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Abstract

Antichains of root posets associated with simple complex Lie algebras are a well-
studied combinatorial object, famously counted by the Coxeter-Catalan numbers. In
this paper, we study chains in root posets using standard enumerative techniques. The
factorizations of the zeta polynomials of these root posets gives rise to sequences that
have similar numerological properties as the exponents of the Weyl group.

1 Introduction

Call an interval [a, b] n-integral if a and b are integers 1 ≤ a < b ≤ n. We say that two
n-integral intervals are nesting if one is contained in the other. In this language, nonnesting
partitions may be defined as sets of distinct n-integral intervals with no pair of intervals nest-
ing. Nonnesting partitions are a classical Catalan object—they are counted by the ubiquitous
Catalan numbers, which appear as sequence A000108 in Sloane’s On-Line Encyclopedia of
Integer Sequences [9]:

Cat(n) =
n−1∏
i=1

n+ i+ 1

i+ 1
.

We may ask instead about nesting nonpartitions on n points: sets of distinct n-integral
intervals such that every pair of intervals nests. For example, there are 1, 2, 6, 20, 68, and
232 nesting nonpartitions on 1, 2, 3, 4, 5, and 6 points. The 20 nesting nonpartitions on four
points are illustrated in Figure 1.
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Figure 1: The 20 nesting nonpartitions on n = 4 points, ordered by inclusion.

It is not difficult to show that the number of nesting nonpartitions on n + 1 points is
given by

n∑
k=0

k∑
i=0

(
n

2i

)(
n− i
k − i

)
=

(
2 +
√

2
)n

+
(
2−
√

2
)n

2
. (A006012)

Define a k-multinesting nonpartition to be a set of k n-integral intervals such that every
pair of intervals nests (intervals may now appear with multiplicity). As we show in Section
4.1, the number of k-multinesting nonpartitions is given by the compact expression

ζAn(k) =
n−1∏
i=1

2k + i

i
. (1)

Nesting nonpartitions on n+1 points are naturally interpreted as chains in the root poset
of type An—we will review root systems and root posets in Section 2. This phrasing allows
us to define the k-multinesting nonpartitions for a general irreducible root system Φ as the
multichains of length k in the restriction of the root poset to the short roots, and state a
root-theoretic generalization of Equation 1.

Theorem 1. Let Φ be an irreducible crystallographic root system. Then the number of
k-multinesting nonpartitions is given by

ζΦ+
s

(k) =

g−2∏
i=1

2k + δi
δi

,

for the sequence of positive integers δ1 ≤ δ2 ≤ · · · ≤ δg−2 = h− 2 given in Table 1, where h
is the Coxeter number of Φ, and g is the dual Coxeter number of the dual root system Φ∨.

Our proofs are case-by-case, and—although we show in Proposition 10 that the sequences
(δi)

g−2
i=1 have connections to the numerology of the root system—we have been unable to find

a representation-theoretic interpretation of these numbers.
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2 Background

2.1 Root systems

Let E be a finite-dimensional vector space with inner product 〈· , ·〉 and let α, β ∈ E. The
reflection σα through the hyperplane perpendicular to α sends any vector parallel to α to its
negative while leaving any vector perpendicular to α unchanged. By linearity, we see that

σα(β) = −〈α, β〉
〈α, α〉

α + β − 〈α, β〉
〈α, α〉

α = β − 2
〈α, β〉
〈α, α〉

α.

W ε1, ε2, . . . , εg−1

An 1 2 . . . n

Bn 1 3 . . . 2n−1

Cn
1 3 5 . . . 2n−3 2n−1

3 5 . . . 2n−3

Dn

1 3 5 . . . 2n−5 2n−3
n−1

3 5 . . . 2n−5

E6

1 4 5 7 8 11
3 5 7 9

6

E7

1 5 7 9 11 13 17
3 5 7 9 11 13 15

7 9 11

E8

1 7 11 13 17 19 23 29
3 5 7 9 11 13 15 17 19 21 23 25 27

9 11 13 15 17 19 21
15

F4
1 5 7 11

3 5 7 9

G2
1 5

3

Table 1: The sequences (εi)
g−1
i=1 for the irreducible crystallographic root systems, arranged to

illustrate their symmetry, where εi+1 = δi + 1 for 1 ≤ i ≤ g − 2 and ε1 = 1. The top line for
each root system consists of its exponents.

Definition 2. A (crystallographic) root system is a finite set Φ ⊆ E of nonzero vectors
spanning E such that for α, β ∈ Φ we have
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• span(α) ∩ Φ = {α,−α},

• σα(Φ) = Φ, and

• 2 〈α,β〉〈α,α〉 is an integer.

The Weyl group W associated with a root system Φ is the subgroup of O(E) generated by
the reflections σα for α ∈ Φ.

The condition that 2 〈α,β〉〈α,α〉 is an integer, is the crystallographic condition—it may be

restated as “σα(β) may be obtained from β by adding an integer multiple of α.” A root
system is reducible if it is the union of two disjoint root systems, each of which spans one of a
pair of orthogonal subspaces of E. Thus, a reducible root system can be viewed as the union
of these two independent root systems. A root system which has no such decomposition is
called irreducible.

By the well-known classification of irreducible root systems [5], there can be at most two
different root lengths. If there are two different lengths, we call the corresponding sets of
roots the short roots and long roots. A root system for which there is only one length of
roots is called simply laced. The root systems An, Dn, E6, E7, and E8 are simply laced, while
Bn, Cn, F4, and G2 are not.

Example 3. Let E be the n-dimensional space of vectors in Rn+1 whose entries sum to
zero, and let ei be the standard basis vectors of Rn+1. Define αi = ei − ei+1, so that
∆ = {α1, α2, . . . , αn} is a basis for E. This set generates (by reflecting in these roots) the
full root system of type An:

ΦAn = {ei − ej : 1 ≤ i, j ≤ n+ 1}.

Reflections in the hyperplane orthogonal to ei − ej exchange the ith and jth coordinates,
so that the Weyl group associated with the An root system is isomorphic to the symmetric
group Sn+1 (acting on E by permuting coordinates).

The root system An is often the first example of a root system, and combinatorics done
in this context is often referred to as “Type A,” in contrast to combinatorics done in the
context of general root systems. More precisely, many classical combinatorial objects can be
interpreted as arising from the symmetric group or ΦAn in some way, and—once phrased in
that language—can often be generalized by passing to other root systems. In this spirit, this
paper interprets nesting nonpartitions in the context of type A root systems and extends
their definition to other root systems.

2.2 Root posets

By choosing a generic hyperplane in E that does not contain any root, we can divide a root
system Φ into positive and negative roots. The roots closest to the hyperplane form a basis
for E, which allows us to partially order the positive roots.
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Definition 4. A simple system is a subset ∆ = {α1, α2, . . . , αn} ⊆ Φ such that

• the elements of ∆ are linearly independent, and

• every element of Φ can be written as a linear combination of elements of ∆, either with
all nonnegative or all nonpositive coefficients.

Definition 5. A set of positive roots is a choice of roots Φ+ ⊆ Φ such that

• for α ∈ Φ, exactly one of α and −α is in Φ+, and

• if a root is the sum of two roots in Φ+, it is also in Φ+.

We call the roots in the simple system the simple roots. The notions of positive roots
and simple systems are closely related. It is easy to see that any choice of a simple system
determines a set of positive roots; the roots which can be obtained from a nonnegative linear
combination of simple roots may be designated as positive roots, and the rest negative.
Conversely, any choice of positive roots uniquely determines a simple system [5, Section 1.3].
In particular, this means that a simple system exists, since we may choose a total order
on E that is compatible with the vector space operations (for example, the lexicographic
order), and this order determines a positive set and therefore a simple system. Moreover, all
simple systems are essentially the same, differing only by the action of the Weyl group [5,
Section 1.4]. More precisely, for any two simple systems ∆ and ∆′, there is some w ∈ W, the
Weyl group of the root system, so that ∆′ = w∆. Since W ⊆ O(E), the simple systems are
orthogonal transformations of each other and have the same geometry. Thus, this choice is
immaterial and we will make convenient choices of simple systems.

The choice of positive roots, along with vector space operations, allows us to define a
partial order on the positive roots.

Definition 6. The root poset of an irreducible crystallographic root system Φ is the poset on
the positive roots Φ+ defined by α ≤ β if β − α is a nonnegative sum of positive roots. The
short root poset Φ+

s is the restriction of Φ+ to the short roots when there are two different
root lengths, and the root poset Φ+ otherwise.

Example 7. Continuing Example 3, the set ∆ = {α1, α2, . . . , αn} is a convenient choice of
simple roots (and will be assumed to be the set of simple roots for An for the rest of the
paper). Writing αi,j = ei − ej, the corresponding positive roots are

Φ+
An

= {αi,j | 1 ≤ i < j ≤ n+ 1}.

The difference between two positive roots, αi,j − αk,l, is itself a nonnegative sum of simple
roots when i ≤ k < l ≤ j. The A5 root poset is illustrated in Figure 2.
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Figure 2: Left: the A5 positive root poset. Right: the D6 positive root poset.

2.3 Numerology

Associated with a root system Φ are two important invariants, the sequence of degrees (di)
n
i=1

and the sequence of exponents (ei)
n
i=1. It turns out that we can easily define both using the

positive root poset (although this is not how they were defined historically). A positive root
α can be expressed as a nonnegative sum of simple roots: α =

∑n
i=1 aiαi. Define the height

of a positive root α to be
∑n

i=1 ai—the number of simple roots that must be added to get α
(this is the rank of α in the positive root poset).

If ki is the number of positive roots of height i, we always have

k1 ≥ k2 ≥ · · · ≥ kh−1 = 1.

This defines a partition of |Φ|/2, the number of positive roots. From this partition, we define
the sequence of exponents (in descending order) by the dual partition en ≥ en−1 ≥ · · · ≥ e1

of |Φ+| with k1 = n parts. We define the Coxeter number by h = en+1 = |Φ|/n, the degrees
by di = ei + 1, and the dual Coxeter number of the dual root system g as one plus the height
of the highest short root. In fact, it turns out that these numbers satisfy

n∑
i=1

ei = nh/2 and ei + en+1−i = h. (2)

As explained in [5, Chapter 3], there are two other algebraic settings in which the expo-
nents and degrees appear.

The first comes from the invariant theory of the Weyl group. Let Φ be an irreducible
crystallographic root system spanning an n-dimensional vector space E, and let W ⊆ O(E)
be its Weyl group, generated by the reflections of Φ. We associate E with Rn, and W acts
on the polynomial ring S = R[x1, x2, . . . , xn] in a natural way by transforming the vectors
(x1, x2, . . . , xn). Let R be the ring of polynomials invariant under the action of W and
f1, f2, . . . , fn be a set of homogeneous, algebraically independent polynomials that generate
R. Then the sequence d1 ≤ d2 ≤ · · · ≤ dn, where di is the degree of fi, is independent
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of the choice of generating polynomials (up to reordering). These degrees are therefore an
important invariant of the root system.

The second comes from the eigenvalues of certain elements in the Weyl group. Since
any w ∈ W is an orthogonal transformation of finite order, its eigenvalues must be roots
of unity. Fix a choice of simple roots ∆ = {α1, α2, . . . , αn} with corresponding reflections
σ1, σ2, . . . , σn. Any element that is the product of all simple reflections (in any order) is
called a Coxeter element, and all such elements are conjugate, with the same order h. The
eigenvalues of a Coxeter element are powers of ζ, where ζ is a primitive hth root of unity. If
(ζei)ni=1 are the eigenvalues of a Coxeter element, the sequence e1 ≤ e2 ≤ · · · ≤ en recovers
the exponents of W .

2.4 Posets

Recall that a chain in a poset P is a sequence of elements p1 < p2 < · · · < pk. A multichain
is a chain with repetitions allowed. For a finite poset (P,≤) of height n, write chk(P ) =
{p1 ≤ p2 ≤ · · · ≤ pk} for the set of multichains in P of length k, and ch(P ) for the set of
maximal strict chains in P . The zeta polynomial ζP (q) of a finite poset P is characterized
as the unique polynomial satisfying

ζP (q) = |chq−1(P )|,

and it has leading coefficient |ch(P )|
n!

. Write
((
n
k

))
=
(
n+k−1

k

)
for the number of ways to choose

k elements from a set of size n, with repetitions allowed. If ak is the number of strict chains
in P with k elements, then

ζP (q) =
∑̀
k=0

ak

(
q − 2

k − 1

)
, (3)

since there are ((
k

q − 1− k

))
=

(
q − 2

k − 1

)
ways to choose q − 1 elements from a set of size k with repetitions allowed, subject to the
requirement that every element must be selected at least once.

3 Nesting nonpartitions

3.1 Nonnesting partitions

Recall from the introduction that an interval [a, b] is n-integral if a and b are integers 1 ≤
a < b ≤ n, and two n-integral intervals are called nesting if one is contained in the other.
In this language, the nonnesting partitions are sets of n-integral intervals with no pair of
intervals nesting.
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Associate a positive root αi,j in the An root system with the interval [i, j], so that the
order structure on positive roots is equivalent to ordering intervals by inclusion. Then the
nonnesting partitions may be rephrased as antichains in the An−1 root poset, giving a natural
generalization to other root systems Φ.

Definition 8. The nonnesting partitions associated with an irreducible crystallographic root
system Φ are the antichains in the positive root poset Φ+.

The nonnesting partitions turn out to be counted by a root-theoretic generalization of
the Catalan numbers:

Cat(Φ) =
n−1∏
i=1

h+ di
di

,

where the (di)
n
i=1 are the degrees of Φ, and h = dn is the Coxeter number [7, 2]. In type

An, we obtain the sequence A000108, in type Bn and Cn we get the central binomial coef-
ficients A000984, in type Dn the sequence A051924, while in the exceptional types we have
the numbers Cat(ΦE6) = 833,Cat(ΦE7) = 4160,Cat(ΦE8) = 25080,Cat(ΦF4) = 105, and
Cat(ΦG2) = 6.

Nonnesting partitions have been widely studied, in part due to their connection to non-
crossing partitions and cluster combinatorics. Armstrong’s monograph gives a comprehensive
survey [1].

3.2 Nesting nonpartitions

Recall that the nesting nonpartitions are collections of n-integral intervals such that every
pair of intervals nest, as illustrated in Figure 1. We can again interpret this definition in the
context of the An−1 root system—the interval [a, b] corresponds again to the positive root
αa,b, and two intervals nest if and only if the corresponding positive roots are comparable.
Thus, it is natural to study chains of positive roots—to our knowledge, these have not been
systematically enumerated before.

Definition 9. The nesting nonpartitions associated with an irreducible crystallographic root
system Φ are the chains in the short positive root poset Φ+

s . The k-multinesting nonpartitions
are multichains with k roots in Φ+

s .

We emphasize that the nesting nonpartitions are counted by the zeta polynomial of the
positive root poset, in contrast to the order polynomial, which counts order ideals in P × [q].
When P = Φ+ is a positive root poset, this order polynomial counts plane partitions in
Φ+; it recovers Cat(Φ) for q = 1, but has a simple product form only for roots systems of
“coincidental” type [4].

The condition requiring chains in the short positive root poset may seem a bit strange,
but we motivate it as follows. By Equation 3, it suffices to study the zeta polynomial to
count the objects of Definition 9. As we saw in Equation 1, the zeta polynomials of the type
A root poset have a simple factorization; we will show the same for the other classical types
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Bn, Cn, and Dn. But if we compute the zeta polynomial for the full F4 positive root poset,
we find it has a factor

q4 +
310

39
q3 +

270

13
q2 +

935

39
q +

142

13
,

which is irreducible over Q. By restricting to the short roots, we obtain a simple factorization
over Q with desirable numerical properties, similar to the exponents. We note that a similar
phenomenon appears when considering the order polynomial of the positive root poset of
type F4: while this order polynomial doesn’t factor into linear factors over Q, it does after
restricting to the short roots.

4 Proof of Theorem 1.1

In this section we prove Theorem 1, that the number of k-multinesting nonpartitions is given
by

ζΦ+
s

(k) =

g−2∏
i=1

2k + δi
δi

,

for the sequence of positive integers δ1 ≤ δ2 ≤ · · · ≤ δg−2 = h− 2 given in Table 1, where h
is the Coxeter number of Φ, and g is the dual Coxeter number of the dual root system Φ∨.
Just as the Coxeter number h satisfies that h− 1 is the height of the highest long root, the
appearance of the dual Coxeter number g is due to the fact that the height of the highest
short root is g − 1.

In analogy to the relationship between exponents and degrees, let εi+1 = δi + 1 for
1 ≤ i ≤ g − 2 and ε1 = 1. These positive integers (εi)

g−1
i=1 are given in Figure 1; these

sequences contain repeated entries, and these are shown as stacked vertically in the table.
The sequence (εi)

g−1
i=1 contains the usual exponents as a subsequence; this is shown as the top

line of numbers in each entry. For types A and B, (εi)
g−1
i=1 are exactly the exponents, while

the other root systems contain more entries. We have the following analogue of Equation 2:

Proposition 10. The exponents (ei)
n
i=1 are a subsequence of (εi)

g−1
i=1 . Moreover,

g−1∑
i=1

εi = (g − 1)h/2 and εi + εg−i = h.

Proposition 10 is easily verified by examining Figure 1, and gives further evidence that
the short roots are the right thing to consider. For example, in the case of G2, where h = 6
and g = 4, if we do not restrict ourselves to the short roots, the sequence (εi)

h−1
i=1 becomes

(1, 3, 5, 5, 7), which satisfies no such nice properties and loses the symmetry. Similarly, for
types Bn and Cn (which have isomorphic positive root posets when not restricted to short
roots), the sequence (εi)

h−1
i=1 is (1, 3, 3, 5, 5, . . . , 2n − 1, 2n − 1). Only types Bn, Cn, F4, and

G2 are not simply laced, so these are the only root systems for this modification is needed.
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4.1 Proof in type A

The Hasse diagram for the An positive root poset is a triangle, as illustrated in Figure 2 for
A5. The sequence (δi)

g−2
i=1 for type A is given by δi = i and g = n + 1. The count given in

Theorem 1 becomes
n−1∏
i=1

2k + i

i
=

(
2k + n− 1

n− 1

)
=
(( n

2k

))
.

The multichains in type A are in correspondence with multisets of size 2k whose elements
are simple roots. The An root poset is a join semilattice, with n simple roots. An arbitrary
choice of two (possibly identical) simple roots can be identified with their join, and for any
element of the poset, there is a unique pair of (not necessarily distinct) simple roots whose
join is that element. This gives a way for k not necessarily distinct elements of the poset to
be projected onto a multiset of size 2k, whose elements are all simple roots. In particular, a
multichain of length k can be projected in this way, starting with the smallest element and
projecting one by one until the largest element has been projected. There are

((
n
2k

))
ways to

multichoose 2k of the n simple roots.
This map is bijective, which establishes the count. To go from a multiset M of 2k simple

roots to a chain, pair up the leftmost and rightmost element of M and take their join to get
the largest element of the chain, repeatedly pairing off the leftmost and rightmost remaining
elements of M to get the rest of the elements of the chain. This recovers the chain that
generates the multiset, since it undoes the projection operation that generated the multiset.
Furthermore, this process can be applied to any multiset M of size 2k and must give a
multichain back, showing that there is a chain that generates every multiset. Thus, there
are

((
n
2k

))
multichains of length k in the An root poset.

4.2 Proof in types B and C

The poset of short roots in Bn is just a chain of length n, so we see that the number
of multichains of length k is

((
n
k

))
=
(
n+k−1
n−1

)
. This agrees with the factorization given in

Theorem 1 with δi = 2i and g = n+ 1.
It is convenient to prove a more general statement when considering the short roots in

type Cn. For a ≥ b ≥ 0, an a× b trapezoid is the poset Ta,b given by the integer points (x, y)
in Z2 such that 0 ≤ y ≤ b and b− y ≤ x ≤ a+ y, ordered by the usual product order. As an
example, the Hasse diagram for the 5× 2 trapezoid is shown in Figure 3.

The Cn short root poset is an (n−1)×(n−2) trapezoid, and the number of multichains in
a general a×b trapezoid is useful for the type D case, so we count the number of multichains
in an a×b trapezoid. There is a terse sketch of a proof of the count given by Proctor [6]; this
count was also obtained by Stembridge [10]. We reproduce this proof here with additional
details.

The Hasse diagram of Ta,b has b+ 1 long diagonals, as drawn in Figure 3, which we may
label 0 through b. Diagonal d is a chain of a + b − 2d + 1 elements. Let Ed(m) denote the
number of length m multichains whose minimal element is on diagonal d. To count these,
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Figure 3: The 5× 2 trapezoid.

we need to know how many multichains there are in the u× v rectangle (points in Z2 with
0 ≤ x ≤ u and 0 ≤ y ≤ v) with the elements strictly above the line y = x deleted (see Figure
4). Call this poset Ru,v, with u ≥ v, and let Fu,v(m) be the number of length m multichains
in it.

Multichains inRu,v are in bijection with certain pairs of non-intersecting lattice paths. Let
a1 = (0, 1) and b1 = (v,m+ 1) be points in Z2. Upward steps in paths between these points
correspond to the x-coordinate of a point in Ru,v. Let a2 = (1, 0) and b2 = (u+1,m), so steps
here correspond to y-coordinates. Specifically, if P1 and P2 are a pair of non-intersecting
paths (no shared vertices) from a1 to b1 and a2 to b2 respectively, we may construct a
multichain in Ru,v by considering the the first “up” step in each path as specifying the x and
y coordinates of the first element of the multichain, with the x or y coordinates given by
how many total “right” steps there had been before that “up” step in the respective paths
(see Figure 4). We see that these coordinates are legal so long as P1 stays above P2, as this
ensures that the x-coordinate is always larger than the y-coordinate. We may replace a1 by
the point (0, 0) and get the same count, since the non-intersecting property requires that
the first step be north, and we recover the previous situation. This modification simplifies a
sum later.

Figure 4: Left: A chain in R4,2, where northeast is ‘up’. Right: The corresponding lattice
paths.

This allows us to use the Lindström-Gessel-Viennot lemma [3], which states that the
number of tuples of non-intersecting lattice paths from a starting set to an ending set is
equal to the determinant of the matrix whose i, jth entry is the number of lattice paths from
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the ith starting point to the jth ending point. Thus,

Fu,v(m) =

(
m+ u

u

)(
m+ v + 1

v

)
−
(
m+ u+ 1

u+ 1

)(
m+ v

v − 1

)
.

To find Ed(m), we observe that there are Fa+b−d,d(m) m-multichains whose elements are
on or above diagonal d, and Fa+b−d,d−1(m) multichains whose elements are above but not on
diagonal d, so there are Ed(m) = Fa+b−d,d(m) − Fa+b−d,d−1(m) multichains whose minimal
element is on diagonal d. This gives

Ed(m) =

(
m+ a+ b− d
a+ b− d

)(
m+ d

d

)
−
(
m+ a+ b− d+ 1

a+ b− d+ 1

)(
m+ d− 1

d− 1

)
.

Summing over d, we find that the sum telescopes, and the only nonzero term left is the
number of length m multichains in an a× b trapezoid,(

m+ a

a

)(
m+ b

b

)
. (4)

Since the short root poset for Cn is an (n− 1)× (n− 2) trapezoid, Theorem 1 follows by
noting that the sequence (δi)

g−2
i=1 for type C is given by (2, 2, 4, 4, . . . , 2n− 4, 2n− 4, 2n− 2),

and that
n−1∏
i=1

2k + 2i

2i
·
n−2∏
j=1

2k + 2j

2j
=

(
k + n− 1

n− 1

)(
k + n− 2

n− 2

)
.

Finally, we observe that the full Bn and Cn root posets are (n− 1)× (n− 1) trapezoids,
and we can see that the factorization using the full root poset does not give sequences (εi)

h−1
i=1

with the desired numerological properties.

4.3 Proof in type D

The Dn root poset is similar to an (n− 2)× (n− 2) trapezoid, but with a doubled southeast
diagonal, as shown in Figure 2. We draw one of these diagonals solid, and the other dashed.
We will refer to the dashed southeast diagonal as the “dashed diagonal” and the correspond-
ing solid diagonal as the “solid diagonal.” Any multichain cannot include elements from
both the solid and dashed diagonal, and we note that if we delete one of these diagonals,
the resulting poset is an (n − 2) × (n − 2) trapezoid. If we delete both diagonals, then we
have an (n− 2)× (n− 3) trapezoid. The total number of multichains in the type D poset is
the number of chains which do not pass through solid diagonal, plus the number which do
not pass through the dashed diagonal, minus the number which do not pass through either

12



diagonal. This gives the number of length m multichains in the Dn poset as

2

(
k + n− 2

n− 2

)2

−
(
k + n− 2

n− 2

)(
k + n− 3

n− 3

)
=

(
k + n− 2

n− 2

)(
k + n− 3

n− 3

)(
2 · k + n− 2

n− 2
− 1

)
=

(
k + n− 2

n− 2

)(
k + n− 3

n− 3

)(
2k + n− 2

n− 2

)
.

This exactly matches the factorization listed in Figure 1, verifying the main theorem for
type D and thus all of the infinite families of root systems.

4.4 Verification in the exceptional types

The factorizations of the zeta polynomials of the short root posets for the exceptional types
E6, E7, E8, F4 and G2 were all evaluated in SageMath [8]. This completes the proof of
the main theorem and the numerological properties for all irreducible crystallographic root
systems.

5 Future work

The sequences associated with the zeta polynomial factorizations for the short root posets
show remarkable numerological properties and relationship to the exponents across all root
systems, but we have been unable to find any representation-theoretic explanation for these
properties, or for why the short root poset is a more natural object to study in the root
systems which are not simply-laced. It would be interesting to find extensions of this to
other root-theoretic posets, such as minuscule posets or crystals (the preceding analysis
could be interpreted as multichains in the top half of the crystal associated with the highest
short root), or to weighted enumerations as in [11].

It would also be interesting to compute the zeta polynomial of the poset of nesting
nonpartitions, as in Figure 1. In type A, this zeta polynomial appears to be related to the
Chebyshev polynomials, while for types B and C these zeta polynomials appear to be related
to Legendre polynomials.
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