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Abstract

Let a = (14 +/5)/2, the golden ratio. Let F}, and L,, be the Fibonacci and Lucas
1
numbers. We derive base-a expansions of log F},, log L, arctan o and arctan I for
all positive integers n. " !

1 Introduction

Let o denote the golden ratio; that is, a = (1 ++/5)/2. Let 8 = —1/a = (1 — v/5)/2. Thus
af = —1and a+ 8 = 1. Let F,, and L, be the Fibonacci and Lucas numbers, defined by

F, = (o™ — ") /V/5 and L,, = o™ + 8", for all non-negative integers n.

1


mailto:adegoke00@gmail.com 
mailto:joliverlafont@gmail.com

Let b be any non-zero number whose magnitude is greater than unity. Let n and s be
positive integers. A convergent series of the form

> 1 ay a9 (07%
C = — RS LA 1
kzzobk ((kn+1)s+(lm+2)s+ +(/~m—|—n)s)’ (1)
where aq, as, ..., a, are certain numbers, defines a base-b, length-n and degree-s expansion

of the mathematical constant C'.

If b is an integer and a; are rational numbers, then (1) is referred to as a BBP-type
formula, after the initials of the authors of the paper [4] in which such an expansion was first
presented for m and some other mathematical constants. Any mathematical constant that
possesses a base-b BBP-type formula has the property that one can compute its n-th digit,
in base b, using only O((logn)¢) space for some constant ¢, and time O(n).

Our goal in this paper is to derive base-a expansion formulas for the logarithm and
the inverse tangent of all Fibonacci and Lucas numbers. We will often give the expansion
using the compact P-notation for BBP-type formulas, introduced by Bailey and Crandall [5],
namely,

Ay a;
C=PlobmA) =) 35D gy

where s and n are integers and, in this present paper, b is an integer power of a and
A = (ay,aq,...,a,) is a vector of rational multiples of powers of 5. For example, we will
show (see (19)) that

> q 32 334 438 338 p1o
log Fs = log 2 =
R kzam’“ (6k+1+6k+2+6k+3+6/€+4+6k+5 ’

=0

which, in the P-notation, can be written as
log Fy = log 2 = P(1,a'2,6, (82,35",45°,35%, 5'°,0)).

To conclude this section we provide a brief summary of some previous studies on base-«
expansions.

Bailey and Crandall [5] derived a base-2/a formula for /. Similar formulas were found
by Chan [7] who also later proved [8] several formulas expressing 7 in terms of a. Borwein
and Chamberland [6] found a base-a expansion for 72.

Zhang [11] gave base-a expansions for 71/a+/5 and some other constants.

In a previous paper [2|, we established base-a formulas for 7, loga, log2 and several
other mathematical constants.

Recently, Kristensen and Mathiasen [9], using an algorithm implemented in SAGE, found
a base-a formula for m. They also obtained several base-a zero relations; that is, series that
sum to zero.



2 Base-a expansions of logarithms

The base-a expansions of the logarithms of Fibonacci and Lucas numbers are presented in
Theorems 3 and 5 but first we state a couple of lemmata upon which the results are based.

Let
zk = P
— —1<z<l.
1k ,;xk+1’ =

Liy(z) = —log(l —x) =

k=
Lemma 1. If|b| > 1, t > 0 and m and n are arbitrary positive integers, then
L 1/bY
2
()ZWZMH (2)
1)7/b"
( ) Z o Z T (3)

Proof. We have

ka - mek+Jfla (4)
k=0 k=0 j=1
with
1 1
Jo= bett k41
The proof of (3) is similar, with m = 2n in (4). O

Lemma 2. Ifr is an integer, then

log L, = rLi, (%) — Li ((_;2:+1> : (5)
log F, = (r — 2) Liy (%) + Liy <é) — Li <(;—21)) , T #0. (6)

Proof. We have

r r T L
Li, <_5_> = —log (a +0 ):—log (—T) =—logL, +rloga, (7)
ar a” a’

in which setting r = 1 gives

log o — Li, (é) | (8)

3



Using (8) in (7) gives (5).
Also,

Li, <Br> g (ar;ﬁr) ~ g (F;}/g> = —log F, 4+ rloga —log V5,  (9)

aT

in which setting r = 2 gives

1 1 1
log v/5 = 2log a — Li; <—4) =2Li (—2> — Liy <—4) : (10)
« « «

where we used (8). Identity (6) follows from (9) and (10).

Theorem 3. If r is an integer, then

1 = BY92(r = 2470, 41y2) o= 1 = BYr
log F = dd, (11
o Z ol < 2k +2j — 1 Za‘”kZQrk—i—Qj’ rodd, (1)

(r—2)pv2 & BYr(1 = 0;,/2)
log F,, = d . (12
08 Z a4rk Z 2rk +25 — 1 Z a4rk Z 2rk + 27 , Teven ( )

Here and throughout this paper, d,,, denotes the Kronecker delta symbol whose value is
unity when m equals n and zero otherwise.

Proof. We prove (12). When r is even, (6) reads

log Fy — (r — 2) Ly (é) +Liy (é) L (;2) R (13)

We proceed to write the three Li; terms in a common base o, using (2) with appropriate
t and m choices. Thus,

oo 2r i
/1 1 1/a%
Li; (&2) :Za4rk22rk+j’ (14)
=1

k=0
(1 1 K 1/aY
Li, (J) - Z oAk Z rk+ 5’ (15)
k=0 j=1
(1 1 [1/a®  1/a™
L = : 1
1 (oﬂ”) ga‘”k (2k+1+2k+2 (16)



Using (14), (15) and (16) in (13) gives

1 52] T o oo r 54]‘
log F, =
8 Z 4’“’“ 2rk +j + ;0 a47"k 2r/<: +2j
- (17)

i T,BQT 64T
otk \ 2rk +r 27“k: + 2r

k=0

Using the summation identity

2r r r
ij = Zf2j + ZfQj—l
j=1 j=1 j=1

to write its inner sum, the first term on the right hand side of (17) can be written as

1 = B%( r—2 - 7"—2 =1 64J2r—2)
— 18

Using (18) in (17) yields (12).

O
Identities (11) and (12) written in the P-notation are
log F, = P(1,a",2r, (a1, as, ..., as)),
where for 1 < j <r,
azj1 = B2 (r—2+ 70 (r41)/2), Q25 = BYr(1 —6,5), 7 odd;
and
agj—1 = (r — 2)3472 ag; = BYr(1 — djrj2 — 0j,), T even.

Example 4.

log Fy = log2 = P(1,a',6, (5% 38",45°,36°% 5, 0)), (19)

log F5 =log5 = P(1,a™,10, (38%,53%,33°%,53°, 83", (20)

5512’ 3ﬁ14, 5ﬁ16, 35187 O)),
log Fy = log3 = P(1,a'%,8,(28% 45%,253°,0,28" 452 25", 0)), (21)
log Fs = log 21 = P(1,a*,16, (63%,83*,643°,83%, 63,852, 63,
07 Gﬁlg, 8/820, 6622> 85247 6526, 8528, 663(), 0)),
log o = log 144 = P(1,a,24, (10 52,12 8,10 5%, 12 3%, 10 B*°,
12 82,10 g1, 12 8,10 58, 12 5%, 10 52, 0,
10 526’ 192 5287 10 530’ 12 5327 10 ﬁ34, 192 536’
10 58%%,12 %910 p*2, 12 8**,10 3¢, 0)).

5



Theorem 5. If r is an integer, then

log Z a217“k: Z B2JT '7 r Odd,

2r—1

1 BQJT‘ (1+9,5)
log L, —ZO/M okt T even.

Proof. We prove (23). If r is an odd integer, (5) gives

With

and

1 1
10gLr = TLil (—2> —L11 < B ) .
o o’

() =S X

o0

] 1 1 r/a®
Lll (a2r) - Z OéQTk Tk'—f—?"
k=0

n (25); identity (23) follows.

Identities (23) and (24) in the P-notation are

with

and

with

Example 6.

that is,

log L, = P(1,0*",r,(a1,as,...,a,)), 7 odd,
a; =11 -0,), 1<j<r,
log L, = P(1,a",2r, (a1, as,. .., as)), 7 even,

- 7"523( Jr 6]',27“)7 1 S ] S 27n-

o0

1 23 434 236
log Ly =log3 =Y — .
o8l =08 kzzooﬁk <4k+1+4k+2+4k+3 ’

log3 = P(1,0" 4, (26 48", 26°,0)).

log Ly = log4 = P(1,a° 3, (35%,35%,0)),

log Ls = log 18 = P(1,a*,12, (65%,65%,63° 63%,65'",
126'%,68',68'°,65'%,65%,65%,0)).
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3 Base-a expansions of inverse tangents

The base-a expansions of the inverse tangent of Fibonacci and Lucas numbers are stated in
Theorems 10-19 but first we collect some required identities in Lemmata 7-9.

Lemma 7. If r is an integer, then

., _r {Fr\/g, T even;

o —a =
L,, r odd,
F T L,, r even,
o' +a "=
Fr\/g, r odd.

Lemma 8. Ifr and m are integers, then

(arctan (L,,/(FV/5)),

arctan(L,,/L,),

arctan

—— — arctan T =
o o arctan(F,,/F,),

(
(
larctan(F,,v/5/ L),
(arctan(F,,v/5/L,),
(
(

1 arctan(F,,/F,),
+ arctan =
armm artm arctan(L,,/L,),

Larctan (L, /(F, \/3)) )

arctan

Proof. The arctangent subtraction and addition formulas give

3333 33 3 3

odd, v odd;
odd, r even;
even, r odd,;

even, r even;

odd, r odd,;
odd, r even;
even, r odd,

even, 1 even.

1 a’(a™—a™™m)
arctan — arctan = arctan ,
ol —m artm a?r +1
1 a’(@m™4+a™™)
arctan + arctan = arctan ;
Qr—m qrtm a?r — 1

and hence the stated identities upon the use of Lemma 7.

Lemma 9. If r is an integer, then

o —1=a"L,, " —1=p"L,, r odd

05274 - 1 = O[TFT\/57 52T - 1 = _BTFT\/Su
a2r+1 :aTFr\/ga 52T+1 - _6TFT\/57

" +1=a"L,, B*+1=p"L,, r even.

r even,

r odd,



Theorem 10. If r is an odd integer greater than unity, then

1
arctan = P(1, 0/‘(7"2’4), 4(r* — 4), (a1, ag, . . . , Qa(r2_1))),

T

where the only non-zero constants a; are given by

a_y@j_z) = =B —2) =12, 7 +2,
ag_ayaj_1y = BrAW (@ —2) j=1,2,... 17 +2,
Aiayajz) = BUTAE (1 2) =12, 0 2,
iy = —BUPE N 4+2), j=1,2,.. 0 -2,
Up)(riz) = (_1)(7"4—1)/24/87’2—4

a3(r—2)(r+2) = (—1)T /230"

Proof. With r an odd number, setting m = 2 in (8) gives

— arctan

1
arctan — = arctan o2 pras

T

The following identity, proved in a previous work [1, Identity (10)]:

1 —~ 1 [ !
tan | —= | = » —~ B
ny/narc an(\/ﬁ) ;n% (4k+1 4k+3)
gives
%) OéQr—4 1
arctan ;0 o 2)(4k+3 (4k +1 Ak + 3)
d
an 1 ) 1 2r+4 1
arctan P kz—o o (r+2)(4k+3) (4k; +1 4k + 3)’
OI', by (4)7
arcta ! i § (r—2)(4j-3) a~ (==
rctan
o2 k:OOé‘W 16)k r+2k3+4]—3 A2k 4 - 1
and
t ! f: Tzé o —(r+2)(4j-3) Oé_(r+2)(4j_1)
arctan =
Oér+2 k:0a47‘2 16kJ=1 T—2k+4]_3 4(T_2)k+4j_1

(31)

(32)



arctan - Z @16k <
" =0
o2 ( —Br=2i=3)(p _ 2) Br=24i-1)(p _ 9) >
. + .
= A2 =Dk + (r—2)(45—3) 40?2 —4dDk+(r—2)45-1)
. r-2 B3 (4 9) BI+DE-1) (1 4 9)
H\AP—Dh+ (r+2) 4 —3) AP -k+ (24 -1/ )
(33)
Identity (31) is (33) expressed in the P-notation. O
Example 11.
1 1
arctan — = arctan — = P(1,?°,20, (—=3,0,5%,0,48°,0,57,0,—53°,0, ',
E S =P (=5,0,8,0,40°,0,57.0,-%0.8",

07 _5137 07 _4B157 07 _ﬁ177 07 6197 0))7

1 1
arctan o = arctan - = P(1,a*,84,(0,0,-3 3% 0,0,0,757,0,35,0,0,0,0,0, -3 5,
5

0,0,0,0,0, -4 3*',0,0,0,0,0, -3 3%*7,0,0,0,0,0,3 3%,
0,75%,0,0,0,—-35%,0,0,0,0,0,33%,0,0,0, —7 3,
0,-34°1,0,0,0,0,0,35°,0,0,0,0,0,4 3%,0,0,0,0,0,
35%,0,0,0,0,0,-337,0,—-7577,0,0,0,33%,0,0,0)),
arctan F% = arctan % = P(1,a"° 180, (0,0,0,0,—53%,0,0,0,9 37,0,0,0,0,0,5 3,
0,0,0,0,0,0,0,0,0,—55%,0,—9 5%,0,0,0,0,0,0,0,
56%,0,0,0,0,0,0,0,0,0,45%,0,0,0,0,0,0,0,0,0,
54°°,0,0,0,0,0,0,0,-93%,0,-55%,0,0,0,0,0,
0,0,0,0,557,0,0,0,0,0,95%,0,0,0,—55%,0,0,
0,0,0,0,0,0,0,543%,0,0,0,—-95%,0,0,0,0,0,
—551%.,0,0,0,0,0,0,0,0,0,555,0,9 57,0, 0,0,
0,0,0,0,—53%°,0,0,0,0,0,0,0,0,0, —4 33,
0,0,0,0,0,0,0,0,0,—55*,0,0,0,0,0,0,0,9 5.0,
56%5.0,0,0,0,0,0,0,0,0,—55'°,0,0,0,0,0, =9 '™,
0,0,0,53',0,0,0,0,0)).



Theorem 12. If r is a positive even integer, then

1
arctan = P(1, a4(7"2’1), 4(r* = 1), (ay, ag, .. . , Qa(r2-1))),

where the only non-zero constants a; are given by
ap_1y@j_z = —BUIE (1), j=1,2,..., 7 +1,
a1y = BrVE DG 1) =12, 0 41,
A(r+1)(4j—3) = —pUHE= 1), j=1,2,...,r—1,
aginj-n = BUIE N+ 1), =120 -1,
A(r—1)(r+1) = (—1)7/22p7 !
3(r—1)(r11) = (_1)(1"4-2)/2253(7“2—1)'
Proof. Setting m = 1 in (8) gives

1
arctan Fr = arctan v + arctan pYasE 7 even.

The proof now proceeds as in that of Theorem 10. [
Example 13.

- P(]-a 0612, ]-27 (_57 O) —2 637 07 _/657 07 677 07 2/897 07 /3117 0))7

. T
arctan — = —
F, 4

arctan F% = arctan % = P(1,a%,60,(0,0,-343,0,-5/°,0,0,0,35%,0,0,0,0,0,2 3%,
0,0,0,0,0,35%,0,0,0, -5 %,0, -3 3*,0,0,0,0,0,3 3,
0,55%,0,0,0,—35%,0,0,0,0,0,—2/3%,0,0,0,0,0, —3 3°,
0,0,0,55%,0,35°,0,0,0)).
(35)
Theorem 14. If r is a positive even integer, then

1
arctan 7= P(1, QA= 4(r* — 1), (ay, as, ... , Ga(r2-1)));

where the only non-zero constants a; are given by

ag_1yajz = —BUOYI 1) j=1,2,...,r+1,
ap_1yaj-1y = BrIE N~ 1), j=1,2,.. 0 +1,
ainyajz = BOIEE 1 1) =12, 1,
a1y = —BUTHE D 41), j=1,2,...,7r—1,
1)1y = (—1) D220 g

T T2—
as(r—1)(r+1) = (—1)722r 270
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Proof. Setting m =1 in (8) gives

— arctan —— T even.

1
arctan — = arctan o e

r

The proof now proceeds as in that of Theorem 10. m
Example 15.

1 1
arctanL— = arctang = (1,0'?,12,(—=3,0,48%,0,—53°,0, 87,0, -4 5°,0, 3™, 0)), (36)
2

1 1
arctan — = arctan? = (1,a%,60, (0,0, -3 3% 0,5 %,0,0,0,33°,0,0,0,0,0, -8 3,
4
0,0,0,0,0,34%,0,0,0,55%,0,-36*,0,0,0,0,0,3 3%,
07 _5ﬁ357070707_3539707070707078ﬁ4570707070707
- 3B5170ﬂ0707_55557073B5770a070))'

Theorem 16. If r is an integer, then

0 1 67’ 253r 557" 677" 2ﬁ9r 5117‘
P )

- + —

— o2k \12k+1 ' 12k+3  12k+5 12k+7 12k+9 12k+11
37
— arctan (L% , r odd, (37)
a arctan ( Frl\/g , T oeven;
that is,
P(17 05127'7 127 (6T7 07 253T7 07 657’) 07 _ﬁ??“’ 07 _259T7 07 _/8117’7 O))
— arctan (L% , r odd;
; arctan ( F:\/E , T evel.
Proof. In an earlier work [1, Identity (27)], we showed that
= 1 n? 2n 1
2 t _\/ﬁ = .
A W | ; () \Gk+1  6k+3  6k+5
In base n%, length 12, this is
n*y/n arctan < \/ﬁ )
n—1
B i": 1 n? N 2n N 1 1/n 2/n? 1/n? (38)
SR \12k+1 0 12643 12645 12647 12649 12k +11)°
Identity (37) follows upon setting n = a" in (38) and making use of (29) and (30).
[
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Example 17.
- P(17 06127 ]-27 (_67 07 _2ﬁ37 07 _557 07577 07 2697 07 ﬂ117 0))7 (39)

™
4
arctan < ) = P(l,Oé12, 127 <_63707 _269707 _615707B217072627707/83370))7

Remark 18. Identity (39) is the same golden ratio base expansion of 7 that was obtained in
Theorem 12.

—

P(17 a12a ]-27 (/827 07 2ﬁ6a 07 /8107 Oa _614) 07 _2/3187 07 _ﬁ227 0))7

P(la OélQ, 12a (54a Oa 2612a 07 5207 Oa _ﬁ287 07 _26367 07 _5447 0))

Theorem 19. If r is an integer, then

i 1 ( 23" 233" > — arctan (Ll , r odd, (40)
_ = r 40
=0 O[4T'k 4]{] + 1 4k + 3 arctan <Fr2\/5 , T even;
that s
— arctan (Ll , r odd,
P(l?a4r74? (251”’0’_2531“’0)) - ’
arctan (ﬁg , T oeven.
Proof. Setting x = " in the identity
2x
2 arctan x = arctan
1 — a2
and using (29) and (30), we have
1 arctan Ll) , r odd;
2 arctan — = " (41)
ar arctan FT2\/§> , T even.
Setting n = a?" in (32) and comparing with (41), we obtain (40). O
Example 20.
2 1
arctan — = arctan 5 = P(1,a0',4,(—-25%0,28%0)), (42)
3
arctan (L) = arctani = P(1,0% 4, (26%0,-25°%,0)).
PE\/E \/S 3 ? ) 9 ) J
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4 Zero relations

Zero relations are expansion formulas that evaluate to zero. They are useful in the determi-
nation and classification of new expansion formulas. A base-a expansion is not considered
new if it can be written as a linear combination of existing formulas and known zero relations.

4.1 Zero relations arising from the logarithm formulas
4.1.1 Zero relation from log(F3/L3) =0
Theorem 21. We have

o

5! L3 8t 385 8\
a2 \6k+1 6k+2 6k+3 6k+4 6k+5)

k=0

that is,
0= P(1,a'%,6,(1,-35% —83* —33%, 3%,0)).

Proof. We have
2log F3 —log L3 = 0.

The expansion of log L3 given in (27) has the following base-a'?, length-6 version:

log Ly = P(1,a'?,6,(35%,35",0,35% 35", 0)).

Use of (19) and (44) in (43) yields the zero relation stated in Theorem 21.

4.1.2 Zero relation from log(Lg/(F7F3)) =0
Theorem 22. We have
0 - P(L 04487 247 (17 _5ﬁ27 -2 ﬂ47 3ﬁ67 B87 45107 5127 3ﬁ147

- 25167 _561875207 Oa 6247 -5 /6267 _2/8287 3ﬁ307 532,
4B347 ﬁ36, 35387 —9 ﬁ40; -5 ﬂ427 6447 0))

Proof. Write log F3, log Fy and log Lg, that is, identities (19), (21) and (28), respectively, in

the common base o*® and common length 24 and use

log Lg — 2log Fy — log F3 = 0.

13



4.1.3 Zero relation from log(Fy,/(FyL3)) =0
Theorem 23. We have
0= P(]-7 a487 24—7 (17 _4627 -5 ﬁ47 07587 25107/8127 07 _5B167 _4B187 6207 07
5247 —4 6267 _5ﬁ287 07 BBQ, 2ﬁ347 5367 07 =5 6407 —4 6427 5447 O))

Proof. Write log F3, log F15 and log Ly from (19), (22) and (26), in common base o*® and
consider
log F12 — 4 log F5 — 2 log Ly = 0.

4.2 Zero relations arising from the inverse tangent formulas
4.2.1 Zero relation from 2arctan(2/L3) + arctan(2/Ls) — arctan(2/L,) = 0
Theorem 24. We have
0= P(17 a607 607 (17 07 _7527 07 _4547 07 _B67 07 7587 07 _ﬁloa 07 6127 07 —2 5147
07 6167 07 _ﬁlga 07 76207 07 _BQQa 07 _4ﬁ247 07 _75267 07 ﬁ287 07 _6307 07
7ﬂ327 07 46347 07 6367 07 _76387 07 ﬂ407 07 _/8427 Oa 2 6447 07 _/8467 Oa
/8487 07 _7ﬁ507 07 B527 07 45547 07 75567 OJ _5587 O))

Proof. Using the addition and subtraction formulas for inverse tangents, it is easy to verify

that
t 2 t 2\ = t 5
arctan I arctan o)~ arctan | -
and
t 2 + arct : t 5
arctan | — arctan | — | = arctan | — | ;
L; Ly 4)’
so that
2 arct : + arct 2 t 2
arctan | — arctan (| — | —arctan | — | =
Ls Ls Ly ’
from which the zero relation follows upon use of (40). [

Remark 25. The zero relation stated in Theorem 24 can also be obtained directly from

1
arctan — = arctan —

F3 Ly’
by writing (34) and (42) in the common base a® and common length 60; or from
t t !
arctan — = arctan —
F, Ly’

using (35) and (36).

14



4.2.2 Zero relation from 2arctan(1/L;) — 2arctan(2/(F»v/5)) — arctan(2/(Fsv/5)) = 0
Theorem 26. We have
0= P(17 ()é24, 247 (17457 2527 07547 2557 _ﬁ67 07 _2587 4ﬁ97 _ﬁloa 07 6127 _45137
2 5147 07 ﬁ167 —2 6177 _5187 07 —2 5207 —4 5217 _6227 O))

Proof. The identity

T ; 2
— — arctan
2

V5

) = arctan

4_;5) + arctan (%)

= arctan | —
2
can be arranged as

1 2 2
2arctan (| — | — 2 arctan —arctan | ——= | =0
(z:) - 2orctan (25 ~vtan (25

which, on account of (40), gives the stated zero relation. ]

5 Other degree 1 base-a expansions and zero relations

5.1 Base-a expansions of log a

Theorem 27.
loga = P(1,,2,(0,—0)). (45)
Proof. We have
1. (1 I 1 1l/a <1 -8
cea T ot (a) 32 oF hrl " 2 aF i
k=0 k=0
m
Theorem 28.
loga = P(1,0%2,(0,26%)). (46)

Proof. We have

N

(1 1 1/ K1 2
loga:L”(E):Zﬁkﬂzza_?%ﬁz'
k=0
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5.2 Another base-a expansion of log?2

Theorem 29.
log2 = P(1,0°,3,(=f, 5% 26%)).

Proof. A straightforward consequence of the identity

1 1
o «v

5.3 Another base-a expansion of log 5

Theorem 30.
log5 = P(1,a*,2,(48%0)).

Proof. A consequence of the identity

1 1
log5 = 2 Li; <—2) — 2 Li, (——2> .
(6% (8%

5.4 A length 2, base-a zero relation

Theorem 31.
P(1,0%,2,(1,353)) = 0.

1 1
(L) i () o
(6% (6%

Remark 32. Relation (49) also follows from (45) and (46).

Proof. Follows from

5.5 A length 12, base-a zero relation
Theorem 33.

P(1,a'%,12,(1, 8, -2 6%,5 6%, 5,10 8°, 8°,5 67, =2 3%, 3%, "%, 2 1)) = 0.

Proof. Follows fron (19) and (47).

16
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5.6 A length 10, base-a zero relation
Theorem 34.

P(L CK2O, 107 (17 _5ﬁ27ﬁ47 _5567 _4687 _5B107 6127 _5514>B167 O)) = O

Proof. Ensues from (20) and (48). O

5.7 A length 5, base-a zero relation

Theorem 35.
P(1705575a(6717_67 _547_264)) =0. (50)
Proof. Setting p = 2 cosz in the identity
= pF cos(k 1
Z p” cos(kx) = ——log(1 — 2pcosx + p?)
k 2
k=1
produces
i (2 cos x)* cos(kx) _o (51)
k
k=1
Now 2 cos(27/5) = —p3. O

Thus, setting x = 27/5 in (51) gives

il g1 B 8 2N\

c= o \5k+1  5k+2 5k+3 5k+4 Bk+5)
since 5 5

cos<§(5j—4)>:%ﬁzcos(g(f)j—l)), j=12,...
and

cos (2%(5]' —2)) = % = cos (2%(5j —3)) ., j=1,2,...
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