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Abstract

A positive integer n is called a b-prodigious number if n is divisible by the product

of its non-zero base-b digits. In this article, we investigate the maximum length of an

arithmetic progression of b-prodigious numbers and the maximal length of consecutive

sequences of b-prodigious numbers.
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1 Introduction

In the On-Line Encyclopedia of Integer Sequences, sequence A055471 [8] is the sequence of
positive integers that are divisible by the product of their nonzero digits. On the French
website Diophante [4], this sequence is called nombres prodigieux, which translates to prodi-

gious numbers. In recognition of this translation, for an integer b ≥ 2, we say that a positive
integer n is a b-prodigious number if it is divisible by pb(n), which is defined as the product
of the nonzero digits of n in its base-b representation. Clearly, every positive integer is a
2-prodigious number. For b = 10, De Koninck and Luca [3] showed that for large enough
values of x, the number of b-prodigious numbers less than x, denoted by N0(x), satisfies
x0.495 < N0(x) < x0.901. This result was later improved and generalized to arbitrary base by
Sanna [6].

In a similar manner, a positive integer n is called a Niven number if it is divisible by
the sum of its digits. More generally, for an integer b ≥ 2, a b-Niven number is a positive
integer n that is divisible by sb(n), which is defined as the sum of the digits of n in its
base-b representation. In 1992, Cooper and Kennedy [2] showed that there exist sequences
of 20 consecutive integers that are all Niven numbers and further proved that no sequences
of 21 consecutive Niven numbers exist. Their result was partially generalized in 1994 by
Grundman [5], who showed that every sequence of consecutive integers of length at least
2b+1 must contain a term that is not b-Niven. Grundman’s bound on the maximum length
of consecutive Niven numbers was shown to be tight for b ∈ {2, 3} by Cai [1] and when b ≥ 4
by Wilson [9]. In this paper, we establish analogous results for b-prodigious numbers.

Let b ≥ 3 be a positive integer and let ℓ be the smallest positive integer that does not
divide b. In Section 2 of this paper, we show that there exist sequences of b+ ℓ consecutive
integers that are all b-prodigious and we further show that no sequence of b+ℓ+1 consecutive
b-prodigious numbers exist. In fact, we obtain this result by considering consecutive terms
in an arithmetic progression. In Section 3, we investigate maximal length of consecutive
integers whose terms are all b-prodigious (here, maximal stands for sequences that cannot
be extended on either ends).

2 The maximum length of arithmetic progressions of

b-prodigious numbers

We begin this section with the following lemma without proof.

Lemma 1. Let b ≥ 2. Then for all integers c > 0, 1 ≤ j ≤ b− 1, and 0 ≤ β < α, we have

pb(cb
α + jbβ) = pb(c) · j.

Furthermore, if cbα + jbβ is a b-prodigious number, then

j | (cbα + jbβ) and pb(c) | (cbα + jbβ).
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In view of Lemma 1, the relation pb(c) | (cbα + jbβ) is a necessary condition for cbα + jbβ

to be a b-prodigious number. For this reason, it will be useful to force pb(c) = 1 while also
guaranteeing that c satisfies certain congruence constraints.

Lemma 2. Let {x ≡ rv (mod mv) : 1 ≤ v ≤ w} be a consistent system of congruences such

that rv = 0 if gcd(mv, b) 6= 1. Then there exists a positive integer c such that c satisfies this

system of congruences and pb(c) = 1.

Proof. For each 1 ≤ v ≤ w, let mv = mv,1mv,2 such that mv,1 divides a nonnegative power of
b and gcd(mv,2, b) = 1. Let M1 = lcm{mv,1 : 1 ≤ v ≤ w} and M2 = lcm{mv,2 : 1 ≤ v ≤ w}.
By the conditions on rv, the system of congruences is equivalent to

{x ≡ 0 (mod M1), x ≡ R (mod M2)}

for some 1 ≤ R ≤ M2. Then c =
∑R+t−1

u=t buϕ(M2) satisfies the desired properties, where ϕ is
the Euler’s totient function and t is a nonnegative integer such that M1 | btϕ(M2).

For a positive integer d, we say that a sequence S of integers is a d-AP if all consecutive
terms of S have a common difference d. When d | b and d < b/2, the following theorem
establishes the maximum length of a d-AP whose terms are all b-prodigious numbers.

Theorem 3. Let b > 2 and d be positive integers such that d | b and d < b/2. Define

Db = {0} ∪ {1 ≤ j ≤ b− 1 : j | b}, and for each j ∈ Db, let kj = min{κ ∈ N : (j + κd) ∤ b}.
Then the maximum length of a b-prodigious d-AP is b/d+ k, where k = max{kj : j ∈ Db}.
Proof. Suppose S is a b-prodigious d-AP of length at least b/d + k. Let the first term of
S be ab + j for some nonnegative integers a and j with 0 ≤ j ≤ b − 1. Then S contains
ab+ j, ab+ (j + d), . . . , (a+ 1)b+ (j + (k − 1)d).

If there exists 1 ≤ i ≤ k−1 such that j+(i−1)d < b ≤ j+id, then j+(i−1)d ≥ b−d > b/2.
Thus, (j + (i − 1)d) ∤ b. Since j + (i − 1)d is a factor of both pb(ab + (j + (i − 1)d))
and pb((a + 1)b + (j + (i − 1)d)) by Lemma 1, we deduce that ab + (j + (i − 1)d) and
(a+ 1)b+ (j + (i− 1)d) cannot be both b-prodigious, a contradiction. Hence j + id ≤ b− 1
for all 0 ≤ i ≤ k − 1. Furthermore, since ab + (j + id) and (a + 1)b + (j + id) are both
b-prodigious, we have j, j + d, . . . , j + (k − 1)d ∈ Db. This implies that j + (k − 1)d ≤ b/2,
so j + kd < b. Therefore, ab + (j + kd) and (a + 1)b + (j + kd) cannot be both prodigious
since (j + kd) ∤ b by the definition of k. In other words, S cannot be of length greater than
b/d+ k.

Finally, note that there exists a positive integer c such that c satisfies the congruence
x ≡ 0 (mod (b− 1)!) and pb(c) = 1 by Lemma 2. As a result, if j ∈ Db satisfies kj = k, then

cb2 + j, cb2 + (j + d), . . . , cb2 + b+ (j + (k − 1)d)

is a b-prodigious d-AP of length b/d + k. This is because pb(cb
2 + (j + id)) = j + id by

Lemma 1 when 0 < j + id < b; together with (b− 1)! | c, we have (j + id) | (cb2 + (j + id)).
Likewise, pb(cb

2 + b+ (j + id)) = j + id when 0 < j + id < j + kd; together with (j + id) | b,
we have (j + id) | (cb2 + b+ (j + id)).
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As an example of how to use Theorem 3, consider the case b = 12 and d = 4. Then
Db = {0, 1, 2, 3, 4, 6}, k1 = k3 = k4 = k6 = 1, and k0 = k2 = 2. Therefore, k = 2 and the
maximum length of a 12-prodigious 4-AP is 12/4 + 2 = 5. Following the definitions in the
proof of Lemma 2, we have m1 = 11!, M1 = 28 · 34, and M2 = 52 · 7 · 11. Then R = M2,
ϕ(M2) = 1200, and t = 1. Hence we have c =

∑1925
u=1 12

1200u, and

144c, 144c+ 4, 144c+ 8, 144c+ 12, 144c+ 16

forms a 12-prodigious 4-AP of length 5. Note that although our theorem provides a method
to construct a b-prodigious d-AP of maximum length, the sequence constructed using this
method may not be the simplest. For example, the sequence 2, 6, 10, 14, 18 forms a 12-
prodigious 4-AP of length 5.

When d = 1, the statement of Theorem 3 simplifies to the following corollary.

Corollary 4. Let b > 2. The maximum length of a sequence of consecutive b-prodigious
numbers is b+ ℓ, where ℓ is the smallest positive integer that does not divide b.

Proof. From Theorem 3 we have k0 = ℓ ≤ k. On the other hand, for all j ∈ Db, there always
exists a multiple of ℓ in {j + κ : 1 ≤ κ ≤ ℓ}; thus kj ≤ ℓ. Combining both directions, our
result follows from Theorem 3, since k = ℓ.

Since Theorem 3 only applies when d | b and d < b/2, we end this section by addressing
the maximum length of a b-prodigious (b/2)-AP.

Theorem 5. Let b > 2 be even. Then the maximum length of a b-prodigious (b/2)-AP is 6.

Proof. Suppose S is a b-prodigious (b/2)-AP of length at least 6. Then S contains ab+ (j +
b/2) and (a + 1)b + (j + b/2) for some nonnegative integers a and j with 0 ≤ j < b/2. By
Lemma 1, j + b/2 divides both ab+ (j + b/2) and (a+ 1)b+ (j + b/2). Hence (j + b/2) | b,
which implies that j = 0.

If S contains both cb2 + ib and cb2 + ib + b/2 for some nonnegative integers n and
1 ≤ i ≤ b− 1, then i | (cb2 + ib) and (i · b/2) | (cb2 + ib+ b/2) by Lemma 1. Hence i divides
(cb2 + ib + b/2) − (cb2 + ib) = b/2. Moreover, cb2 + ib + b/2 = mi · b/2 for some integer m.
Dividing both sides of the last equation by b/2, we have 2cb+2i+1 = mi, so i | (2cb+2i+1).

Combining the established observations that i | (b/2) and i | (2cb+2i+1), we have i = 1.
Therefore, S is of the form

(c− 1)b2 + (b− 1)b+ b/2, cb2, cb2 + b/2, cb2 + b, cb2 + b+ b/2, cb2 + 2b

for some positive integer c. Note that this is a b-prodigious (b/2)-AP of length 6 if c =
∑b/2−1

u=0 bu.
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3 Maximal lengths of consecutive b-prodigious num-

bers

We say that the sequence n, n+1, n+2, . . . , n+ t− 1 of consecutive b-prodigious numbers is
maximal of length t if n− 1 and n+ t are not b-prodigious numbers. Recall from Corollary 4
that b+ℓ is the maximum length of consecutive b-prodigious numbers, where ℓ is the smallest
positive integer that does not divide b. In this section, we determine the existence of maximal
sequences of consecutive b-prodigious numbers of lengths b ≤ t ≤ b+ ℓ− 1.

We begin this section with the following three lemmas.

Lemma 6. Let b ≥ 2. If ab + j and ab + (j + 1) are both b-prodigious numbers, where a is

a positive integer and 0 ≤ j ≤ b− 2, then pb(a) = 1.

Proof. If ab+j and ab+(j+1) are b-prodigious, then pb(a) | (ab+j) and pb(a) | (ab+(j+1))
by Lemma 1. It follows that pb(a) | 1. Thus pb(a) = 1.

Lemma 7. Let b > 2, let ℓ be the smallest positive integer that does not divide b, and let S
be a maximal sequence of consecutive b-prodigious numbers of length at least b. If the first

term of S is of the form cb2 for some positive integer c, then S is of length b+ ℓ. If the first

term of S is of the form cb2+1 for some nonnegative integer c, then c = 0 and S is of length

at b+ ℓ− 1.

Proof. If the first term of S is of the form cb2 for some positive integer c, then since S has
at least b terms, pb(c) = 1 by Lemma 6. Thus, by Lemma 1, we have pb(cb

2 + b + j) = j
for 1 ≤ j ≤ b − 1. Hence, if ℓ is the smallest positive integer that does not divide b, then
cb2, cb2 + 1, . . . , cb2 + b+ (ℓ− 1) are each b-prodigious.

If the first term of S is of the form cb2 + 1 for some nonnegative integer c, then c = 0
since cb2 is not b-prodigious. Noting that b + ℓ is not b-prodigious since pb(b + ℓ) = ℓ by
Lemma 1 and ℓ ∤ (b+ ℓ), our result follows.

Lemma 8. Let b > 2 and let S be a maximal sequence of consecutive b-prodigious numbers

of length at least b+ 1. Then the first term of S is either 1, of the form cb2, or of the form

cb2 + b for some positive integer c.

Proof. Let ab+ j be the first term of S for some nonnegative integers a and j with j ≤ b−1.
Then the last term of S is at least (a + 1)b + j. This implies that j = 0 or j | b; thus
j ≤ b/2. If 1 ≤ j ≤ b/2, then Lemma 6 implies that pb(a) = pb(a + 1) = 1, and if j = 0,
then pb(a) = 1. Therefore, the first term of S is of the forms cb2 + j or cb2 + b for some
nonnegative integers c and j with 0 ≤ j ≤ b/2.

If c = 0, then since every integer 1 ≤ j ≤ b − 1 is b-prodigious, the first term of the
maximal sequence S of consecutive b-prodigious numbers is 1. Hence it remains to consider
c > 0, and we have pb(c) = 1. If 2 ≤ j ≤ b/2, then since cb2 + 2(j − 1) ∈ S is b-prodigious,
we know that j − 1 divides cb2 +2(j − 1)− (j − 1) = cb2 + (j − 1). As a result, cb2 + (j − 1)
is also b-prodigious, contradicting that cb2 + j is the first term of the maximal sequence S.
Finally, j 6= 1 by Lemma 7.
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Theorem 9. Let b > 2 and let S be a maximal sequence of consecutive b-prodigious numbers

of length m for some b+ 1 ≤ m ≤ b+ ℓ− 1. Then

(a) m cannot be strictly between b+ 1 and b+ ℓ− 1;

(b) m = b+ ℓ− 1 if and only if the first term of S is 1; and

(c) m = b+ 1 if and only if either b is odd and the first term of S is 1 or b is a power of 2.

Proof. By Lemmas 7 and 8, the first term of S is either 1 or of the form cb2 + b for some
positive integer c. If the first term of S is 1, then m = b + ℓ − 1 by Lemma 7. In the
remainder of this proof, assume that the first term of S is cb2 + b.

If m > b + 1, then S contains both cb2 + 2b and cb2 + 2b + 1, contradicting Lemma 6.
This implies that m = b + 1 and establishes part (a). Hence m = b + ℓ − 1 if and only if
ℓ = 2, which is equivalent to b being odd. However, b cannot be odd since 2 | (cb2 + b + 2)
and 2 | (cb2 + 2b). Therefore, if m = b + ℓ − 1, the first term of S cannot be cb2 + b. This
establishes part (b).

If b = 2αm for some integer α ≥ 1 and odd integer m > 1, then note that 2α+1 ≤ b − 1
and 2α+1 ∤ (cb2 + b + 2α+1) since 2α+1 | b2 but 2α+1 ∤ b. This contradicts that S contains
cb2+ b+2α+1. Hence it remains to show that such a maximal sequence S exists when b = 2α

for some integer α ≥ 2. This can be achieved by finding a positive integer c such that
j | (cb2 + b+ j) for each 1 ≤ j ≤ b− 1 and pb(c) = 1.

For each 1 ≤ j ≤ b− 1, let j = 2βjj′ for some nonnegative integer βj and odd integer j′.
Note that βj < α, so j | (cb2+b+j) is equivalent to cb2+b ≡ 0 (mod j′). Since gcd(b, j′) = 1,
we have c ≡ −b−1 (mod j′). Such an integer c exists by Lemma 2, which completes the proof
of part (c).

Lemma 10. Let b > 2 and let

ab+ (b− 1), (a+ 1)b, (a+ 1)b+ 1, . . . , (a+ 1)b+ (b− 2)

be a b-prodigious sequence. Then b− 1 is a prime.

Proof. Suppose by way of contradiction that b− 1 is not a prime. Then there exists 2 ≤ j ≤
b− 2 such that j | b− 1. We deduce that j divides ab+ (b− 1) since (b− 1) | ab+ (b− 1))
by Lemma 1. Since j also divides (a + 1)b + j by Lemma 1, it follows that j divides
(a+ 1)b+ j − (ab+ (b− 1)) = j + 1, a contradiction.

Theorem 11. Let b > 2. Then there exists a maximal sequence S of consecutive b-prodigious
numbers of length b if and only if either b− 1 is a prime or b is a power of an odd prime.

Proof. Let S be a maximal sequence of consecutive b-prodigious numbers of length b. By
Lemma 6, S is a subsequence of

(c− 1)b2 + (b− 1)b+ (b− 1), cb2, cb2 + 1, . . . , cb2 + 2b
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for some nonnegative integer c such that c = 0 or pb(c) = 1. Suppose by way of contradiction
that b− 1 is not a prime and b is not a power of an odd prime. Then Lemma 10 implies that
the first term of S cannot be (c− 1)b2 + (b− 1)b+ (b− 1) nor cb2 + (b− 1). Also, the first
term of S cannot be cb2 nor cb2 + 1 since cb2 + b and cb2 + b + 1 are b-prodigious, and the
first term of S cannot be cb2 + b+ 1 since cb2 + b is b-prodigious.

If the first term of S is cb2+ b, then b cannot be even; otherwise, cb2+2b is b-prodigious.
Since b is not a power of an odd prime, there exist distinct primes p < q such that pq | b.
Let α be the greatest integer such that pα | b. Then pα+1 ≤ b− 1, but cb2 + b + pα+1 is not
b-prodigious, a contradiction. Hence S is given by

cb2 + j, cb2 + (j + 1), . . . , cb2 + b+ (j − 1)

for some 2 ≤ j ≤ b − 2. Since j − 1 divides both cb2 + b + (j − 1) and cb2 + (j − 1) by
Lemma 1, this implies that (j−1) ∤ b since cb2+ b+(j−1) is b-prodigious while cb2+(j−1)
is not.

Since cb2 + (b − 1) is b-prodigious, we have by Lemma 1 that (b − 1) | c. If there exists
2 ≤ j̃ ≤ j such that j̃ | b− 1, then j̃ ∤ b; thus j̃ ∤ (cb2+ b+ j̃), a contradiction. Hence j is less
than every prime factor of b− 1, implying that j <

√
b− 1 since b− 1 is not a prime. Note

that b− 1 ≥ 4, so j <
√
b− 1 ≤ b−1

2
. As a result, j ≤ 2(j − 1) < b− 1, so cb2 + 2(j − 1) is

b-prodigious. Together with cb2 + b + (j − 1) being b-prodigious, we deduce from Lemma 1
that (j − 1) | b, a contradiction.

Conversely, we assume that b− 1 is a prime or b is a power of an odd prime. If b− 1 is a
prime, then let

B = max{β ∈ Z : pβ | j for some prime p | b and 1 ≤ j ≤ b− 2}

and
N = max{n ∈ N : n | lcm{j ∈ N : 1 ≤ j ≤ b− 2} and gcd(n, b) = 1}.

This construction ensures that j | bBN for all 1 ≤ j ≤ b − 2. By Lemma 2, there exists a
positive integer c such that c ≡ b−2(−b2+1)−bB−2+1 (mod (b−1)B), c ≡ −bB−2 (mod N),
c ≡ 0 (mod bB−1), and pb(c) = 1. Define c = c+ bB−2; thus pb(c) = 1. Note that

pb
(

(c− 1)b2 + (b− 1)b+ (b− 1)
)

= pb
(

(c+ bB−2 − 1)b2 + (b− 1)b+ (b− 1)
)

= pb
(

cb2 + bB − 1
)

= pb

(

cb2 +
B−1
∑

t=0

(b− 1)bt

)

= (b− 1)B
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and pb(cb
2 + j) = j for all 1 ≤ j ≤ b− 2 by Lemma 1. Furthermore,

(c− 1)b2 + (b− 1)b+ (b− 1) = (c+ bB−2 − 1)b2 + (b− 1)b+ (b− 1)

= cb2 + bB − 1

≡ (b−2(−b2 + 1)− bB−2 + 1)b2 + bB − 1 (mod (b− 1)B)

≡ (−b2 + 1)− bB + b2 + bB − 1 (mod (b− 1)B)

≡ 0 (mod (b− 1)B)

and cb2 + j = (c + bB−2)b2 + j = cb2 + bB + j is divisible by j since cb2 + bB ≡ 0 (mod N)
and cb2 + bB ≡ 0 (mod bB). Hence

(c− 1)b2 + (b− 1)b+ (b− 1), cb2, cb2 + 1, . . . , cb2 + (b− 2)

forms a sequence of consecutive b-prodigious numbers of length b. This sequence is maximal
since (c−1)b2+(b−1)b+(b−2) and (c−1)b2+(b−1)b+(b−1) cannot both be b-prodigious
by Lemma 6 and cb2 + (b− 1) =

(

(c− 1)b2 + (b− 1)b+ (b− 1)
)

+ b is not divisible by b− 1.
Lastly, if b = pα for some odd prime p, then for each 1 ≤ j ≤ b−1, let βj be the maximum

integer such that pβj | j and j = pβjj′. By Lemma 2, there exists a positive integer c such
that c ≡ −p−α (mod j′) for all 1 ≤ j ≤ b− 1 and pb(c) = 1. Then

cb2 + b, cb2 + b+ 1, . . . , cb2 + b+ (b− 1)

forms a maximal sequence of consecutive b-prodigious numbers of length b, since cb2 + b +
(b− 1) is even, and hence cb2 + 2b is not b-prodigious.

4 Concluding remarks

Although the main focus of our paper is on consecutive b-prodigious numbers, there are many
other questions about b-prodigious numbers that could be investigated. One such question
is to consider the intersection of b-prodigious numbers with other integer sequences. In this
direction, we end our paper with a theorem that considers the b-prodigious-Niven numbers,
i.e., the intersection of the set of b-prodigious numbers and the set of b-Niven numbers.

Lemma 12 ([7]). Let b ≥ 2. If x and y are two b-Niven numbers such that sb(x) = sb(y),
then sb(x) | (x− y).

Theorem 13. The maximum length of a sequence of consecutive b-prodigious-Niven numbers

is exactly

(a) 4 if b = 2;

(b) b if b > 2 is even; and
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(c) b+ 1 if b > 2 is odd.

Proof. Every positive integer is 2-prodigious, so part (a) follows from the result by Cai [1]
on 2-Niven numbers as mentioned in the introduction. In the rest of the proof, we consider
b > 2.

To prove parts (b) and (c), we first note that 1, 2, . . . , b and 1, 2, . . . , b+1 are maximal se-
quences of consecutive b-prodigious-Niven numbers when b is even and b is odd, respectively.
We call these the “trivial” sequences. To search for nontrivial sequences, let a and j be pos-
itive integers with 1 ≤ j ≤ b− 1 such that the sequence ab+ j, ab+ j+1, . . . , (a+1)b+ j− 1
is b-prodigious-Niven. Since ab+(b−1) is b-prodigious, we have by Lemma 1 that (b−1) | a
and thus (b − 1) | sb(a). If j = b − 1, then (a + 1)b + b − 1 is not b-prodigious since
(b−1) ∤ (a+1). If 1 ≤ j ≤ b−2, then by Lemma 6 we see that pb(a) = 1, and we deduce that
sb(ab+j) = sb((a+1)b+(j−1)) = sb(a)+j. Thereforewe have (sb(a)+j) | (b−1) by Lemma 12,
contradicting that (b− 1) | sb(a). In other words, every nontrivial sequence of consecutive b-
prodigious-Niven numbers with length at least b is a subsequence of ab, ab+1, . . . , ab+(b−1)
or ab+ (b− 1), (a+ 1)b, . . . , (a+ 1)b+ (b− 2) with maximum length b.
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