + 1
, |z| < π. (2)

The Euler and Bernoulli numbers have appeared in many important results. There has
been a growing interest in deriving new relations for these two pairs of sequences. In 1975,
Byrd [2] derived the following identity relating Lucas numbers to Euler numbers:

⌊n/2⌋
∑

l=0

(

n

2l

)

(5

4

)l

Ln−2lE2l = 21−n. (3)

Zhang and Ma [16] proved a relation between Fibonacci polynomials and Bernoulli num-
bers. The following identity is a special case of their result:

n
∑

l=0

(

n

l

)

5
n−k

2 FkBn−k = n
(1−

√
5

2

)n−1
,

or equivalently
⌊n/2⌋
∑

l=0

(

n

2l

)

5lFn−2lB2l =
nLn−1

2
.

Patel et al. [13] obtained similar identities when Fibonacci and Lucas numbers are re-
placed, respectively, by the Pell and Lucas polynomials (defined below in Eqs. (6) and (7)):

n
∑

l=0

(

n

l

)

(2
√
x2 + 1)lPn−l(x)Bl = n(x−

√
x2 + 1)n−1.

This can be stated as

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2 + 1)lPn−2l(x)B2l =
nQn−1(x)

2
.

Still other relations are contained in the many articles (see [7, 8, 9]). The present paper
is devoted to developing further relations between Bernoulli and Euler numbers with famous
number sequences. To achieve this goal, we use elementary methods, including exponential
generating functions, to study the relationship between Bernoulli and Euler numbers and
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between the k-Jacobsthal numbers k-Jacobsthal-Lucas numbers and bivariate Fibonacci,
Lucas, Pell, and Pell-Lucas polynomials.

For every positive real number k, the k-Jacobsthal numbers (Jn,k)n∈N are defined recur-
sively by the relation [11]

Jk,n = kJk,n−1 + 2Jk,n−1, for n ≥ 2,

with initial values Jk,0 = 0 and Jk,1 = 1.
Jhala et al. [12] defined the k-Jacobsthal-Lucas numbers as follows:

jk,n = kjk,n−1 + 2jk,n−1, for n ≥ 2, with jk,0 = 2, jk,1 = k.

The well-known Binet formulas for k-Jacobsthal (Jn,k)n∈N and k-Jacobsthal-Lucas numbers
(jn,k)n∈N are given as follows:

Jn,k =
λn
1 − λn

2

λ1 − λ2

jn,k = λn
1 + λn

2 ,

where λ1 =
k+

√
k2+8

2
and λ2 =

k−
√
k2+8

2
are the roots of the characteristic equation λ2 − kλ−

2 = 0.
If k = 1, the classical Jacobsthal and Jacobsthal-Lucas numbers are

Jn = Jn−1 + 2Jn−1, for n ≥ 2, with J0 = 0, J1 = 1,

jn = jn−1 + 2jn−1, for n ≥ 2, with j0 = 2, j1 = 1.

The bivariate Fibonacci (Fn,k(x, y))n≥0 and bivariate Lucas (Ln,k(x, y))n≥0 polynomial
sequences are, respectively, defined by the following recurrence relations [3, 4]:

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y), for n ≥ 2, (4)

with initial values F0(x, y) = 0 and F1(x, y) = 1, and

Ln(x, y) = xLn−1(x, y) + yLn−2(x, y), for n ≥ 2, (5)

with initial values L0(x, y) = 2 and L1(x, y) = x.
The bivariate Pell and Pell-Lucas polynomials are, respectively, as follows [10]:

Pn(x, y) = 2xyPn−1(x, y) + yPn−2(x, y), n ≥ 2, (6)

with initial values P0(x, y) = 0 and P1(x, y) = 1, and

Qn(x, y) = 2xyQn−1(x, y) + yQn−2(x, y), n ≥ 2, (7)

with initial values Q0(x, y) = 2 and Q1(x, y) = 2xy.
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We present the Binet formulas of the bivariate Fibonacci, Lucas, Pell, and Pell-Lucas
polynomials in Table 1.

Bivariate polynomials Roots (λ1, λ1) Binet formula

Bivariate Fibonacci polynomials λ1,2 =
x±
√

x2+4y

2
Fn(x, y) =

λn

1
−λn

2

λ1−λ2

Bivariate Lucas polynomials λ1,2 =
x±
√

x2+4y

2
Qn(x, y) = λn

1 + λn
2

Bivariate Pell polynomials λ1,2 = xy ±
√

x2y2 + y Pn(x, y) =
λn

1
−λn

2

λ1−λ2

Bivariate Pell-Lucas polynomials λ1,2 = xy ±
√

x2y2 + y Qn(x, y) = λn
1 + λn

2

Table 1: Binet’s formulas of the bivariate polynomials.

Putting y = 1 in the Eqs (4), (5), (6) and (7) yields, respectively, the following four
polynomials:

• the Fibonacci polynomials defined by F0(x) = 0, F1(x) = 1, Fn(x) = xFn−1(x) +
Fn−2(x), for n ≥ 2,

• the Lucas polynomials defined by L0(x) = 2, L1(x) = x, Ln(x) = xLn−1(x) +Ln−2(x),
for n ≥ 2,

• the Pell polynomials defined by P0(x) = 0, P1(x) = 1, Pn(x) = 2xPn−1(x) + Pn−2(x),
for n ≥ 2,

• the Pell-Lucas polynomials defined by Q0(x) = 2, Q1(x) = 2x, Qn(x) = 2xQn−1(x) +
Qn−2(x), for n ≥ 2.

Putting x = y = 1 in Eqs. (4), (5), (6) and (7), we respectively get the Fibonacci, Lucas,
Pell, and Pell-Lucas numbers, which are given as follows:

• Fn = Fn−1 + Fn−2, n ≥ 2, with initial values F0 = 0, F1 = 1,

• Ln = Ln−1 + Ln−2, n ≥ 2, with initial values L0 = 2, L1 = 1,

• Pn = 2Pn−1 + Pn−2, n ≥ 2, with initial values P0 = 0, P1 = 1,

• Qn = 2Qn−1 +Qn−2, n ≥ 2, with initial values Q0(x) = 2, Q1 = 2.

2 New k-Jacobsthal-Bernoulli and k-Jacobsthal-Euler

relations

In this section, we present our first findings in three theorems, which provide some relations
involving Bernoulli and Euler numbers with k-Jacobsthal and k-Jacobsthal-Lucas numbers.
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Theorem 1. Let n be a positive integer. We have

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

Jk,n−lBl = n
(k −

√
k2 + 8

2

)n−1

,

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

(2l − 1)jk,n−lBl = −n
√
k2 + 8

(k −
√
k2 + 8

2

)n−1

. (8)

Proof. Using the change of variables z =
√
k2 + 8z in (1), we obtain

∞
∑

n=0

(√
k2 + 8

)n

Bn
zn

n!
=

√
k2 + 8z

exp(
√
k2 + 8z)− 1

. (9)

Multiplying (9) by the exponential generating function for (Jk,n)n∈N, we have

(

∞
∑

n=0

Jk,n
zn

n!

)(

∞
∑

l=0

(√
k2 + 8

)l

Bl
zl

l!

)

=
∞
∑

n=0

∞
∑

l=0

(√
k2 + 8

)l

Bl
zl

l!

zn

n!

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

BlJk,n−l
zn

n!
.

Therefore

exp
(

k+
√
k2+8

2
z
)

− exp
(

k−
√
k2+8

2
z
)

√
k2 + 8

×
√
k2 + 8z

exp(
√
k2 + 8z)− 1

= exp(
k −

√
k2 + 8

2
z)(exp(

√
k2 + 8z)− 1)× z

exp(
√
k2 + 8z)− 1

= z exp
(k −

√
k2 + 8

2
z
)

=
∞
∑

n=0

n
(k −

√
k2 + 8

2
z
)n−1 zn

n!
.

By comparing the coefficients of zn

n!
, we obtain the desired result.

Similarly, we use the change of variables z = 2
√
k2 + 8z in (1), we obtain

∞
∑

n=0

(

2
√
k2 + 8

)n

Bn
zn

n!
=

2
√
k2 + 8z

exp(2
√
k2 + 8z)− 1

, (10)

and multiplying (10), by the exponential generating function for (jn,k)n∈N, we get

(

∞
∑

n=0

jk,n
zn

n!

)(

∞
∑

l=0

(

2
√
k2 + 8

)l

Bl
zl

l!

)

=
∞
∑

n=0

∞
∑

l=0

(

2
√
k2 + 8

)l

Bljk,n
zl

l!

zn

n!

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

2l
(√

k2 + 8
)l

jk,n−lBl
zn

n!
.
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Then we obtain

(

exp
((k +

√
k2 + 8)z

2

)

+ exp
((k −

√
k2 + 8)z

2

)) 2
√
k2 + 8z

exp(2
√
k2 + 8z)− 1

= exp
((k −

√
k2 + 8)z

2

) 2
√
k2 + 8z

exp(
√
k2 + 8z)− 1

=
(

∞
∑

n=0

(k −
√
k2 + 8

2

)n zn

n!

)(

∞
∑

n=0

2
(√

k2 + 8
)l

Bl
zl

l!

)

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

2
(√

k2 + 8
)l(k −

√
k2 + 8

2

)n−l

Bl
zn

n!
.

By comparing the coefficients of zn

n!
, we get

n
∑

l=0

(

n

k

)

2l
(√

k2 + 8
)l

jk,n−lBl =
n

∑

l=0

(

n

l

)

2
(√

k2 + 8
)l(k −

√
k2 + 8

2

)n−l

Bl,

which is equivalent to

n
∑

l=0

(

n

k

)

2l
(√

k2 + 8
)l

jk,n−lBl =
n

∑

l=0

(

n

l

)

2
(√

k2 + 8
)l(jk,n−1 −

√
k2 + 8Jk,n−1

2

)

Bl.

Therefore

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

(2l − 1)jk,n−lBl = −
√
k2 + 8

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

Jk,n−lBl,

= −n
√
k2 + 8

(k −
√
k2 + 8

2

)n−1

.

Hence the desired result.

Theorem 2. Let n be a positive integer. The following results hold:

⌊n/2⌋
∑

l=0

(

n

2l

)

(

k2 + 8
)l

Jk,n−2lB2l =
njk,n−1

2
,

⌊n/2⌋
∑

l=0

(

n

2l

)

(

k2 + 8
)l

(22l − 1)jk,n−2lB2l =
(k2 + 8)nJk,n−1

2
.

Proof. We have

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

Jk,n−lBl = n
(k −

√
k2 + 8

2

)n−1

.
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This gives
n

∑

l=0

(

n

l

)

(√
k2 + 8

)n−l

Jk,n−lBl =
n(jk,n−1 −

√
k2 + 8Jk,n−1)

2
,

with the conditions B0 = 1 and B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0 and then

⌊n/2⌋
∑

l=0

(

n

2l

)

(k2 + 8)lJk,n−2lB2l =
njk,n−1

2
.

Similarly, from (8), we get

n
∑

l=0

(

n

l

)

(√
k2 + 8

)l

(2l − 1)jk,n−lBl =
−
√
k2 + 8n(jk,n−1 −

√
k2 + 8Jk,n−1)

2
,

with B0 = 1 and B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0. Then we obtain

⌊n/2⌋
∑

l=0

(

n

2l

)

(k2 + 8)l(22l − 1)jk,n−2lB2l =
(k2 + 8)2nJk,n−1

2
.

Which complete the proof.

• Putting k = 1 in Theorem 1 and Theorem 2 we have the following Jacobsthal-Bernoulli
and Jacobsthal-Lucas-Bernoulli identities

n
∑

l=0

(

n

l

)

3lJn−lBl = (−1)n−1n, or

⌊n/2⌋
∑

l=0

(

n

2l

)

9lJn−2lB2l =
njn−1

2
.

n
∑

l=0

(

n

2l

)

3l(2l − 1)jn−lBl = (−1)nn, or

⌊n/2⌋
∑

l=0

(

n

2l

)

9l(2l − 1)jn−2lB2l =
9nJn−1

2
.

Theorem 3. For every positive integer n, we have

⌊n/2⌋
∑

l=0

(

n

2l

)

2(4)n−2l−1

(√
k2 + 8

)2l+1

Jk,n−2lE2l = (2k +
√
k2 + 8)n − (2k +

√
k2 + 8)n,

⌊n/2⌋
∑

l=0

(

n

2l

)

(k2 + 8

4

)l

jk,n−2lE2l = 2
(k

2

)n

.
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Proof. Using the change of variables z =
√
k2 + 8z in (2) and z = 4z in the exponential

generating function for (Jk,n)n∈N, we obtain

∞
∑

n=0

(√
k2 + 8

)l

El
zl

l!
=

2 exp(
√
k2 + 8z)

exp(2
√
k2 + 8z) + 1

, (11)

∞
∑

n=0

4nJk,n
zn

n!
=

exp(k −
√
k2 + 8)z)√

k2 + 8
(exp(2

√
k2 + 8z)− 1)(exp(2

√
k2 + 8z) + 1).

(12)

Multiplying (12) by (11), this gives

(

∞
∑

n=0

4nJk,n
zn

n!

)(

∞
∑

l=0

(√
k2 + 8

)l

El
zl

l!

)

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

4n−l
(√

k2 + 8
)l

Jk,n−lEl
zn

n!
.

Then we get

exp(k −
√
k2 + 8)z)√

k2 + 8
(exp(2

√
k2 + 8z)− 1)(exp(2

√
k2 + 8z) + 1)× 2 exp(

√
k2 + 8z)

(exp 2
√
k2 + 8z) + 1

=
2√

k2 + 8

(

exp
(

(2k +
√
k2 + 8)z

)

− exp
(

(2k −
√
k2 + 8)z

))

=
2√

k2 + 8

∞
∑

n=0

(

2k +
√
k2 + 8

)n

−
(

2k −
√
k2 + 8

)n zn

n!
.

By comparing the coefficients of zn

n!
, we obtain

n
∑

l=0

(

n

l

)

2(4)n−l−1

(√
k2 + 8

)l+1

Jk,n−lEl =
(

2k +
√
k2 + 8

)n

−
(

2k −
√
k2 + 8

)n

.

For l ≥ 0, we have E2l+1 = 0, which gives the desired result.

Similarly, we use the change of variables z =
√
k2+8

2
z in (2). We have

∞
∑

n=0

(

√
k2 + 8

2

)n

En
zn

n!
=

2 exp
(√

k2+8

2
z
)

exp(
√
k2 + 8z) + 1

, (13)

and multiplying (13) by the exponential generating function for (jk,n)n∈N, we get

(

∞
∑

n=0

jk,n
zn

n!

)(

∞
∑

l=0

(

√
k2 + 8

2

)l

El
zl

l!

)

=
∞
∑

l=0

n
∑

l=0

(

n

l

)

(

√
k2 + 8

2

)l

jk,n−lEl
zn

n!
,

and

2 exp(
√
k2+8

2
z)

exp(
√
k2 + 8z) + 1

(

exp
(k +

√
k2 + 8

2
z
)

+ exp
(k −

√
k2 + 8

2
z
))

= 2
∞
∑

k=0

(k

2

)n zn

n!
.
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By comparing the coefficients of zn

n!
, we get

n
∑

l=0

(

n

l

)

(

√
k2 + 8

2

)l

jk,n−lEl = 2
(k

2

)n

.

For k ≥ 0, we obtain E2k+1 = 0; hence the desired result.

• By taking k = 1 in the Theorem 3, we can state the following identities involving Euler
numbers with Jacobsthal and Jacobsthal-Lucas numbers

⌊n/2⌋
∑

l=0

(

n

2l

)

2(4)n−2l−132l+1Jn−2lE2l = 5n − (−1)n,

⌊n/2⌋
∑

l=0

(

n

2l

)

(9

4

)l

jn−2lE2l = 21−n.

3 Bivariate polynomial identities

The aim of this section is to establish some new identities involving two variables x and y. We
start with three theorems involving Bernoulli and Euler numbers with bivariate Fibonacci
and Lucas polynomials.

Theorem 4. For every positive integer n, we have

n
∑

l=0

(

n

l

)

(

√

x2 + 4y
)l

Fn−l(x, y)Bl = n
(x−

√

x2 + 4y

2

)n−1

, (14)

n
∑

l=0

(

n

l

)

(

√

x2 + 4y
)l

(2l − 1)Ln−l(x, y)Bl = −2
√

x2y2 + yn
(x−

√

x2 + 4y

2

)n−1

.

Proof. Using the change of variables z =
√

x2 + 4yz in (1), we obtain

∞
∑

n=0

(

√

x2 + 4y
)n

Bn
zn

n!
=

√

x2 + 4yz

exp(
√

x2 + 4yz)− 1
. (15)

Multiplying (15) by the exponential generating function for (Fn(x, y))n∈N, we get

(

∞
∑

n=0

Fn(x, y)
zn

n!

)(

∞
∑

l=0

(

√

x2 + 4y
)l

Bl
zl

l!

)

=
∞
∑

n=0

∞
∑

l=0

(

√

x2 + 4y
)l

BlFn(x, y)
zl

l!

zn

n!

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

(

√

x2 + 4y
)l

BlFn(x, y)
zn

n!
.
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Then

exp
(

x−
√

x2+4y

2
z
)

− exp
(

x−
√

x2+4y

2
z
)

√

x2 + 4y
×

√

x2 + 4yz

exp(
√

x2 + 4yz)− 1

= z exp
(x−

√

x2 + 4y

2
z
)

=
∞
∑

n=0

n
(x−

√

x2 + 4y

2

)n−1 zn

n!
.

By comparing the coefficients of zn

n!
, we obtain the desired result.

Similarly, by using the change of variables z = 2
√

x2 + 4yz in (1), we obtain

∞
∑

n=0

(

2
√

x2 + 4y
)n

Bn
zn

n!
=

2
√

x2 + 4yz

exp(2
√

x2 + 4yz)− 1
, (16)

and multiplying (16) by the exponential generating function for (Ln(x, y))n∈N, we get

(

∞
∑

n=0

Ln(x, y)
zn

n!

)(

∞
∑

l=0

(

2
√

x2 + 4y
)l

Bl
zl

l!

)

=
∞
∑

n=0

∞
∑

l=0

(

2
√

x2 + 4y
)l

BlLn(x, y)
zl

l!

zn

n!

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

2l
(

√

x2 + 4y
)l

Ln−l(x, y)Bl
zn

n!
.

Therefore
(

exp
(x+

√

x2 + 4y

2
z
)

+ exp
(x−

√

x2 + 4y

2
z
)) 2

√

x2 + 4yz

exp(2
√

x2 + 4yz)− 1

= exp
(x−

√

x2 + 4y

2
z
) 2

√

x2 + 4yz

exp(
√

x2 + 4yz)− 1

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

2
(

√

x2 + 4y
)l(x−

√

x2 + 4y

2

)n−l

Bl
zn

n!
.

By comparing the coefficients of zn

n!
, we obtain

n
∑

l=0

(

n

k

)

2l
(

√

x2 + 4y
)l

Ln−l(x, y)Bl =
n

∑

l=0

(

n

l

)

2
(

√

x2 + 4y
)l(x−

√

x2 + 4y

2

)n−l

Bl.

We know that
(x−

√

x2 + 4y

2

)n−l

=
Ln−l(x, y)−

√

x2 + 4yFn−l(x, y)

2
,

so we get
n

∑

l=0

(

n

l

)

(

√

x2 + 4y
)l

(2l − 1)Ln−l(x, y)Bl = −
√

x2 + 4yn
(x−

√

x2 + 4y

2

)n−1

.

Hence the result.

10



Theorem 5. For every positive integer n, we have

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4y)lFn−2l(x, y)B2l =
nLn−1(x, y)

2
,

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4y)l(22l − 1)Ln−2l(x, y)B2l =
n(x2 + 4y)Fn−1(x, y)

2
. (17)

Proof. From (14) and on account of the identity

(x−
√

x2 + 4y

2

)n−l

=
Ln−l(x, y)−

√

x2 + 4yFn−l(x, y)

2
,

we get

n
∑

l=0

(

n

l

)

(

√

x2 + 4y
)n−l

Fn−l(x, y)Bl =
n(Ln−1(x, y)−

√

x2 + 4yFn−1(x, y))

2
,

with B0 = 1 and B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0, and then

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4y)lFn−2l(x, y)B2l =
nLn−1(x, y)

2
.

Similarly, from (17), we get

n
∑

l=0

(

n

l

)

(

√

x2 + 4y
)l
(2l−1)Ln−l(x, y)Bl =

−
√

x2 + 4yn(Ln−1(x, y)−
√

x2 + 4yFn−1(x, y))

2
,

with B0 = 1, B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0. Hence we obtain

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4y)l(22l − 1)Ln−2l(x, y)B2l =
(x2 + 4y)2nFn−1(x, y)

2
.

Hence the desired result is proved.

11



• By putting y = 1 in Theorem 4 and Theorem 5, we obtain the following identities

n
∑

l=0

(

n

l

)

(√
x2 + 4

)l

Fn−l(x)Bl = n
(x−

√
x2 + 4

2

)n−1

, (18)

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4)lFn−2l(x)B2l =
nLn−1(x)

2
, (19)

n
∑

l=0

(

n

l

)

(√
x2 + 4

)l

(2l − 1)Ln−l(x)Bl = −2(
√
x2 + 4)n

(x−
√
x2 + 4

2

)n−1

, (20)

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4)l(22l − 1)Ln−2l(x)B2l =
n(x2 + 4)Fn−1(x)

2
. (21)

• By setting x = y = 1 in Theorem 4 and Theorem 5 or x = 1 in the relation-
ships (18), (19), (20) and (21) we obtain the following identities involving Bernoulli
numbers with Fibonacci and Lucas numbers (see [1, 2]):

n
∑

l=0

(

n

l

)

(√
5
)l

Fn−lBl = n
(1−

√
5

2

)n−1

,

⌊n/2⌋
∑

l=0

(

n

2l

)

5lFn−2lB2l =
nLn−1

2
,

n
∑

l=0

(

n

l

)

(√
5
)l

(2l − 1)Ln−lBl = −2
√
5n

(1−
√
5

2

)n−1

,

⌊n/2⌋
∑

l=0

(

n

2l

)

5l(22l − 1)Ln−2lB2l =
n5Fn−1

2
.

Theorem 6. For every positive integer n, we have

⌊n/2⌋
∑

l=0

(

n

2l

)

2(4)n−2k−1

(

√

x2 + 4y
)2l+1

Fn−2l(x, y)E2l =
(

2x+
√

x2 + 4y
)n

−
(

2x−
√

x2 + 4y
)n

,

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4y

4

)2l

Ln−2l(x, y)E2l = 2
(x

2

)n

.

Proof. Using the change of variables z =
√

x2 + 4yz in (2), we obtain

∞
∑

l=0

(

√

x2 + 4y
)l

El
zl

l!
=

2 exp(
√

x2 + 4yz)

exp(2
√

x2 + 4yz) + 1
. (22)

12



By multiplying (22) by the exponential generating function for the sequence (4nFn(x, y))n∈N,
we obtain

(

∞
∑

k=0

4nFn(x, y)
zn

n!

)(

∞
∑

l=0

(

√

x2 + 4y
)l

El
zl

l!

)

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

4n−l
(

√

x2 + 4y
)l

Fn−l(x, y)El
zn

n!
.

Then we get

exp
(

2(x+
√

x2 + 4y)z
)

− exp
(

2(x−
√

x2 + 4y)z
)

√

x2 + 4y
× 2 exp(

√

x2 + 4yz)

exp(2
√

x2 + 4yz) + 1

=
2 exp

(

2(x−
√

x2 + 4y)z
)

exp(
√

x2 + 4yz)
√

x2 + 4y
(

exp(2
√

x2 + 4yz) + 1
)

(

exp(4
√

x2 + 4yz)− 1
)

=
2

√

x2 + 4y

(

exp
(

(2x+
√

x2 + 4y)z
)

+ exp
(

(2x−
√

x2 + 4y)z
))

=
2

√

x2 + 4y

∞
∑

n=0

(

(2x+
√

x2 + 4y)n − (2x−
√

x2 + 4y)n
)zn

n!
.

By comparing the coefficients of zn

n!
, we get

n
∑

l=0

(

n

l

)

2(4)n−l−1

(

√

x2 + 4y
)l+1

Fn−l(x, y)El =
(

2x+
√

x2 + 4y
)n

−
(

2x−
√

x2 + 4y
)n

.

For l ≥ 0, we have E2l+1 = 0, which gives the result.

Similarly, using the change of variables z =

√
x2+4y

2
z in (2), we obtain

∞
∑

n=0

(

√

x2 + 4y

2

)n

En
zn

n!
=

2 exp(

√
x2+4y

2
z)

exp(
√

x2 + 4yz) + 1
, (23)

and multiplying (23) by the exponential generating function for (Ln(x, y))n∈N, we get

(

∞
∑

n=0

Ln(x, y)
zn

n!

)(

∞
∑

l=0

(

√

x2 + 4y

2

)l

El
zl

l!

)

=
∞
∑

n=0

n
∑

l=0

(

n

l

)

(

√

x2 + 4y

2

)l

Ln−l(x, y)El
zn

n!
,

and

(

exp
(x+

√

x2 + 4y

2
z
)

+ exp
(x−

√

x2 + 4y

2
z
))

×
2 exp

(

√
x2+4y

2
z
)

exp(
√

x2 + 4yz) + 1
= 2 exp(

x

2
z)

= 2
∞
∑

n=0

(x

2

)n zn

n!
.

13



Comparing the coefficients of zn

n!
, we obtain

n
∑

l=0

(

n

l

)

(

√

x2 + 4y

2

)l

Ln−l(x, y)El = 2
(x

2

)n

,

For k ≥ 0, we have E2k+1 = 0, and the result follows.

• Putting y = 1 in Theorem 6, we obtain the following identities linking Euler numbers
to Fibonacci and Lucas polynomials

⌊n/2⌋
∑

l=0

(

n

2l

)

2(4)n−2k−1(
√
x2 + 4)2l+1Fn−2l(x)E2l =

(

2x+
√
x2 + 4

)n

−
(

2x−
√
x2 + 4

)n

,

(24)

⌊n/2⌋
∑

l=0

(

n

2l

)

(x2 + 4

4

)l

Ln−2l(x)E2l = 2
(x

2

)n

. (25)

• Putting y = x = 1 in Theorem 6 or x = 1 in the relationships (24) and (25), we obtain
the following identities linking Euler numbers to Fibonacci and Lucas numbers

⌊n/2⌋
∑

l=0

(

n

2l

)

2(4)n−2l−1(
√
5)2l+1Fn−2lE2l = (2 +

√
5)n − (2−

√
5)n,

⌊n/2⌋
∑

l=0

(

n

2l

)

(5

4

)l

Ln−2lE2l = 21−n. (26)

Note that Eq. (26) is Byrd’s result (3).

Now we present the analogue results for the relation between Bernoulli numbers with
bivariate Pell and bivariate Pell-Lucas polynomials.

Theorem 7. For every positive integer n, we have

n
∑

l=0

(

n

l

)

(

2
√

x2y2 + y
)l

Pn−l(x, y)Bl = n
(

xy −
√

x2y2 + y
)n−1

, (27)

n
∑

l=0

(

n

l

)

(

2
√

x2y2 + y
)l

(2l − 1)Qn−l(x, y)Bl = −2
√

x2y2 + yn
(

xy −
√

x2y2 + y
)n−1

. (28)

Proof. The proof is similar to the proof of Theorem 4, by using the change of variables
z = 2

√

x2y2 + yz in (1) to prove Eq. (27) and z = 4
√

x2y2 + yz in (1) to prove the relation-
ship (28).
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Theorem 8. For every positive integer n, we have

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2y2 + y)lPn−2l(x, y)B2l =
nQn−1(x, y)

2
,

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2y2 + y)l(22l − 1)Qn−2l(x, y)B2l = 2n(x2y2 + y)Pn−1(x, y).

Proof. We have

n
∑

l=0

(

n

l

)

(

2
√

x2y2 + y
)l

Pn−l(x, y)Bl = n
(

xy −
√

x2y2 + y
)n−1

,

which gives

n
∑

l=0

(

n

l

)

(

2
√

x2y2 + y
)n−l

Pn−l(x, y)Bl =
n
(

Qn−1(x, y)− 2
√

x2y2 + yPn−1(x, y)
)

2
,

with B0 = 1 and B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0. Then we get

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2y2 + y)lPn−2l(x, y)B2l =
nQn−1(x, y)

2
.

Similarly, from (28), we get

n
∑

l=0

(

n

l

)

4l(x2y2+y)l(2l−1)Qn−l(x, y)Bl =
−2

√

x2y2 + yn
(

Qn−1(x, y)− 2
√

x2y2 + yPn−1(x, y)
)

2
,

with B0 = 1 and B1 = −1

2
.

For l ≥ 0, we have B2l+1 = 0. Then we obtain

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2y2 + y)l(22l − 1)Qn−2l(x, y)B2l =
(x2y2 + y)nFn−1(x, y)

2
,

and the result follows.

• By putting y = 1 in Theorem 7 and Theorem 8, we start with the following results
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involving Bernoulli numbers and Pell, Pell-Lucas polynomials:

n
∑

l=0

(

n

l

)

(

2
√
x2 + 1

)l

Pn−l(x)Bl = n(x−
√
x2 + 1)n−1, (29)

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2 + 1)lPn−2l(x)B2l =
nQn−1(x)

2
, (30)

n
∑

l=0

(

n

l

)

(

2
√
x2 + 1

)l

(2l − 1)Qn−l(x)Bl = −2n
√
x2 + 1(x−

√
x2 + 1)n−1, (31)

⌊n/2⌋
∑

l=0

(

n

2l

)

4l(x2 + 1)l(22l − 1)Qn−2l(x)B2l = 2n(x2 + 1)Pn−1(x). (32)

• By setting x = y = 1 in Theorem 7 and Theorem 8 or x = 1 in the relation-
ships (29), (30), (31) and (32) we deduce the following Bernoulli-Pell and the Bernoulli-
Pell-Lucas identities:

n
∑

l=0

(

n

l

)

(2
√
2)lPn−lBl = n(1−

√
2)n−1,

⌊n/2⌋
∑

l=0

(

n

2l

)

8lPn−2lB2l =
nQn−1

2
,

n
∑

l=0

(

n

l

)

(

2
√
2
)l

(2l − 1)Qn−lBl = −2n
√
2(1−

√
2)n−1,

⌊n/2⌋
∑

l=0

(

n

2l

)

8l(22l − 1)Qn−2lB2l = 2n(1 + 1)Pn−1.

Theorem 9. For every positive integer n, we have

⌊n/2⌋
∑

l=0

(

n

2l

)

2n−2l
(

√

x2y2 + y
)2l+1

Pn−2l(x, y)E2l =
(

2xy +
√

x2y2 + y
)n

−
(

2xy −
√

x2y2 + y
)n

,

(33)

⌊n/2⌋
∑

l=0

(

n

2l

)

(

x2y2 + y
)l

Qn−2l(x, y)E2l = 2(xy)n. (34)

Proof. The proof is similar to the proof of Theorem 6, by using the change of variables
z = 2

√

x2y2 + yz in (2) to prove (33) and z = 4
√

x2y2 + yz in (2) to prove (34).
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• By putting y = 1 in Theorem 9, we obtain some relations between the Euler numbers
and the Pell and Pell-Lucas polynomials:

⌊n/2⌋
∑

l=0

(

n

2l

)

2n−2l
(√

x2 + 1
)2l+1

Pn−2l(x)E2l =
(

2x+
√
x2 + 1

)n

−
(

2x−
√
x2 + 1

)n

,

(35)

⌊n/2⌋
∑

l=0

(

n

2l

)

(

x2 + 1
)l

Qn−2l(x)E2l = 2xn. (36)

• By putting x = y = 1 in Theorem 9 or x = 1 in the relationships (35) and (36), we
can state the following Pell-Euler and Pell-Lucas-Euler identities:

⌊n/2⌋
∑

l=0

(

n

2l

)

(
√
2)2n−lPn−2lE2l =

(

2 +
√
2
)n

−
(

2−
√
2
)n

,

⌊n/2⌋
∑

l=0

(

n

2l

)

2lPn−2lE2l = 2.
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