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Abstract

We study the equation a’ +b = ¢*+dF for positive integers a, b, ¢, d, and 2 < j < k.
Two heuristic arguments correctly predict the cases in which the equation has primitive
solutions.

1 Introduction

Let (S,Sk))nzl denote the sequence of sums of two positive k-th powers of integers. We consider

mostly the sequences (S4),>1 with 3 < k < 6: A004999, A003336, A003347, and A003358
in the OEIS [12]. For integers 2 < j < k, we investigate the numbers common to the two
sequences (SY),=1 and (S9),51. The numbers (a*)7 + (b%) = (a?)* + (1), for positive
integers a and b, appear trivially in both sequences. We are more interested in nontrivial
common elements.

Equivalently, we study the equation a/ + b = ¢* + d* for positive integers a, b, ¢, d. We
are interested mostly in the case 2 < j < k, but we begin by reviewing the case j = k, which
has been studied extensively.

Many solutions in integers are known for the equation a/ + b = ¢/ +d’ = N when j = 2,
3, and 4. We exclude trivial solutions with {a, b} = {¢,d}. Only primitive solutions, those
with ged(a, b, ¢,d) = 1, are considered because all other solutions may be derived from the
primitive ones. For example, the solution 399*+402* = 1774 +474* would be ignored because
it is just 3% times the solution 133* + 134* = 59* + 158
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Theorem 412 in Hardy and Wright [10] asserts that some integers have arbitrarily many
representations as the sum of two cubes. Parametric solutions are known for j = 2, 3, and
4. Equation (13.7.11) in Hardy and Wright [10] gives a parametric solution for the case
j = 4 and Choudhry [3] offers another one. Wroblewski [14] lists all primitive solutions to
a* +b* = ¢* + d* with a, b, ¢, d < 10*. No primitive solution to @’ + b = N = ¢/ + d’
is known with j > 4. According to Guy [8, Sec. D1], people have searched at least up to
N < 10% for solutions in the case j = 5. Fermat’s Last Theorem says there are no solutions
with d = 0. Browning [2] used algebraic geometry to show that primitive solutions with
j > 4 are rare if they exist at all.

We have searched for solutions to the equation a’ + ¥ = c* + d* in integers a, b, ¢, d
with 2 < 7 < k < 11. There are many solutions with 7 = 2 and all £ > 2. We found
primitive solutions in the three cases j = 3, k = 4, 5, and 6, but none for other values of
2<j<k<I1l.

When one studies the equation a’ + &' = c* + d* with j < k, one ignores trivial identities
such as (a¥)? + (b*)7 = (a?)* + (b/)*, even when ged(a,b) = 1.

In case j < k and j | k some solutions with ged(a,b, ¢, d) > 1 might be considered if
one wants to see all solutions, because sometimes a common factor cannot be canceled. For
example, one solution to a® + b3 = % + d is

102° + 330% = 120 + 18° (1)

and the common factor 6 of the four numbers cannot be canceled since it appears to different
powers on the two sides of the equation. However, this solution comes from a solution to
wd + 2% =P + 23 If k = ged(a, b, ¢,d) > 1 for a solution to a® + b% = ® + d°, then this
equation may be rewritten as (kw)3+ (kx)3 = (ke)S+(kf)% or B3w3+ k323 = (k?e?)3 4 (k? f2)3
from which £* may be canceled to give w?® 4+ 2* = (ke?)® + (kf?)?, which is primitive.

A solution (k?a)® + (k%b)® = (kc)® + (kd)® for some integer k > 1 is easily derived
from the solution a® 4+ b* = % + d® by multiplying by £°, so it is ignored. For example,
9183 + 2970% = 36°% + 54° is just the solution 1023 4 330% = 12° + 18% multiplied by 3°.
Likewise, we ignore solutions to a® + 0® = ¢® + d° with a = ¢® and b = d*.

Similar reductions apply also whenever j < k and j | k. We tested the 11089 solutions
to w* + 2t = y* + 2* found by Wroblewski [14] to see whether one would give a solution to
a* 4+ b* = ® + d®. None of them worked (because none had square values for both w and z).

Lander [11] gave (1) as a solution when j = 3 and k& = 6. He found parametric solutions
to a/ + b/ = ¥ + d* (and to similar equations with any number of terms on each side) for
every 2 < j < k, but none of his solutions are primitive. His solution to a’ 4+ &/ = cF+ dFis

(pw®) + (qu®) = (wh* + (W),
where A, B and w are positive integers that depend on 7, k, and the parameters p and ¢. For
j =5, k=8, he gave a typical numerical solution (3 -1223)5 4 (1223)°> = (1222)% + (1222)%.
For j = 3, k = 5, another numerical solution would be (4-36%) + (2-363)% = (36)° + (36%)°.

The tables in the next section list only primitive solutions—those with ged(a, b, ¢, d) = 1
(other thana =b=c=d =1).



2 The results

We used the methods described in Bernstein [1] in the search for solutions. One heap (data
structure) held the sums @’ + » and another one held the sums c® + d*. The program
compared their least elements as they were removed. We used Algorithm 6 of Eisermann
[4] to reduce the memory requirement of the program. The computation was done on the
Brown cluster at Purdue’s RCAC.

We used local constraints to accelerate the algorithm. For instance, only five of the eleven
residue classes modulo 11 are sums ¢® + d°, namely, —2, —1, 0, 1, 2 modulo 11. The map
f(x) = 2® mod 11 is a permutation of the eleven classes. Thus for each a (mod 11), if a®+ b
equals a sum of two fifth powers, then there are only five possible values of b (mod 11). For
example, when a = 3 (mod 11), we have ¢®> =5 (mod 11). Thus b*> mod 11 must be one of
4,5,6, 7, 8 (mod 11), so b mod 11 must be one of 5, 3, 8 6, 2 (mod 11). To search these
cases we ran five jobs, one for each possible value of b mod 11 (and all possible values for
a, ¢, and d). We used the moduli 16, 11, 27, 29, 32, 19, 25, for k = 4, 5, 6, 7, 8, 9, 10,
respectively, and most values of j < k.

If c<d< M, then o/ +b = c* +d* <2M* soa <b< L= (2M"*)"7. The number of
pairs a, b is about L?/2. The search for solutions examines more a, b pairs than ¢, d pairs
since j < k, and the naive running time would be O(L?) or O(M?*/7). However, we rewrote
the equation as a’ — ¢* = d* — IV and computed these differences instead of the sums. This
reduced the work to O(M*k/7).

For 57 = 3, we used M = 10000, 5000, 1400, 700, 350, 200, 100 for k£ =4, 5, 6, 7, 8, 9, 10,
respectively. For j = 4, we used M = 18100, 3500, 1100, 460, 230, 135 for £k =5, 6, 7, 8, 9,
10, respectively. We made similar effort in the other cases. These limits kept the sums in
range of 64-bit integer arithmetic in the three cases where we found solutions and in range
of 128-bit integer arithmetic in the other cases. They also kept the search times reasonable.

Tables 1 and 2 show the primitive solutions to 0 < a® + 0> = c¢* +d* = N with 0 < ¢ <
d < 10000 in order by the size of N.

Note the repeated values of ¢ or d in these solutions.

45% +133% = 39* + 19*
1613 + 1763 = 39* + 524
887% + 6457° = 456" + 690*
2041% 4 14771 = 456* + 1338*
63773 + 79773 = 227* + 9354
55283 + 8529% = 398" + 935*



a b c d a b c d

17 24 8 11 || 3658 | 29849 | 825 | 2262

45 133 19 39 || 7202 | 29977 | 225 | 2286
161 176 39 52 || 26224 | 27217 | 167 | 2486
641 960 | 133 | 170 | 18226 | 33641 | 396 | 2577
993 | 1400 32 | 247 || 16101 | 35149 | 1225 | 2595
840 | 1681 73| 270 || 4401 | 37096 | 1644 | 2573
1417 | 1634 78 | 291 || 11986 | 39881 | 288 | 2841
41| 3801 | 193 | 481 | 23097 | 42217 | 195 | 3059
4272 | 4337 35 | 632 | 14521 | 46850 | 1959 | 3090
887 | 6457 | 456 | 690 || 31249 | 44928 | 215 | 3318
6377 | 7977 | 227 | 935 || 39893 | 42669 | 2261 | 3275
5528 | 8529 | 398 | 935 || 32321 | 47936 | 981 | 3458
8669 | 9043 60 | 1086 || 23645 | 56133 | 401 | 3713
2941 | 14771 | 456 | 1338 || 35653 | 61979 | 1470 | 4086
9928 | 16849 | 1145 | 1418 || 17432 | 65969 | 1806 | 4097
2201 | 19721 | 1239 | 1519 || 39777 | 69704 | 2131 | 4418
6885 | 22253 | 571 | 1831 || 23281 | 74176 | 266 | 4529
5381 | 23901 | 913 | 1903 217 | 76679 | 2418 | 4518
20368 | 20449 | 371 | 2030 || 51072 | 79217 | 950 | 5009
10745 | 25113 | 1457 | 1883 || 69793 | 70440 | 3618 | 4771
17777 | 25104 | 1469 | 2024 || 12721 | 90136 | 4076 | 4627

Table 1: Primitive solutions to a® + % = ¢* 4 d*, Part 1.

a b c d a b c d

15248 | 91169 | 3207 | 5060 || 111875 | 133933 | 3606 | 7764
77169 | 77912 | 3964 | 5117 || 120089 | 136087 | 5496 | 7602
77393 | 77904 | 4633 | 4670 || 74384 | 157697 | 6811 | 6834
15333 | 100205 | 1781 | 5623 || 77375 | 157633 | 6252 | 7308

7849 | 101257 | 257 | 5677 || 104528 | 154625 | 1791 | 8336
72753 | 103520 | 3809 | 5986 || 89673 | 161689 | 675 | 8387
12269 | 116357 | 3021 | 6217 || 127992 | 143009 | 1757 | 8414
70181 | 109325 | 3177 | 6275 || 85529 | 172402 | 2691 | 8688

1129 | 118857 | 4087 | 6117 || 10320 | 183793 | 6732 | 8029
45176 | 129521 | 1222 | 6897 || 145373 | 183379 | 570 | 9804
109009 | 110017 | 1861 | 7151 || 64989 | 210277 | 2379 | 9883
17717 | 138189 | 557 | 7171 || 18403 | 216605 | 4092 | 9972
47233 | 137824 | 3388 | 7135 || 162754 | 180713 | 7365 | 9234
25176 | 142801 | 197 | 7356 || 94201 | 215481 | 8459 | 8697
41361 | 145361 | 407 | 7487

Table 2: Primitive solutions to a® + b3 = ¢* + d*, Part 2.




Table 3 shows the primitive solutions to 0 < a®+b% = > 4+d®> = N with 0 < ¢ < d < 5000
in order by the size of N. Note that ¢ = 187 occurs in both the second and third solutions.

a b c d a b c d
2467 3071 | 115 | 119 | 315515 | 410576 96 | 2515
7755 | 15102 | 187 | 326 || 324657 | 450095 | 1458 | 2600

14475 | 29190 | 187 | 488 | 111359 | 526113 | 1286 | 2700

9301 | 40290 80 | 581 74484 | 597517 | 293 | 2924
41144 | 144677 | 653 | 1244 || 480397 | 480926 | 1690 | 2909
39032 | 150265 | 1065 | 1158 || 50387 | 710804 | 123 | 3244
177898 | 451093 | 1765 | 2404 | 265936 | 1225217 | 3838 | 4001

Table 3: Primitive solutions to a3 + b* = ¢® + d°.

Table 4 shows the primitive solutions to 0 < a®+b% = ®+df = N with 0 < ¢ < d < 1400
in order by the size of N.

a b c d a b c d

3441 7708 | 57 | 88 | 265008 | 500137 | 636 | 653
28105 | 28596 | 40 | 189 || 85656 | 620785 | 534 | 775
50145 | 350428 | 286 | 591 || 296305 | 1233132 | 238 | 1113
225681 | 458812 | 233 | 690

Table 4: Primitive solutions to a3 + b* = ¢ + d°.

3 The first heuristic argument

We estimate the probability that a/ + & = c* + d* has a nontrivial solution using a form of
the Birthday Paradox. This argument is old and well known. Weaver [13], page 135, told an
amusing anecdote about the Birthday Paradox during World War I1.

Our first heuristic assumption is that the four terms a’, ¥/, c*, d*, are random integers
of about the same size B, say, between B/2 and 38/2. Then a and b will be near B'/7 and
there will be about that many possible values for each of them, so that there are about B%*/7
pairs (a,b). Likewise, there are about B%* pairs (¢, d) with ¢ and d near BY/*.

The sums a/ + b, c® + d* will be random integers in the interval [B, 2B] of length B, and
we assume they are independent. Then the probability that one particular sum a’ + ¥ differs
from every one of the B%* sums c* + d* is (1 — 1/ B)Bm. By independence, the probability
that every sum o’ + ¥ differs from every sum c* + d* is

(1= 1/B)P 20 = (1= 1/B)""
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and the probability that the equation a’ +b = c¥ 4 d* has at least one solution with numbers
of this size is 1 minus this probability.

Since B is large we may approximate 1 —1/B by exp(—B~!). The probability of at least
one solution becomes 1 — exp(—B~12/7+2/k) When 2/j + 2/k < 1 the probability is near
0, so we expect no solution. When 2/j 4+ 2/k > 1 the probability is near 1, so we expect
many solutions. When 2/j + 2/k = 1 we have a borderline case where there may be a few
solutions or none at all.

This heuristic argument explains why there are many solutions to a’ 4+ b/ = ¢* 4+ d* when
j=2:2/j+2/k > 1 for every integer k > 1.

When j = 3 the argument predicts many solutions for k = 4 and 5, just a few solutions
when k = 6, and no solution when k£ > 6. It also predicts no solution for 3 < 57 < k. This is
just what we found.

The case 7 = k = 4 is also a borderline case and it has infinitely many solutions perhaps
because there is a parametric solution. Wroblewski [14] found 11089 solutions with a, b, ¢,
d < 10™.

Note that the comparison of number of solutions is a bit unfair because of different search
limits M. Tables 1, 2, 3, and 4 give all solutions with roughly the same limit on the sum V.

4 The second heuristic argument

The argument in this section is modeled on that of Erdds and Ulam [6]. We will show that

for most sequences having the growth rates of (ST(Lj ))nZI and (Sék))nzl there is a nontrivial
intersection if and only if 2/j + 2/k < 1. This theorem proves nothing about particular
sequences like (S,(Lj ))n21 or (S,(Lk))nzl, but it suggests that the same statement is likely to hold
for them.

We define a probability measure on the space of sequences of positive integers. See Erdds
and Rényi [5] or Halberstam and Roth [9] for more about this measure. Let v > 1 be a real
number and n be a positive integer. Let the measure of the set of all sequences containing n
be ¢;n 1Y and the measure of the complement be 1 — cin~ 1YY Here ¢; and other ¢; used
later are appropriate positive constants. In this case, ¢; is chosen so that the measure of the
set of all sequences is 1. Call this measure the v measure. The phrase “almost all sequences
A” will mean “for all A except for a set of sequences of v measure 0.” Let P, (n) = c;n~ /7
be the probability that n € A.

If A is a sequence of positive integers and x is a real number, let A(z) be the number of
a € A with a < z. It is easy to see that A(x) = (14 o(1))c;y2'/7 for almost all A. Hence
the n-th term of A is (14 o(1))(n/c1y)" for almost all A.

Let 2A denote the sequence of all sums a + o’ with a € A and ¢’ € A. Note that if
v = j > 2, then, for almost all A, A and 24 have growth rates similar to those of (n’),>
and (S,(Lj ))nzl, respectively.

Now let 1 < o < B. Write Py (n) = e;n™ /% and Py(n) = con™1+1/7.



Theorem 1. Let 1 < a < 3. If 2/a+2/8 < 1, then for almost all sequences A in «
measure and almost all sequences B in 3 measure the intersection 2A N 2B is finite. But if
2/a+2/5 > 1, then for almost all sequences A in o measure and almost all sequences B in
B measure the intersection 2.A N 2B is infinite.

The proof is based on that in Erdés and Ulam [6].

Proof. We will prove the first statement by showing that the expected number F of integers
n in the intersection is finite. We have

b= Z ( > P Pa<v>> (Z Pﬁ<u>Pﬁ<v>)

u+v=n ut+v=n
_ 20102 ( Z uv>1+1/a> < Z (uv)1+1/6>
ut+v=n u+v=n

< ¢y Z n71+2/o¢n71+2/5

n=1

0o
— 03 Z n_2+2/a+2/57

n=1

where the inner sums were estimated by integrals. For example, the first inner sum is
estimated by [)"(u(n—u)) """ du = n*/*ney = ey~ Since 2/a+2/8 < 1, E < 0
and the intersection is finite by the Borel-Cantelli lemma. See Feller [7] for the Borel-Cantelli
lemma.

Now suppose 2/a + 2/ > 1. We will give the proof for the case 2/a + 2/ = 1. The
case 2/ + 2/ > 1 is similar. Let E(z) denote the expected number of integers n < z in
the intersection. We have

E(z)= ( > Pa(U)Pa(v)> ( > PB(U)PB(U)>

n=1 \utv=n utv=n

_ 20102 ( Z uv)1+1/a> ( Z (uv)lJrl/,B)

u+v=n u+v=n

(14 o(1 Zn 24+2/0+2/8

(1+o0(1 05271 (14 0(1))cs log .

Now we use a second moment argument to show that for almost all A and almost all
B the size f(A,B,z) of 24 N 2B N [1,z] satisfies f(A,B,z) = (1 + o(1))cslogz so that



lim, o f(A,B,x)/E(x) = 1. The expected value of f(A, B, ) is E(x), which we just com-
puted. Let E?(z) be the expected value of f(A,B,z)?. Then E*(z) =

Z Z Z Z Z Z P(u17u27u37u47vlvv27U37U4)7

n1=1no=1u1+vi=n1 u2+ve=n1 uz+vz=ng us+vi=ns

where P(uy,us, ug, ug, V1, Ve, v3,v4) is the probability that uy, v1, us, and vy are in A and
that wus, vs, ug, and vy are in B. If these eight integers were distinct, we would have
P(Ul,U27U3,U4,'U1,'U2,'03,'U4) -

Po(ur) Po(v1) Po(u2) Po(v2) Pg(us) Ps(vs) Ps(us) Ps(va),

and the sum would be (E(z))?, but if some integers are repeated, the probability is larger.
Hence, E%(z) > (E(z))?. To get the opposite inequality we add terms to E?(z) to account
for possible repeated values.

If the eight integers were distinct, we could pair the sums

( Z Pa(ul)Pa(Ul))< Z Pﬁ(UB)PB(U3)>

u1tvi=ni u3+v3=n

and obtain (1 + o(1))cglog x as in the calculation for E(z). But if say, us = uq, then vz = v,
and the two sums become

Z P, (u1)Pa(v1)Ps(ur) Ps(vy) = Z (U1U1)71H/a(u1?}1)71“/5

u1+vi=ni u1tvi=ni

_ Z (ulvl)—2+1/a+1/6

u1+v1=ni

= Z (ulvl)_?’/Q.

u1+v1=ni

When we approximate this sum by the integral [;" (ui(ny — u1))~*/?du we get a constant
times n; %, and the sum on n, is finite. The sum on ny pairs the other two sums and gives
(14 o0(1))crlog .

Likewise, the other added terms are all less than constants times logx. Therefore,
(E(z))* < E*(z) < (E(z))? + cglogz. By the Tchebycheff inequality the a measure of
the set of A and the [ measure of the set of B for which

|f(A,B,x) — E(x)| > elogx

(log k)?

are less than cg/e?log . Let z;, = 2F . By the Borel-Cantelli lemma we have

Tim (A, B,y)/ i) = 1.

Therefore, since f(A,B,zx) < f(A B,z) < f(A,B,z541) when 2, < x < xp44, for al-
most all A4 and almost all B we have lim, . f(A,B,z)/E(x) = 1. In the same way,
lim, o0 f(A,B,x)/E(z) =1 when 2/a+ 2/ > 1. Since E(x) is unbounded as x — oo, the
intersection 2.4 N 28 is infinite for almost all A and almost all B when 2/a+2/8>1. O
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Now let @ = j and B = k. If (n’),>; and (n*),>; were typical sequences, this theorem
would predict infinitely many solutions to a/ + ¢/ = cf + d* when 2/j +2/k > 1 and finitely
many solutions when 2/j + 2/k < 1. Of course, Lander [11] found infinitely many solutions
to this equation for all j and k. Thus (n?),>; and (n¥),>; are special sequences in the
exceptional set of measure 0 when 2/j +2/k < 1. But since the theorem predicts that there
should be no solutions, perhaps Lander found all solutions in this case.
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