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Abstract

We study the equation aj+bj = ck+dk for positive integers a, b, c, d, and 2 < j < k.

Two heuristic arguments correctly predict the cases in which the equation has primitive

solutions.

1 Introduction

Let (S
(k)
n )n≥1 denote the sequence of sums of two positive k-th powers of integers. We consider

mostly the sequences (S
(k)
n )n≥1 with 3 ≤ k ≤ 6: A004999, A003336, A003347, and A003358

in the OEIS [12]. For integers 2 < j < k, we investigate the numbers common to the two

sequences (S
(j)
n )n≥1 and (S

(k)
n )n≥1. The numbers (ak)j + (bk)j = (aj)k + (bj)k, for positive

integers a and b, appear trivially in both sequences. We are more interested in nontrivial
common elements.

Equivalently, we study the equation aj + bj = ck + dk for positive integers a, b, c, d. We
are interested mostly in the case 2 < j < k, but we begin by reviewing the case j = k, which
has been studied extensively.

Many solutions in integers are known for the equation aj + bj = cj + dj = N when j = 2,
3, and 4. We exclude trivial solutions with {a, b} = {c, d}. Only primitive solutions, those
with gcd(a, b, c, d) = 1, are considered because all other solutions may be derived from the
primitive ones. For example, the solution 3994+4024 = 1774+4744 would be ignored because
it is just 34 times the solution 1334 + 1344 = 594 + 1584.
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Theorem 412 in Hardy and Wright [10] asserts that some integers have arbitrarily many
representations as the sum of two cubes. Parametric solutions are known for j = 2, 3, and
4. Equation (13.7.11) in Hardy and Wright [10] gives a parametric solution for the case
j = 4 and Choudhry [3] offers another one. Wroblewski [14] lists all primitive solutions to
a4 + b4 = c4 + d4 with a, b, c, d ≤ 1014. No primitive solution to aj + bj = N = cj + dj

is known with j > 4. According to Guy [8, Sec. D1], people have searched at least up to
N < 1025 for solutions in the case j = 5. Fermat’s Last Theorem says there are no solutions
with d = 0. Browning [2] used algebraic geometry to show that primitive solutions with
j > 4 are rare if they exist at all.

We have searched for solutions to the equation aj + bj = ck + dk in integers a, b, c, d
with 2 < j < k < 11. There are many solutions with j = 2 and all k > 2. We found
primitive solutions in the three cases j = 3, k = 4, 5, and 6, but none for other values of
2 < j < k < 11.

When one studies the equation aj + bj = ck + dk with j < k, one ignores trivial identities
such as (ak)j + (bk)j = (aj)k + (bj)k, even when gcd(a, b) = 1.

In case j < k and j | k some solutions with gcd(a, b, c, d) > 1 might be considered if
one wants to see all solutions, because sometimes a common factor cannot be canceled. For
example, one solution to a3 + b3 = c6 + d6 is

1023 + 3303 = 126 + 186 (1)

and the common factor 6 of the four numbers cannot be canceled since it appears to different
powers on the two sides of the equation. However, this solution comes from a solution to
w3 + x3 = y3 + z3. If k = gcd(a, b, c, d) > 1 for a solution to a3 + b3 = c6 + d6, then this
equation may be rewritten as (kw)3+(kx)3 = (ke)6+(kf)6 or k3w3+k3x3 = (k2e2)3+(k2f 2)3

from which k3 may be canceled to give w3 + x3 = (ke2)3 + (kf 2)3, which is primitive.
A solution (k2a)3 + (k2b)3 = (kc)6 + (kd)6 for some integer k > 1 is easily derived

from the solution a3 + b3 = c6 + d6 by multiplying by k6, so it is ignored. For example,
9183 + 29703 = 366 + 546 is just the solution 1023 + 3303 = 126 + 186 multiplied by 36.
Likewise, we ignore solutions to a3 + b3 = c6 + d6 with a = c2 and b = d2.

Similar reductions apply also whenever j < k and j | k. We tested the 11089 solutions
to w4 + x4 = y4 + z4 found by Wroblewski [14] to see whether one would give a solution to
a4 + b4 = c8 + d8. None of them worked (because none had square values for both w and x).

Lander [11] gave (1) as a solution when j = 3 and k = 6. He found parametric solutions
to aj + bj = ck + dk (and to similar equations with any number of terms on each side) for
every 2 ≤ j ≤ k, but none of his solutions are primitive. His solution to aj + bj = ck + dk is

(pwB)j + (qwB)j = (wA)k + (wA)k,

where A, B and w are positive integers that depend on j, k, and the parameters p and q. For
j = 5, k = 8, he gave a typical numerical solution (3 · 1223)5 + (1223)5 = (1222)8 + (1222)8.
For j = 3, k = 5, another numerical solution would be (4 ·363)3+(2 ·363)3 = (362)5+(362)5.

The tables in the next section list only primitive solutions—those with gcd(a, b, c, d) = 1
(other than a = b = c = d = 1).
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2 The results

We used the methods described in Bernstein [1] in the search for solutions. One heap (data
structure) held the sums aj + bj and another one held the sums ck + dk. The program
compared their least elements as they were removed. We used Algorithm 6 of Eisermann
[4] to reduce the memory requirement of the program. The computation was done on the
Brown cluster at Purdue’s RCAC.

We used local constraints to accelerate the algorithm. For instance, only five of the eleven
residue classes modulo 11 are sums c5 + d5, namely, −2, −1, 0, 1, 2 modulo 11. The map
f(x) = x3 mod 11 is a permutation of the eleven classes. Thus for each a (mod 11), if a3+b3

equals a sum of two fifth powers, then there are only five possible values of b (mod 11). For
example, when a ≡ 3 (mod 11), we have a3 ≡ 5 (mod 11). Thus b3 mod 11 must be one of
4, 5, 6, 7, 8 (mod 11), so b mod 11 must be one of 5, 3, 8, 6, 2 (mod 11). To search these
cases we ran five jobs, one for each possible value of b mod 11 (and all possible values for
a, c, and d). We used the moduli 16, 11, 27, 29, 32, 19, 25, for k = 4, 5, 6, 7, 8, 9, 10,
respectively, and most values of j < k.

If c ≤ d ≤ M , then aj + bj = ck + dk ≤ 2Mk, so a ≤ b ≤ L = (2Mk)1/j. The number of
pairs a, b is about L2/2. The search for solutions examines more a, b pairs than c, d pairs
since j < k, and the naive running time would be O(L2) or O(M2k/j). However, we rewrote
the equation as aj − ck = dk − bj and computed these differences instead of the sums. This
reduced the work to O(M1+k/j).

For j = 3, we used M = 10000, 5000, 1400, 700, 350, 200, 100 for k = 4, 5, 6, 7, 8, 9, 10,
respectively. For j = 4, we used M = 18100, 3500, 1100, 460, 230, 135 for k = 5, 6, 7, 8, 9,
10, respectively. We made similar effort in the other cases. These limits kept the sums in
range of 64-bit integer arithmetic in the three cases where we found solutions and in range
of 128-bit integer arithmetic in the other cases. They also kept the search times reasonable.

Tables 1 and 2 show the primitive solutions to 0 ≤ a3 + b3 = c4 + d4 = N with 0 ≤ c ≤
d ≤ 10000 in order by the size of N .

Note the repeated values of c or d in these solutions.

453 + 1333 = 394 + 194

1613 + 1763 = 394 + 524

8873 + 64573 = 4564 + 6904

29413 + 147713 = 4564 + 13384

63773 + 79773 = 2274 + 9354

55283 + 85293 = 3984 + 9354
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a b c d a b c d
17 24 8 11 3658 29849 825 2262
45 133 19 39 7202 29977 225 2286
161 176 39 52 26224 27217 167 2486
641 960 133 170 18226 33641 396 2577
993 1400 32 247 16101 35149 1225 2595
840 1681 73 270 4401 37096 1644 2573
1417 1634 78 291 11986 39881 288 2841
41 3801 193 481 23097 42217 195 3059

4272 4337 35 632 14521 46850 1959 3090
887 6457 456 690 31249 44928 215 3318
6377 7977 227 935 39893 42669 2261 3275
5528 8529 398 935 32321 47936 981 3458
8669 9043 60 1086 23645 56133 401 3713
2941 14771 456 1338 35653 61979 1470 4086
9928 16849 1145 1418 17432 65969 1806 4097
2201 19721 1239 1519 39777 69704 2131 4418
6885 22253 571 1831 23281 74176 266 4529
5381 23901 913 1903 217 76679 2418 4518
20368 20449 371 2030 51072 79217 950 5009
10745 25113 1457 1883 69793 70440 3618 4771
17777 25104 1469 2024 12721 90136 4076 4627

Table 1: Primitive solutions to a3 + b3 = c4 + d4, Part 1.

a b c d a b c d
15248 91169 3207 5060 111875 133933 3606 7764
77169 77912 3964 5117 120089 136087 5496 7602
77393 77904 4633 4670 74384 157697 6811 6834
15333 100205 1781 5623 77375 157633 6252 7308
7849 101257 257 5677 104528 154625 1791 8336
72753 103520 3809 5986 89673 161689 675 8387
12269 116357 3021 6217 127992 143009 1757 8414
70181 109325 3177 6275 85529 172402 2691 8688
1129 118857 4087 6117 10320 183793 6732 8029
45176 129521 1222 6897 145373 183379 570 9804
109009 110017 1861 7151 64989 210277 2379 9883
17717 138189 557 7171 18403 216605 4092 9972
47233 137824 3388 7135 162754 180713 7365 9234
25176 142801 197 7356 94201 215481 8459 8697
41361 145361 407 7487

Table 2: Primitive solutions to a3 + b3 = c4 + d4, Part 2.
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Table 3 shows the primitive solutions to 0 ≤ a3+b3 = c5+d5 = N with 0 ≤ c ≤ d ≤ 5000
in order by the size of N . Note that c = 187 occurs in both the second and third solutions.

a b c d a b c d
2467 3071 115 119 315515 410576 96 2515
7755 15102 187 326 324657 450095 1458 2600
14475 29190 187 488 111359 526113 1286 2700
9301 40290 80 581 74484 597517 293 2924
41144 144677 653 1244 480397 480926 1690 2909
39032 150265 1065 1158 50387 710804 123 3244
177898 451093 1765 2404 265936 1225217 3838 4001

Table 3: Primitive solutions to a3 + b3 = c5 + d5.

Table 4 shows the primitive solutions to 0 ≤ a3+b3 = c6+d6 = N with 0 ≤ c ≤ d ≤ 1400
in order by the size of N .

a b c d a b c d
3441 7708 57 88 265008 500137 636 653
28105 28596 40 189 85656 620785 534 775
50145 350428 286 591 296305 1233132 238 1113
225681 458812 233 690

Table 4: Primitive solutions to a3 + b3 = c6 + d6.

3 The first heuristic argument

We estimate the probability that aj + bj = ck + dk has a nontrivial solution using a form of
the Birthday Paradox. This argument is old and well known. Weaver [13], page 135, told an
amusing anecdote about the Birthday Paradox during World War II.

Our first heuristic assumption is that the four terms aj, bj, ck, dk, are random integers
of about the same size B, say, between B/2 and 3B/2. Then a and b will be near B1/j and
there will be about that many possible values for each of them, so that there are about B2/j

pairs (a, b). Likewise, there are about B2/k pairs (c, d) with c and d near B1/k.
The sums aj + bj, ck +dk will be random integers in the interval [B, 2B] of length B, and

we assume they are independent. Then the probability that one particular sum aj+bj differs
from every one of the B2/k sums ck + dk is (1− 1/B)B

2/k
. By independence, the probability

that every sum aj + bj differs from every sum ck + dk is

((1− 1/B)B
2/k

)B
2/j

= (1− 1/B)B
2/j+2/k

,
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and the probability that the equation aj+bj = ck+dk has at least one solution with numbers
of this size is 1 minus this probability.

Since B is large we may approximate 1− 1/B by exp(−B−1). The probability of at least
one solution becomes 1 − exp(−B−1+2/j+2/k). When 2/j + 2/k < 1 the probability is near
0, so we expect no solution. When 2/j + 2/k > 1 the probability is near 1, so we expect
many solutions. When 2/j + 2/k = 1 we have a borderline case where there may be a few
solutions or none at all.

This heuristic argument explains why there are many solutions to aj + bj = ck + dk when
j = 2: 2/j + 2/k > 1 for every integer k > 1.

When j = 3 the argument predicts many solutions for k = 4 and 5, just a few solutions
when k = 6, and no solution when k > 6. It also predicts no solution for 3 < j < k. This is
just what we found.

The case j = k = 4 is also a borderline case and it has infinitely many solutions perhaps
because there is a parametric solution. Wroblewski [14] found 11089 solutions with a, b, c,
d ≤ 1014.

Note that the comparison of number of solutions is a bit unfair because of different search
limits M . Tables 1, 2, 3, and 4 give all solutions with roughly the same limit on the sum N .

4 The second heuristic argument

The argument in this section is modeled on that of Erdős and Ulam [6]. We will show that

for most sequences having the growth rates of (S
(j)
n )n≥1 and (S

(k)
n )n≥1 there is a nontrivial

intersection if and only if 2/j + 2/k ≤ 1. This theorem proves nothing about particular

sequences like (S
(j)
n )n≥1 or (S

(k)
n )n≥1, but it suggests that the same statement is likely to hold

for them.
We define a probability measure on the space of sequences of positive integers. See Erdős

and Rényi [5] or Halberstam and Roth [9] for more about this measure. Let γ > 1 be a real
number and n be a positive integer. Let the measure of the set of all sequences containing n
be c1n

−1+1/γ and the measure of the complement be 1− c1n
−1+1/γ . Here c1 and other ci used

later are appropriate positive constants. In this case, c1 is chosen so that the measure of the
set of all sequences is 1. Call this measure the γ measure. The phrase “almost all sequences
A” will mean “for all A except for a set of sequences of γ measure 0.” Let Pγ(n) = c1n

−1+1/γ

be the probability that n ∈ A.
If A is a sequence of positive integers and x is a real number, let A(x) be the number of

a ∈ A with a ≤ x. It is easy to see that A(x) = (1 + o(1))c1γx
1/γ for almost all A. Hence

the n-th term of A is (1 + o(1))(n/c1γ)
γ for almost all A.

Let 2A denote the sequence of all sums a + a′ with a ∈ A and a′ ∈ A. Note that if
γ = j ≥ 2, then, for almost all A, A and 2A have growth rates similar to those of (nj)n≥1

and (S
(j)
n )n≥1, respectively.

Now let 1 < α ≤ β. Write Pα(n) = c1n
−1+1/α and Pβ(n) = c2n

−1+1/β.

6



Theorem 1. Let 1 < α ≤ β. If 2/α + 2/β < 1, then for almost all sequences A in α
measure and almost all sequences B in β measure the intersection 2A ∩ 2B is finite. But if

2/α+ 2/β ≥ 1, then for almost all sequences A in α measure and almost all sequences B in

β measure the intersection 2A ∩ 2B is infinite.

The proof is based on that in Erdős and Ulam [6].

Proof. We will prove the first statement by showing that the expected number E of integers
n in the intersection is finite. We have

E =
∞
∑

n=1

(

∑

u+v=n

Pα(u)Pα(v)

)(

∑

u+v=n

Pβ(u)Pβ(v)

)

=
∞
∑

n=1

c21c
2
2

(

∑

u+v=n

(uv)−1+1/α

)(

∑

u+v=n

(uv)−1+1/β

)

< c3

∞
∑

n=1

n−1+2/αn−1+2/β

= c3

∞
∑

n=1

n−2+2/α+2/β,

where the inner sums were estimated by integrals. For example, the first inner sum is
estimated by

∫ n

0
(u(n−u))−1+1/αdu = n−2+2/αnc4 = c4n

−1+2/α. Since 2/α+2/β < 1, E < ∞
and the intersection is finite by the Borel-Cantelli lemma. See Feller [7] for the Borel-Cantelli
lemma.

Now suppose 2/α + 2/β ≥ 1. We will give the proof for the case 2/α + 2/β = 1. The
case 2/α + 2/β > 1 is similar. Let E(x) denote the expected number of integers n ≤ x in
the intersection. We have

E(x) =
x
∑

n=1

(

∑

u+v=n

Pα(u)Pα(v)

)(

∑

u+v=n

Pβ(u)Pβ(v)

)

=
x
∑

n=1

c21c
2
2

(

∑

u+v=n

(uv)−1+1/α

)(

∑

u+v=n

(uv)−1+1/β

)

= (1 + o(1))c5

x
∑

n=1

n−2+2/α+2/β

= (1 + o(1))c5

x
∑

n=1

n−1 = (1 + o(1))c5 log x.

Now we use a second moment argument to show that for almost all A and almost all
B the size f(A,B, x) of 2A ∩ 2B ∩ [1, x] satisfies f(A,B, x) = (1 + o(1))c5 log x so that
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limx→∞ f(A,B, x)/E(x) = 1. The expected value of f(A,B, x) is E(x), which we just com-
puted. Let E2(x) be the expected value of f(A,B, x)2. Then E2(x) =

x
∑

n1=1

x
∑

n2=1

∑

u1+v1=n1

∑

u2+v2=n1

∑

u3+v3=n2

∑

u4+v4=n2

P (u1, u2, u3, u4, v1, v2, v3, v4),

where P (u1, u2, u3, u4, v1, v2, v3, v4) is the probability that u1, v1, u2, and v2 are in A and
that u3, v3, u4, and v4 are in B. If these eight integers were distinct, we would have
P (u1, u2, u3, u4, v1, v2, v3, v4) =

Pα(u1)Pα(v1)Pα(u2)Pα(v2)Pβ(u3)Pβ(v3)Pβ(u4)Pβ(v4),

and the sum would be (E(x))2, but if some integers are repeated, the probability is larger.
Hence, E2(x) > (E(x))2. To get the opposite inequality we add terms to E2(x) to account
for possible repeated values.

If the eight integers were distinct, we could pair the sums
(

∑

u1+v1=n1

Pα(u1)Pα(v1)

)(

∑

u3+v3=n

Pβ(u3)Pβ(v3)

)

and obtain (1+ o(1))c6 log x as in the calculation for E(x). But if say, u3 = u1, then v3 = v1
and the two sums become

∑

u1+v1=n1

Pα(u1)Pα(v1)Pβ(u1)Pβ(v1) =
∑

u1+v1=n1

(u1v1)
−1+1/α(u1v1)

−1+1/β

=
∑

u1+v1=n1

(u1v1)
−2+1/α+1/β

=
∑

u1+v1=n1

(u1v1)
−3/2.

When we approximate this sum by the integral
∫ n1

0
(u1(n1 − u1))

−3/2du we get a constant
times n−2

1 , and the sum on n1 is finite. The sum on n2 pairs the other two sums and gives
(1 + o(1))c7 log x.

Likewise, the other added terms are all less than constants times log x. Therefore,
(E(x))2 < E2(x) < (E(x))2 + c8 log x. By the Tchebycheff inequality the α measure of
the set of A and the β measure of the set of B for which

|f(A,B, x)− E(x)| > ǫ log x

are less than c9/ǫ
2 log x. Let xk = 2k(log k)

2

. By the Borel-Cantelli lemma we have

lim
k→∞

f(A,B, xk)/E(xk) = 1.

Therefore, since f(A,B, xk) ≤ f(A,B, x) ≤ f(A,B, xk+1) when xk < x < xk+1, for al-
most all A and almost all B we have limx→∞ f(A,B, x)/E(x) = 1. In the same way,
limx→∞ f(A,B, x)/E(x) = 1 when 2/α + 2/β > 1. Since E(x) is unbounded as x → ∞, the
intersection 2A ∩ 2B is infinite for almost all A and almost all B when 2/α + 2/β ≥ 1.
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Now let α = j and β = k. If (nj)n≥1 and (nk)n≥1 were typical sequences, this theorem
would predict infinitely many solutions to aj + bj = ck + dk when 2/j + 2/k ≥ 1 and finitely
many solutions when 2/j + 2/k < 1. Of course, Lander [11] found infinitely many solutions
to this equation for all j and k. Thus (nj)n≥1 and (nk)n≥1 are special sequences in the
exceptional set of measure 0 when 2/j +2/k < 1. But since the theorem predicts that there
should be no solutions, perhaps Lander found all solutions in this case.
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[5] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers.
Acta Arith. 6 (1960), 83–110.
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