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Abstract

The arithmetic mean of the first n Fibonacci numbers is not an integer for all n.

However, for some values of n, it is. In this paper we consider the sequence of integers

n for which the average of the first n Fibonacci numbers is an integer. We prove some

interesting properties and present two related conjectures.

1 Introduction

The Fibonacci sequence (Fn)n≥0 is defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for
n ≥ 2; it is sequence A000045 in the On-Line Encyclopedia of Integer Sequences (OEIS) [11].
Fibonacci numbers have been extensively studied [5, 6]. Numerous fascinating properties are
known. For instance, the Fibonacci numbers have a close relation to binomial coefficients:

Fn+1 =

⌊n
2
⌋

∑

i=0

(

n− i

i

)

.
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The average of the first n terms of the Fibonacci sequence is not always an integer. For
instance, for n = 3 we have (1 + 1 + 2)/3 = 4/3, but for n = 1, 2, 24, 48, . . ., the quantities
(

1
n

∑n

i=1 Fi

)

n≥1

are integers.

In this paper, we explore the following question: Which terms of the sequence

AF (n) =

(

1

n

n
∑

i=1

Fi

)

n≥1

(1)

are integers?
We give a characterization of the values of n for which AF (n) is an integer. In other words,

we give an implicit necessary and sufficient condition in Theorem 7 and explicit sufficient
conditions in the proof of Theorem 9 and in Theorems 10 and 11 on n to make the first n
Fibonacci numbers divisible by n. Moreover, we present a construction of finding infinitely
many n that satisfy the given conditions. Further, we show that there are infinitely many n
for which 6 is a divisor of the sum of the first n Fibonacci numbers.

Finally, we show that AF (p) is not an integer if p is an odd prime number.
Our work is based on the results in [6, 7, 11, 10, 13].

2 Preliminaries

First, we recall some definitions and important theorems [1, 4, 12]. A fundamental identity
that we use in this paper is [6, Theorem 5.1]

n
∑

i=1

Fi = Fn+2 − 1. (2)

The Lucas numbers (Ln)n≥0, are defined by the same recurrence relation as the Fibonacci
numbers with different initial values (see A000032).

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2, for n ≥ 2.

The following relations between Fibonacci numbers and Lucas numbers can be found in
[6]:

F4k+1 − 1 = F2kL2k+1, (3)

F4k+2 − 1 = F2kL2k+2, (4)

F4k+3 − 1 = F2k+2L2k+1, (5)

F2k = FkL2k. (6)
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An integer a is called a quadratic residue modulo p (with p > 2) if p ∤ a and there exists
an integer b such that a ≡ b2 (mod p). Otherwise, it is called a non-quadratic residue modulo
p.

Let p be an odd prime number. The Legendre symbol is a function of a and p defined as

(

a

p

)

=











+1, if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

−1, if a is a non-quadratic residue modulo p,

0, if a ≡ 0 (mod p).

We note that for a prime number p the Legendre symbol,
(

5
p

)

, is equal to

(

5

p

)

=











+1, if p ≡ ±1 (mod 5),

0, if p ≡ 0 (mod 5),

−1, if p ≡ ±2 (mod 5).

Consider the sequence of the Fibonacci numbers modulo 8:

0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, . . .

We observe that the reduced sequence is periodic.
Lagrange [7] proved that this property is true in general, i.e., that the Fibonacci sequence

is periodic modulo m for any positive integers m > 1.

Definition 1. For a given positive integer m, we call the least integer such that (Fn, Fn+1) ≡
(0, 1) (mod m) the (Pisano) period of the Fibonacci sequence modulo m and denote it by
π(m).

The sequence π(n) is sequence A001175 in the OEIS [11].
We recall as a lemma the fixed point theorem of Fulton and Morris [4].

Lemma 2 (Fixed Point Theorem [4]). Let m be a positive integer greater than 1. Then
π(m) = m if and only if m = (24)5λ−1 for some λ > 0.

For instance, with m = 8 we have π(8) = 12 and α(8) = 6. The 12 terms in the period
form two sets of 6 terms. The terms of the second half are 5 times the corresponding terms
in the first half (mod 8). For the Lucas sequence Fn = Un(P,Q); Robinson [10], we have
t ≡ Fα(m)−1(−Q) (mod m) is the multiplier between consecutive parts of length α(m) of the
period. If the (mod m) order of t is r then π(m) = rα(m). Here Fn = Un(1,−1), (P,Q) =
(1,−1), α(8) = 6, t = 5, r = 2; thus π(8) = 2 · 6 = 12; Robinson [10]. The 12 terms in the
period form two sets of 6 terms. The terms of the second half are 5 times the corresponding
terms in the first half (modulo 8). The next definition is

Definition 3. For a given positive integer, we call the least integer such that (Fn, Fn+1) ≡
σ(0, 1) (mod m) for some positive integer σ the restricted period of the Fibonacci sequence
modulo m and denote it by α(m).
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Robinson [10] proved the following theorems.

Theorem 4.

(i) m | Fn if and only if α(m) | n, and

(ii) m | Fn and m | Fn+1 − 1 if and only if π(m) | n.

Theorem 5. If p is a prime, then

(i) α(p) | (p−
(

5
p

)

),

(ii) if p ≡ ±1 (mod 5), then π(p) | (p− 1), and

(iii) if p ≡ ±2 (mod 5), then π(p) | 2(p+ 1).

The exponent of the multiplier of the Fibonacci sequence modulo p, t ≡ Fα(p)−1 (mod p)

is π(p)
α(p)

and can only take the values 1, 2 and 4.

For a positive integer n and a prime p, the p-adic valuation of n, νp(n), is the exponent
of the highest power of p that divides n.

Legendre’s classical formula for the p-adic valuation of the factorials is well known:

νp(n!) =
∞
∑

i=1

⌊

n

pi

⌋

.

We recall Lengyel’s lemma [8] about the p-adic evaluation of Fibonacci numbers in cases
p = 2, 3 and 5.

Lemma 6 ([8], Lemmas 1 and 2). For all n ≥ 0, we have ν5(Fn) = ν5(n). On the other
hand,

ν2(Fn) =



















0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

1, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12),

and

ν3(Fn) =

{

0, if n 6≡ 0 (mod 4);

ν3(n) + 1, if n ≡ 0 (mod 4).

3 Main results

We focus now on the average of the first n Fibonacci numbers, AF (n).

Theorem 7. Let n be a positive integer. Then n |
∑n

i=1 Fi if and only if Fn+2 ≡ 1 (mod n).
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Proof. We have

n |
n

∑

i=1

Fi ⇐⇒
n

∑

i=1

Fi ≡ 0 (mod n)

⇐⇒ Fn+2 − 1 ≡ 0 (mod n)

⇐⇒ Fn+2 ≡ 1 (mod n).

Lemma 8. Let n be a positive integer. If π(n) = n or π(n) = n+ 1, then

n |

n
∑

i=1

Fi.

Proof. According to the definition of the period of a Fibonacci sequence, the congruence
Fk ≡ Fk+π(m) (mod m) holds for any integer k. In particular, for k = 1 and k = 2, we have

F1 ≡ F1+π(n)(mod n) and F2 ≡ F2+π(n) (mod n).

This implies that if π(n) = n + 1, then 1 = F1 ≡ Fn+2 (mod n) and if π(n) = n, then
1 = F2 ≡ Fn+2 (mod n). By Theorem 7 and Identity (2) the statement follows.

Theorem 9. There are infinitely many even numbers n such that

n |

n
∑

i=1

Fi.

Proof. Lemma 2 states that for n = (24)5k−1 and k ≥ 1, we have π(n) = n. Hence, Lemma
8 implies the theorem.

Theorem 10. Let α be a non-negative integer. Then

3 · 2α+3 |
3·2α+3

∑

i=1

Fi. (7)

Proof. According to the Fibonacci identity (2), we have

3·2α+3

∑

i=1

Fi = F3·2α+3+2 − 1.

It is sufficient to show that 3 · 2α+3 | F3·2α+3+2 − 1.
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By Identities (4) and (6) we have

F3·2α+3+2 − 1 = F3·2α+2L3·2α+2+2

= F3·2α+1L3·2α+1L3·2α+2+2

= F3·2αL3·2αL3·2α+1L3·2α+2+2

...

= F3L3L6 · · ·L3·2αL3·2α+1L3·2α+2+2.

But F3 = 2, L3 = 4 and each of L6, . . . , L3·2α+1 are even numbers. Since L3·2α+2+2 is divisible
by 3, (7) holds.

Next we present a generalization of the previous theorem.

Theorem 11. Let α, β and γ be positive integers. For n = 2α+3 · 3β+1 · 5γ it holds

18 |
1

n

n
∑

i=1

Fi (8)

Proof. Consider n = 2α+3 · 3β+1 · 5γ , then n ≡ 0 (mod 4). Using Identity (2) and (4) we have

n
∑

i=1

Fi = F2α+3·3β+1·5γ+2 − 1 = F2α+2·3β+1·5γL2α+2·3β+1·5γ+2 (9)

By Lengyel’s lemma 6 we can write

ν2(F2α+2·3β+1·5γ ) = α + 4,

ν3(F2α+2·3β+1·5γ ) = β + 2,

ν5(F2α+2·3β+1·5γ ) = γ.

In (9) the Lucas factor L2α+2·3β+1·5γ+2 is also divisible by 3. This implies

18 |
1

n

n
∑

i=1

Fi, (10)

which concludes the proof.

Next we show that AF (p) is not an integer for an odd prime number p .

Theorem 12. Let p be an odd prime number. Then

p ∤

p
∑

i=1

Fi. (11)
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Proof. Assume that p is an odd prime number such that

p |

p
∑

i=1

Fi.

We investigate the cases p = 4k + 1 and p = 4k + 3 separately. We can assume that p > 5.

Case I. Suppose that p = 4k + 1. According to Identities (2) and (5), we have

p |

p
∑

i=1

Fi = F4k+3 − 1 = F2k+2L2k+1. (12)

Hence, p | F2k+2 or p | L2k+1. Suppose that p | F2k+2. According to the first case of
Theorem 5, we have

α(p) | p−

(

5

p

)

= 4k + 1−

(

5

4k + 1

)

.

The first case of Theorem 4 leads to α(p) | 2k + 2. Then

α(p) | 4k + 4−

(

4k + 1−

(

5

4k + 1

))

.

This implies

α(p) | 3 +

(

5

4k + 1

)

.

This is impossible, since
(

5
p

)

= ±1 .

Now suppose that p | L2k+1. From Identity (6), we have p | F4k+2. So, by Theorems 4
and 5, we have

α(p) | p−

(

5

p

)

= 4k + 1−

(

5

4k + 1

)

,

and α(p) | 4k + 2. This implies

α(p) | 4k + 2−

(

4k + 1−

(

5

4k + 1

))

= 1 +

(

5

4k + 1

)

.

We have again a contradiction, since
(

5
p

)

= ±1.

Case II. Now assume that p = 4k + 3. We follow the argument given in Case I. By
using Identities (2) and (3), we can write

p |

p
∑

i=1

Fi = F4(k+1)+1 − 1 = F2(k+1)L2(k+1)+1. (13)
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The prime number p = 4k + 3 must divide F2(k+1) or L2(k+1)+1. Suppose first that
p | F2(k+1). Similarly as in the first case, by Theorems 4 and 5, we have

α(p) | p−

(

5

p

)

= 4k + 3−

(

5

4k + 3

)

,

and α(p) | 2(k + 1) = 2k + 2. This implies

α(p) | 4k + 4−

(

4k + 3−

(

5

4k + 3

))

= 1 +

(

5

4k + 3

)

.

This is impossible, since
(

5
p

)

= ±1.

Now let p | L2(k+1)+1. From the identity (6), we have p | F4k+6. According to Theorems
4 and 5, we can write

α(p) | p−

(

5

p

)

= 4k + 3−

(

5

4k + 3

)

,

and α(p) | 4k + 6. Then

α(p) | 4k + 6−

(

4k + 3−

(

5

4k + 3

))

= 3 +

(

5

4k + 3

)

.

This is impossible, since
(

5
p

)

= ±1.

The proof of the result follows immediately from the two cases above.

4 Concluding remarks

We conclude this paper with two interesting conjectures concerning averages of Fibonacci
numbers.

Conjecture 13. There are infinitely many odd integers n that divide the sum of the first n
Fibonacci numbers.

Conjecture 14. There are infinitely many pairs of positive integers (n, n+ 1) such that

n |
n

∑

i=1

Fi and n+ 1 |
n+1
∑

i=1

Fi.

Some values of the Conjectures 13 and 14 are given as sequences A331976 and A331977,
respectively. Currently 33 such pairs have been found and given in A331977. The first few
pairs are (1, 2), (6479, 6480), (11663, 11664), (34943, 34944), (47519, 47520), (51983, 51984).

Most of the results can be easily stated for the average of the first n Lucas numbers with
a similar proof (for example, Theorem 11).

We note that the study of the average of related number sequences, as generalized Fi-
bonacci numbers, Pell-Lucas numbers might be lead to interesting results as well.
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