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Abstract

An edge cover of a simple graph is a subset of the edges so that each vertex is
incident with at least one edge in the subset. The edge cover polynomial of a graph is
the generating polynomial of the number of edge covers of the graph with k edges. The
number of edge covers of path graphs form the Fibonacci sequence, while those of cycle
graphs form the Lucas numbers. In this paper, we first provide some known and new
general results on edge covers and edge cover polynomials. We then apply these results
to find the number of edge covers and the edge cover polynomials of caterpillar graphs,
cycles with pendants, and spider graphs, which are generalizations of star graphs. The
number of edge covers of all these families can be expressed in terms of Fibonacci
numbers. We generate new sequences not in the On-Line Encyclopedia of Integer

Sequences using these edge covers and provide new combinatorial interpretations of
some known sequences.

1 Introduction

A (simple) graph G is an ordered pair (V,E) consisting of a finite set of vertices V (G) =
{v1, v2, . . . , vn} and a finite set of edges E(G) = {e1, e2, . . . , em}, where each edge is a set of
two distinct vertices. All the graphs we consider are simple, and we will refer to them as
graphs for brevity. The degree of a vertex is the number of edges that are incident with that
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vertex, i.e., the number of edges that meet at that vertex. An isolated vertex has degree
0, and a pendant (vertex) has degree 1. An edge cover of a graph G is a subset of E(G)
such that each vertex of G is incident with at least one edge in this subset. In Figure 1, the
edges e3, e5, e6, e7 (highlighted in red and dashed) form an edge cover. The remaining edges,
e1, e2, e4, e8 also form an edge cover. No graph with at least one isolated vertex has an edge
cover. In a graph with no isolated vertices, the set of all edges is an edge cover.

v1

v2

v3

v4 v5

e1e2

e3

e4

e5

e6

e7
e8

Figure 1: A graph and two edge covers (red edges and black edges).

Although research on edge covers often considers minimum edge covers in optimization
applications, in this paper, we focus on counting the edge covers. This problem has appli-
cations in counting elements at a given location between two given elements in Hausdorff
metric geometry [3]. Honigs [6] showed that the number of edge covers of a bipartite graph
representing adjacencies in a finite configuration [A,B] (i.e., two finite sets A,B in Hausdorff
metric geometry with specific Hausdorff metric conditions) is equal to the number of ele-
ments at each location between A and B. Counting edge covers can also be used to estimate
the importance of a line in communication networks [5].

Let #G denote the total number of edge covers of G. It can be shown [6] by induction
that for path graphs Pn with n vertices, #Pn = Fn−1, where Fn are the Fibonacci numbers
with initial values F0 = 0, F1 = 1, which is the sequence A000045. By considering cases
based on whether there is a fixed edge or not [6], one can also show that for cycle graphs
Cn with n vertices #Cn = Ln for n ≥ 3, where Ln are the Lucas numbers with initial values
L0 = 2, L1 = 1. The edge cover polynomial, E(G, x), of a graph G is defined as

E(G, x) =

|E(G)|
∑

k=1

e(G, k)xk ,

where e(G, k) is the number of edge covers of G with k edges. For example, P6 has one edge
cover with five edges, three with four edges, and one with three edges, as shown in Figure 2.
Hence, the edge cover polynomial of P6 is

E(P6, x) = x3 + 3x4 + x5 .
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More generally, we have [1]

E(Pn, x) =
n−1
∑

i=1

(

i− 1

n− i− 1

)

xi .

The coefficients of the edge cover polynomials (arranged in descending powers of x) of path
graphs form the entry A011973 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[9].

Figure 2: Edge covers of P6.

This paper focuses on edge covers of path and cycle graphs with pendants and spider
graphs. A spider graph is a tree (i.e., a connected graph with no cycles) with one vertex
of degree greater than or equal to 3 and the rest of degree less than or equal to 2. We
calculate the number of edge covers of these graph families and present formulas for their
edge cover polynomials. We obtain new sequences not found in the OEIS [9] and provide
new combinatorial interpretations of some known sequences.

2 Some general properties of edge covers

Some known results about the total number of edge covers and edge cover polynomials are

Theorem 1.

(i) Given a graph G with connected components G1, G2, . . . , Gk, we have [1]

#G =
k
∏

i=1

#Gi and E(G, x) =
k
∏

i=1

E(Gi, x) .

(ii) Given a graph G with edge uv, we have

E(G, x) = (x+ 1)E(G− uv, x) + x
(

E(G− u, x) + E(G− v, x) + E(G− {u, v}, x)
)

,

where G − uv represents the graph with edge uv removed, and G − u,G − v, and
G − {u, v} represent the graphs with the vertex u; vertex v; and both u, v removed,
respectively [1, 6].
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(iii) Given a graph G with a pendant vertex v whose neighbor is u, we have [1]

E(G, x) = xE(G− v, x) + xE(G− {u, v}, x) .

(iv) Suppose G = G1 · uv ·G2 is formed by combining two graphs G1 and G2 by identifying
the vertex u ∈ G1 with the vertex v ∈ G2. Then [4]

E(G, x) = E(G1, x)E(G2, x) + E(G1 − u, x)E(G2, x) + E(G1, x)E(G2 − v, x) .

We now prove two new results, the first of which is about 2-sums of graphs, a particular
case of k-sums [2]. Given two graphs, G1 and G2, and an edge from each graph, the 2-sum
G1 ⊕2 G2 is obtained by identifying the two edges. The 2-sum depends on which edges in
the graphs are chosen and how they are identified. An example of the 2-sum of two graphs
is shown in Figure 3.

u u

v v

G1 G2

−→

u

v

G1 ⊕2 G2

Figure 3: The 2-sum of two graphs.

Lemma 2 (2-sum Lemma). Let G = G1 ⊕2 G2 with the common identified edge labeled
uv in G and Gi. Then the set of edge covers of G that include the edge uv is in bijection
with the cross product of the sets of edge covers of G′

1 = (G1 ∪ {uw1, vw2}) − uv and G′
2 =

(G2 ∪ {uy1, vy2}) − uv, where w1, w2 (respectively y1, y2) are pendant vertices added to G1

(respectively G2).

Proof. To clarify the definitions, Figure 4 shows how G′
1 and G′

2 would look like using the
example of G = G1 ⊕2 G2 shown in Figure 3.

To prove the lemma, we define a map S → (S1, S2) where S is an edge cover of G that
includes uv, and Si is an edge cover of G′

i for i = 1, 2, and show that the map is a bijection.
Let S be an edge cover of G that includes uv. Because the edges of G besides uv belong
either to G1 or G2 (but not both), we can label the elements of S as

S = {uv, e1, . . . , er, er+1, . . . , es},

where e1, . . . , er ∈ G1 and er+1, . . . , es ∈ G2. Let S1 = {uw1, vw2, e1, . . . , er} and S2 =
{uy1, vy2, er+1, . . . , es}. We will show that each Si is an edge cover of G′

i.
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u

v

G1 ⊕2 G2

−→

w1
u u

v v

w2 y2

y1

G′
1 G′

2

Figure 4: An example of constructing G′
1 and G′

2 from G = G1 ⊕2 G2.

If x ∈ Gi and x 6= u, v, w1, w2, y1, y2, then x is also in G and S has an edge that is
incident with x, which is also in the respective Si. The pendant vertices w1, w2, y1, and y2,
and vertices u, v are endpoints of the newly added edges uw1, vw2, uy1, and vy2. Therefore,
Si is an edge cover of Gi.

The map S → (S1, S2) is one-to-one because if two edge covers agree on the edges
restricted to G′

1 and G′
2, they must agree on all but uv. However, the map is defined only

on edge covers containing uv. Therefore, the edge covers must agree on all of G.
The map is also onto. Let S1 and S2 be edge covers of G′

1 and G′
2, respectively. Because

uw1 and uw2 are both pendant edges in G′
1, we know they will be in S1. The remaining

edges in S1 are edges that are in G1. Therefore, we can write S1 = {uw1, vw2, e1, . . . , er} for
some ei in G1. Similarly, S2 = {uy1, vy2, er+1, . . . , es} for some ei in G2. Define

S = S1 ∪ S2 ∪ {uv} − {uw1, vw2, uy1, vy2} = {uv, e1, . . . , er, er+1, . . . , es} .

It is easy to show that S is an edge cover of G and maps to (S1, S2).
Since the map is one-to-one and onto, it is a bijection, as claimed.

A direct consequence of the 2-sum lemma is

Corollary 3. Let #(G; uv) denote the number of edge covers of G that include the edge uv.
Suppose G = G1 ⊕2 G2, the common identified edge is labeled uv in G, and Gi and G′

i are
defined as in the 2-sum lemma. Then

#(G; uv) = #G′
1 ·#G′

2 .

The 2-sum lemma implies another direct result regarding the edge cover polynomials.
Let E(G; uv, x) be the edge cover polynomial of the edge covers of G that include the edge
uv. By the 2-sum lemma, since every edge cover of G that includes uv corresponds to an
edge cover of the graph with components G′

1 and G′
2, the numbers of the edge covers will be

the same. However, when defining the correspondence of edge covers, the edge uv turns into
four edges: uw1, vw2, uy1, and vy2. Therefore, in the polynomial, we have an extra x3 factor
on the G′

i side. Thus, we have the following edge cover polynomial result:
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Corollary 4. Suppose G = G1 ⊕2 G2, the common identified edge is labeled uv in G, and
Gi and G′

i are defined as in the 2-sum lemma. Then

E(G; uv, x) =
E(G′

1) · E(G′
2)

x3
.

Another similar result, the pendant lemma, applies to graphs with a pendant vertex.

Lemma 5 (Pendant Lemma). Let G be a graph with a pendant vertex v. Let u be the
neighbor of v, and wi, 1 ≤ i ≤ k, be the neighbors of u besides v. Then the set of edge covers
of G is in bijection with the set of edge covers of

G′ = (G− {u, v}) ∪ {w1u1, u1v1, w2u2, u2v2, . . . , wkuk, ukvk},

where the ui, vi are added new vertices to G.

Proof. A representative example of the G and G′ pair is shown in Figure 5.

v

u

w2

w3

w4

w1

G →

v3

u3

w1 w2

w3

w4

v2

u2

v1

u1

v4

u4

G′

Figure 5: An example of G′ construction.

The graph G′ is obtained by replacing the vertices u, v with multiple copies, one for each
edge incident with u besides uv. Every pendant edge must be included in every edge cover of
G. Therefore, the vertices u and v are already covered, allowing the remaining edges incident
with u to be flexible. Hence, we can represent the pendant instead as an added edge to each
edge incident with u. More precisely, an edge cover {e1, e2, . . . , er, uv} of G corresponds to
the edge cover {e1, e2, . . . , er, u1v1, u2v2, . . . , ukvk} of G′. In this correspondence, by abuse
of notation, for an edge ei = wju that might be in the edge cover of G, we still use ei to
represent the corresponding edge wjuj in G′.

Corollary 6. Let G be a graph with pendant v, whose neighbor is u. Suppose deg u = k.
Let G′ be as in the pendant lemma. Then #G = #G′ and

E(G, x) =
1

xk−2
E(G′, x) .

Proof. The first claim directly follows from the pendant lemma. In the correspondence
between edge covers of G and G′, we replace all of the k edges incident with u with k − 1
non-pendant and k− 1 pendant edges. Hence, the edge cover polynomial of G′ has an extra
xk−2 factor.
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3 Paths and cycles with pendants

The two lemmas from the previous section can be applied to path and cycle graphs with one
or more pendants to express their edge cover numbers in terms of Fibonacci numbers. By
repeatedly splitting the graph at the pendant edge using the pendant lemma, each path or
cycle graph with pendants becomes a union of disconnected path graphs.

3.1 Caterpillars

A caterpillar graph is a tree in which every vertex is either on the longest path or exactly
one graph edge away from this path. We will refer to this longest path as the central stalk
of the caterpillar.

Theorem 7. A caterpillar graph G with central stalk Pn and k1, k2, . . . , kr pendants at in-
ner vertices (counting from one pendant vertex of Pn) located at vertices m1,m2, . . . ,mr,
respectively, has a total of

#G = Fm1
Fm2−m1+2 · · ·Fmr−mr−1+2Fn−mr+1

edge covers. Its edge cover polynomial is

E(G, x) = xk1+k2+···+kr−2rE(Pm1+1, x)E(Pn−mr+2, x)
r
∏

i=2

E(Pmi−mi−1+3, x) .

Proof. Let G be a caterpillar graph with a central stalk Pn and additional pendants attached
to vertices (counting from one end)m1,m2, . . . ,mr. Without loss of generality, we can assume
that exactly one pendant is attached to each spot since an edge cover includes all pendants.
Additional pendants only change the edge cover polynomial by a factor of xk1+k2+···+kr−r.

The proof proceeds by induction on the number of added pendants. We demonstrate the
idea using the example caterpillar graph shown in Figure 6.

1 m1 m2 m3 n

Figure 6: A caterpillar graph with three pendants attached to the central stalk.

By applying the pendant lemma at vertex m1, we obtain a disjoint union of Pm1+1 and
a caterpillar with one fewer pendant. In this specific example, after applying the pendant
lemma at m1 = 3, we obtain the path P4 and a caterpillar with two added pendants attached
at m2 − m1 + 2 = 5 and m3 − m1 + 2 = 9 on a central stalk Pn−m1+2 = P10. This new
disconnected graph is shown in Figure 7.
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1 m1 m2 −m1 + 2 m3 −m1 + 2

n−m1 + 2

Figure 7: Caterpillar in Figure 6 with one pendant section separated.

Therefore, by induction on the number of pendants attached, the number of edge covers
is the product of Fm1

and Fm2−m1+2 · Fm3−m2+2 · Fn−m3+1. Therefore, the first claim for the
total number of edge covers follows.

Regarding the edge cover polynomials, each time we split off a path graph, we need to
multiply by 1/x due to Corollary 6 since the degree of the pendant vertex is three. Thus,
for r pendants, we have an extra x−r factor.

We can generate number sequences out of caterpillars by considering evenly spaced pen-
dants in caterpillars [8]. For simplicity, at every vertex of the caterpillar, assume there is at
most one pendant. Let Catk,n denote a caterpillar with n pendants where k− 1 is the num-
ber of edges between consecutive pendants, and before the first and after the last pendants.
Using the results above, we have

#Catk,n = F 2
kF

n−1
k+1 .

Fixing k or n generates a sequence of numbers. For example, k = 3 generates the sequence
A003946, while n = 2 generates A066258 in OEIS [9].

3.2 Cycle graphs with pendants

When pendants are attached to cycle graphs, we can similarly use the pendant lemma at
each pendant to split the graph into paths.

Theorem 8. Suppose G is obtained by attaching pendants to a cycle graph Cn with vertices
consecutively labeled 1, 2, . . . , n and k0, k1, k2, . . . , kr pendants attached to vertices (counting
clockwise starting at 1) 1,m1,m2, . . . ,mr, respectively. Then G has a total of

#G = Fm1+1Fm2−m1+2 · · ·Fmr−mr−1+2Fn−mr+3

edge covers. Its edge cover polynomial is

E(G, x) = xk0+k1+k2+···+kr−2(r+1)E(Pm1+2, x)E(Pn−mr+4, x)
r
∏

i=2

E(Pmi−mi−1+3, x) .

Proof. A representative example labeled cycle with pendants is shown in Figure 8.
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1
8 2

3

5

7

m1 = 4
m2 = 6

Figure 8: A cycle with k0 = 2 pendants at vertex 1, k1 = 1 pendant at m1 = 4, and k2 = 3
pendants at m2 = 6.

Let G be a cycle with n vertices with k0 pendants attached to vertex 1, k1 attached to
m1, . . . , and kr attached to mr. As before, without loss of generality, assume there is one
pendant at each pendant location. We first apply the pendant lemma at vertex 1 to turn
the cycle Cn with pendants at locations 1,m1,m2, . . . ,mr into a path Pn+3 with pendants
at locations m1 + 1,m2 + 1, . . . ,mr + 1. The example graph given in Figure 8 will turn into
the caterpillar in Figure 9 if we first remove the extra pendants at each vertex and apply
the pendant lemma. The two pendants in the figure without labels are the added pendants
after using the lemma.

1 2 3 m1 = 4 5 m2 = 6 7 8 1′

Figure 9: The caterpillar obtained after applying the pendant lemma.

Once the graph becomes a caterpillar, we apply Theorem 7 on caterpillars to obtain the
result.

3.2.1 Evenly spaced pendants in cycle graphs

We now consider evenly spaced single pendants on cycles to generate sequences. We denote
a cycle with evenly spaced single pendants as PCk,n, where k is the number of edges between
consecutive pendants and n is the number of pendants on the graph. As a result, PCk,n has
kn vertices on the cycle. After applying the Theorem 8 in this case, we obtain the following
theorem.
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Theorem 9. Given a cycle PCk,n with evenly spaced pendants, we have

#PCk,n = (Fk+2)
n and E(PCk,n, x) =

E(Pk+3, x)
n

xn
.

To generate sequences, we first fix k, the spacing between the consecutive pendants,
and change n. First, let k = 1. The graphs PC1,n are cycles with a pendant on each
vertex. These turn out to be rather uninteresting. By Theorem 9, we have #PC1,n = 2n

and E(PC1,n, x) = (x3+x2)n

xn = xn(x + 1)n. The triangle formed of coefficients (arranged in
descending powers of x) results in Pascal’s triangle.

For k = 2, the graphs PC2,n are cycles with pendants on every other vertex. The first
few examples of these graphs are shown in Figure 10.

Figure 10: From left to right, PC2,2,PC2,3, and PC2,4.

By Theorem 9, we have #PC2,n = 3n and E(PC2,n, x) = (x4+2x3)n

xn = x2n(x + 2)n.
The coefficients of the polynomials (arranged in descending powers of x) form the sequence
A013609, described as the sequence of coefficients of (1 + 2x)n.

When k = 3, the first few graphs are shown in Figure 11.

Figure 11: From left to right, PC3,1,PC3,2, and PC3,3.

By Theorem 9, we have #PC3,n = 5n and

E(PC3,n, x) =
(x5 + 3x4 + x3)n

xn
= x2n(x2 + 3x+ 1)n .

The sequence formed by these polynomial coefficients (arranged in descending powers of x) is
the sequence A272866, a triangle made up of Gegenbauer polynomial values, specifically that
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of C
(−n)
k

(

−3
2

)

for row n. The correspondence follows from the generating function definition
of the Gegenbauer polynomials [7], which is

(1− 2xt+ t2)−ν =
∞
∑

k=0

C
(ν)
k (x) tk .

Now let us consider fixing n, the number of pendants. The first case is when n = 1,
PCk,1. These are cycles with one single pendant. We find #PCk,1 = Fk+2 and E(PCk,1, x) =
E(Pk+3,x)

x
. This is again an uninteresting case since we obtain the same edge cover numbers

and edge cover polynomial coefficients as path graphs.
If we consider two evenly spaced pendants, n = 2, things become more interesting. The

first few cases of these graphs are shown in Figure 12.

Figure 12: From left to right, PC2,2,PC3,2, and PC4,2.

We obtain #PCk,2 = (Fk+2)
2 and the edge cover polynomials satisfy

E(PCk,2, x) =
E(Pk+3, x)

2

x2
.

The triangle formed by these coefficients (arranged in descending powers of x) matches the
sequence A123521 (starting at the row n = 3), which counts the tilings of a 2 × n grid
with some pieces being horizontal domino tiles and the remaining pieces being square tiles.
Since the dominoes are allowed to be only horizontal, the top row and bottom row act
independently of each other. We can show a direct correspondence between these tilings
and the edge covers of PCk,2. Having two pendants k apart from each other allows each
side of the cycle to turn into a path Pk+3 behaving independently. For each side, an edge
cover of the path corresponds to tiling the 1× (k + 1) board with dominoes and squares in
the following way. For each of the k + 1 non-pendant vertices of Pk+3, we place a square
if two edges on both sides cover that vertex and place a domino if only one edge covers it.
Considering both sides of the cycle together, we obtain a 2× (k+1) board to cover. Missing
an edge in this edge cover means we have a corresponding domino in the tiling. Therefore,
an edge cover of PCk,2 with j missing edges corresponds to a tiling of 2 × (k + 1) with j
dominoes total.

The first few cases of PCk,3 are shown in Figure 13.
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Figure 13: From left to right, PC1,3,PC2,3, and PC3,3.

We have #PCk,3 = (Fk+2)
3, which is the sequence A056570. The edge cover polynomials

satisfy

E(PCk,3, x) =
E(Pk+3, x)

3

x3
,

which form the triangle of coefficients in Table 1.

k \ i 0 1 2 3 4 5 6 7 8 9
1 1 3 3 1
2 1 6 12 8
3 1 9 30 45 30 9 1
4 1 12 57 136 171 108 27
5 1 15 93 308 588 651 399 123 18 1

Table 1: Coefficients of the edge cover polynomials of PCk,3.

In Table 1, the entry in row k and column i represents the number of edge covers of PCk,3

missing i edges from the total. In other words, the coefficients of the edge cover polynomials
are arranged in descending powers of x.

4 Spider graphs

A spider graph is a tree with one vertex v with deg v ≥ 3 and the rest of the vertices with
degree at most 2. Therefore, the vertex v is the center vertex, and all other vertices are
on paths that start from vertex v. We refer to these paths as branches. We denote the
non-center vertices by vij, where i is the branch number and j is the vertex number on that
branch, with j = 1 being the closest to v and increasing outward. Let Sn1,n2,...,nk

denote a
spider graph with k branches where the i-th branch has ni vertices (not including v), shown
in Figure 14.

Theorem 10. Given a spider graph Sn1,n2,...,nk
, we have

#Sn1,n2,...,nk
=

k
∏

i=1

Fni+1 −
k
∏

i=1

Fni−1

12
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v

vk,nk

vk,1

v1,n1

v1,1

vk−1,nk−1

vk−1,1

Figure 14: A spider graph Sn1,n2,...,nk
.

and

E(Sn1,n2,...,nk
, x) = E(Pnk

, x)E(Sn1,n2,...,nk−1
, x) +

1

xk−1
E(P1+nk

, x)
k−1
∏

i=1

E(P2+ni
, x) .

Proof. We prove the first claim by induction on k, the number of branches. First, note that
for k = 1, Sn1

= Pn1+1. This means that #Sn1
= Fn1

= Fn1+1 − Fn1−1. Therefore, the claim
is true for k = 1.

Consider now a spider with k branches. Let e = vvk,1 be the edge connecting the last
branch to the center. We count the edge covers of #Sn1,n2,...,nk

using two disjoint cases: those
that include e and those that do not, as in Figure 15.

vk,nk

v1,n1

vk−1,nk−1

(a) Sn1,n2,...,nk
without e.

v

vk,nk

e

(b) Sn1,n2,...,nk
with e.

Figure 15: Two cases of Sn1,n2,...,nk
edge covers, with or without e.
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The edge covers without e are the same as those of two disconnected graphs, Pnk
and the

spider graph Sn1,n2,...,nk−1
. This gives us #Pnk

·#Sn1,n2,...,nk−1
edge covers.

To find the number of edge covers with e, we first use the 2-sum lemma. We let the
last branch be G1, one of the graphs in the 2-sum, and the edge connecting that branch to
the center vertex v be the identified edge in the 2-sum. Then, the spider Sn1,n2,...,nk−1

with
one pendant edge at the center vertex is G2, and the pendant edge is the identified edge in
the 2-sum. By the 2-sum lemma, we find that the set of edge covers with e is in bijection
with the edge covers of the disconnected graph consisting of P1+nk

, a P2, Sn1,n2,...,nk−1
with

a pendant at the center vertex, and another P2. We then apply the pendant lemma to this
smaller spider graph with a pendant and split it into k − 1 paths. This gives

#(Sn1,n2,...,nk
; e) = #P1+nk

·#P2 ·

k−1
∏

i=1

#P2+ni
·#P2 .

Adding the two cases and using #Pn = Fn−1, we have

#Sn1,n2,...,nk
= Fnk−1 ·#Sn1,n2,...,nk−1

+ Fnk
·

k−1
∏

i=1

Fni+1 .

If we substitute the inductive hypothesis into the above expression and simplify, we get

#Sn1,n2,...,nk
= Fnk−1

(k−1
∏

i=1

Fni+1 −

k−1
∏

i=1

Fni−1

)

+ Fnk
·

k−1
∏

i=1

Fni+1

=
(

Fnk−1 + Fnk

)

k−1
∏

i=1

Fni+1 −

k
∏

i=1

Fni−1

=
k
∏

i=1

Fni+1 −
k
∏

i=1

Fni−1 ,

which is the claim. We can also think of this result heuristically as creating an edge cover of
the spider by joining edge covers of the branches where the edge to the center vertex may or
may not be there. These branch edge covers are in one-to-one correspondence with the edge

covers of P2+ni
. Therefore, all these multiplied together gives us

k
∏

i=1

Fni+1 covers. We then

remove the cases where each of the branches was missing the edge to the center vertex, which
corresponds to each edge cover of the branch corresponding to one smaller path. Hence, we

obtain a total of
k
∏

i=1

Fni−1 covers to exclude.

Using the same cases, if we apply the 2-sum lemma and pendant lemma corollaries for the
edge cover polynomials, specifically Corollaries 4 and 6, we obtain the edge cover polynomial
recurrence relation given in the theorem statement.
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4.1 Spider graphs with equal-length branches

We obtain a particular case of the spider graphs when all branches are equal in length. We
let Snk denote such a spider graph, where k is the number of branches and n is the number
of vertices on each branch (except the center vertex). In this case, we have the following
result:

Theorem 11. Given a spider graph with k ≥ 1 branches each of length n ≥ 1, we have

#Snk = F k
n+1 − F k

n−1 and E(Snk , x) = E(Pn+1, x)
k−1
∑

i=0

E(Pn, x)
k−1−iE(Pn+2, x)

i

xi
.

Proof. By Theorem 10, the first claim follows directly, and we have

E(Snk , x) = E(Pn, x) · E(Snk−1 , x) +
E(Pn+1, x) · E(Pn+2, x)

k−1

xk−1
. (1)

For k = 1, we have Sn1 = Pn+1, and the edge cover polynomial expression in the second
claim holds in this case.

More generally, if E(Snk , x) is as claimed, then again, by equation (1),

E(Snk+1 , x) = E(Pn, x)E(Pn+1, x)
k−1
∑

i=0

E(Pn, x)
k−1−iE(Pn+2, x)

i

xi
+

E(Pn+1, x) · E(Pn+2, x)
k

xk

= E(Pn+1, x)
k

∑

i=0

E(Pn, x)
k−iE(Pn+2, x)

i

xi
.

Therefore, the claim holds for all k.

An even tidier expression for the edge cover polynomials of the spider graphs can be
obtained using Theorem 1(iv).

Theorem 12. Given a spider graph with k ≥ 1 branches each of length n ≥ 1, we have

E(Snk , x) = (E(Pn+1, x) + E(Pn, x))
k − E(Pn, x)

k .

Proof. Since Sn1 = Pn+1, we have

E(Sn1 , x) = (E(Pn+1, x) + E(Pn, x))
1 − E(Pn, x)

1 .

Now assume the claim is true for k. Recall that G1 · uv ·G2 is formed by combining the
graphs G1 and G2 by identifying the vertex u ∈ G1 with the vertex v ∈ G2. Theorem 1(iv)
provides a formula for the edge cover polynomial of G = G1 · uv · G2 in terms of those of
G1, G2, and their subgraphs. Spider graph Snk+1 is Pn+1 · uv · Snk , where u is a pendant of
Pn+1 and v is the center of Snk . By applying Theorem 1(iv), we obtain

E(Snk+1 , x) = E(Pn+1, x)E(Snk , x) + E(Pn+1 − u, x)E(Snk , x) + E(Pn+1, x)E(Snk − v, x) .

15



Removing the center vertex in a spider graph Snk splits it into k disconnected paths Pn, and
removing the pendant from Pn+1 turns it into Pn. Hence, we find

E(Snk+1 , x) = E(Pn+1, x)E(Snk , x) + E(Pn, x)E(Snk , x) + E(Pn+1, x)E(Pn, x)
k

= (E(Pn+1, x) + E(Pn, x))E(Snk , x) + E(Pn+1, x)E(Pn, x)
k .

Using the assumption about E(Snk , x), we then have

E(Snk+1 , x) = (E(Pn+1, x) + E(Pn, x))((E(Pn+1, x) + E(Pn, x))
k − E(Pn, x)

k)

+ E(Pn+1, x)E(Pn, x)
k

= (E(Pn+1, x) + E(Pn, x))
k+1 − E(Pn, x)

k+1 .

Therefore, the claim holds for all k. Note that if we express E(Snk , x) in expanded form
in terms of powers of E(Pn+1, x) and E(Pn, x), then the coefficients will form the beheaded
Pascal’s triangle A074909 since they will be the same as the coefficients of (x+y)k−yk. The
beheaded Pascal’s triangle omits the last 1 in each row of Pascal’s triangle, which results
from subtracting 1 from (x+ 1)k.

4.1.1 Spider graph sequences

In these spider graphs with branches of equal length, we generate sequences if we further
fix n or k. Let us first consider fixing k, the number of branches. The cases k = 1, 2
are boring since these spiders are path graphs. So let k = 3. By Theorem 10, we have
#Sn3 = (Fn+1)

3 − (Fn−1)
3, which is the sequence A350473. The edge cover polynomials are

E(Sn3 , x) = (E(Pn+1, x) + E(Pn, x))
3 − E(Pn, x)

3 .

These edge cover polynomials produce the triangle of numbers given in Table 2. In this
table, row n corresponds to the coefficients of the edge cover polynomial of S3

n arranged in
descending powers of x.

n \ i 0 1 2 3 4 5 6
1 1
2 1 3 3
3 1 6 12 7
4 1 9 30 44 27 6
5 1 12 57 135 165 96 19

Table 2: Coefficients of E(Sn3 , x).

Now let k = 4. The total number of edge covers of Sn4 is #Sn4 = (Fn+1)
4 − (Fn−1)

4,
generating the sequence A358917, which starts with

1, 15, 80, 609, 4015, 27936, 190385, 1307775, . . .
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The edge cover polynomials of Sn4 are

E(Sn4 , x) = (E(Pn+1, x) + E(Pn, x))
4 − E(Pn, x)

4 ,

which generate the triangle in Table 3, again in descending powers of x.

n \ i 0 1 2 3 4 5 6 7 8 9
1 1
2 1 4 6 4
3 1 8 24 32 15
4 1 12 58 144 194 140 52 8
5 1 16 108 400 885 1192 948 400 68

Table 3: Coefficients of E(Sn4 , x).

For k = 5, we have #Sn5 = (Fn+1)
5 − (Fn−1)

5, generating the sequence A358934, which
starts with

1, 31, 242, 3093, 32525, 368168, 4051333, 499200274, . . .

The edge cover polynomials are

E(Sn5 , x) = (E(Pn+1, x) + E(Pn, x))
5 − E(Pn, x)

5 ,

generating the triangle of numbers in Table 4.

n \ i 0 1 2 3 4 5 6 7 8 9 10
1 1
2 1 5 10 10 5
3 1 10 40 80 80 31
4 1 15 95 330 872 680 320 85 10
5 1 20 175 880 2810 5943 8420 7880 4645 1540 211

Table 4: Coefficients of E(Sn5 , x).

Instead of fixing k to generate a sequence, we can also fix n to create spider graphs with
fixed branch lengths and an increasing number of branches.

If n = 1, we obtain spider graphs S1k , which are star graphs. These are uninteresting
since #S1k = 1 and E(S1k , x) = xk.

Spider graphs S2k produce more interesting edge cover numbers than star graphs do. We
have #S2k = F k

3 − F k
1 = 2k − 1, generating A000225, and

E(S2k , x) = (E(P3, x) + E(P2, x))
k − E(P2, x)

k = (x2 + x)k − xk = xk((x+ 1)k − 1) .

The triangle generated by the coefficients of these polynomials (arranged in descending
powers of x) is A074909, the beheaded Pascal’s triangle.
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For n = 3, we have #S3k = F k
4 − F k

2 = 3k − 1, generating A024023, and

E(S3k , x) = (E(P4, x) + E(P3, x))
k − E(P3, x)

k = (x3 + 2x2)k − x2k = x2k((x+ 2)k − 1) .

The coefficients of these edge cover polynomials, in descending powers of x, form Table 5.

k \ i 0 1 2 3 4 5
1 1 1
2 1 4 3
3 1 6 12 7
4 1 8 24 32 15
5 1 10 40 80 80 31

Table 5: Coefficients of E(S3k , x).

The edge cover numbers for n = 4 generate the sequence A005057, and for n = 5 generate
the sequence A190543. Larger n values generate sequences not in OEIS.
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