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Abstract

We give an exact enumeration of the unlabeled disconnected posets according to

the number of connected components of the posets. This result establishes that the

enumeration of unlabeled posets belonging to a class that is closed under the direct

sum depends mainly on the enumeration of unlabeled connected posets contained in

the class. We also give an algorithm to determine the parameters involved in the

enumeration formula, and finally, find the number of unlabeled disconnected posets

with a certain number of elements. We show that the enumeration algorithm runs in

polynomial time.

1 Introduction

We give an exact enumeration of the unlabeled disconnected posets belonging to a class of
posets that is closed under the direct sum of posets. Let Pn, n ≥ 1 be the set of all n-element
unlabeled posets. Also let Qn, n ≥ 1 and Rn, n ≥ 2 be the sets of all n-element unlabeled
connected and disconnected posets, respectively. Since the singleton poset is connected, we
have P1 = Q1 and |P1| = |Q1| = 1. In general, for all n ≥ 2, we have Pn = Qn ∪ Rn and
hence |Pn| = |Qn| + |Rn|. We observe that every member of Rn can be expressed as the
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direct sum of two or more members from Qr, 1 ≤ r ≤ n−1. In our enumeration method, for
finite n ≥ 2, we express |Rn| as a finite series consisting of the numbers |Qr|, r ≤ n− 1 that
gives the enumeration of the posets belonging to Rn according to the number of connected
direct terms (components) of the posets. Here, we establish in general the criterion for the
pairwise nonisomorphic direct sum of unlabeled posets obtained by Mohammad [12] and
used particularly for the enumeration of the class of P -series, a subclass of the class of
series-parallel posets.

For common enumeration methods, we refer the readers to [3, 4, 7, 10] for the enumera-
tion of finite posets, [1, 2] for graphs, and [6, 11] for topologies. In the most of these cases,
the enumeration of a class of structures was done by generating and counting all the pair-
wise nonisomorphic structures belonging to the class. The running time of these algorithms
increases rapidly even though the structures under consideration are significantly small in
size. Mainly, the running time for generating pairwise nonisomorphic structures make these
algorithms highly time-complex. We observe that the steps for generating pairwise noni-
somorphic disconnected posets in an enumeration process can be skipped. Therefore, the
proposed exact enumeration method for the unlabeled disconnected posets must reduce the
time-complexities of the algorithms for enumeration of unlabeled posets. Further, this enu-
meration method is applicable for the enumeration and generation of any unlabeled mathe-
matical structures (posets, graphs, networks, topologies, and so on) belonging to a class that
is closed under the direct sum of the structures.

We also give an algorithm to determine the parameters involved in the enumeration for-
mula and to compute the numbers |Rn| for n ≥ 2. We show that the enumeration algorithm
runs in polynomial time with complexity O(n5). We implement the enumeration algorithm
into the computer and gather some numerical results. Brinkmann and McKay [3] obtained
the number of unlabeled posets up to 16 elements, the sequence A000112 in OEIS [13]. By
using the number of unlabeled connected posets up to 16 elements, we determine the number
of unlabeled disconnected posets up to 17 elements according to the number of connected
direct terms of the posets, the sequences A349401 and A263864 in OEIS [13]. Khamis [9]
obtained the number of unlabeled N -free posets up to 14 elements according to the height of
the posets, the sequence A202182 in OEIS [13]. By using the number of unlabeled connected
N -free posets up to 14 elements, we determine the number of unlabeled disconnected N -free
posets up to 15 elements according to the number of connected direct terms of the posets,
the sequences A349367 and A350783 in OEIS [13].

In Section 2, we recall some basic terminologies related to the posets and their direct
sum. In Section 3, we give the criterion for pairwise nonisomorphic direct sums of connected
posets. In Section 4, we establish the formulae giving the enumeration of disconnected posets.
In Section 5, we give the enumeration algorithm and prove its time-complexity. In Section 6,
we include the numerical results obtained by implementing the enumeration algorithm into
the computer.
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2 Preliminaries

A poset (partially ordered set) is a structure A = 〈A,6〉 consisting of the nonempty set A
with the order relation 6 on A. A poset A is called finite if the underlying set A is finite.
Here, we assume that every poset is finite. Let A = 〈A,6A〉 and B = 〈B,6B〉 be any posets.
A bijective map φ : A → B is called an order isomorphism if for all x, y ∈ A, x 6A y if
and only if φ(x) 6B φ(y). We write A ∼= B whenever A and B are order isomorphic. By
saying that a collection of posets is isomorphic (analogously, nonisomorphic), we mean that
the posets in the collection are pairwise isomorphic (nonisomorphic). For further details on
posets, we refer the readers to the classical book by Davey and Priestley [5].

We use the notation 1 for the singleton poset, Cn (n ≥ 1) for the n-element chain poset,
In (n ≥ 1) for the n-element antichain poset, Bm,n (m ≥ 1, n ≥ 1) for the complete bipartite
poset with m minimal elements and n maximal elements. We write A + B to denote the
direct sum of A and B. Here, A and B are called the direct terms (components) of the
poset A +B. We write briefly

∑r

i=1 Ai for the direct sum A1 +A2 + · · · +Ar and rA for
the direct sum A+A+· · ·+A of r posets A. For example, In ∼= n1. A poset having two or
more direct terms is called disconnected, otherwise, it is called connected. Note that, for all
posets Ai,Bi, 1 ≤ i ≤ r, since the direct sum of posets is commutative, we have

∑r

i=1 Ai
∼=

∑r

i=1 Bi if and only if Ai
∼= Bi for every 1 ≤ i ≤ r.

3 Nonisomorphic direct sum criterion

For unlabeled connected posets, in particular, we have Q1 = {1}, Q2 = {C2}, and Q3 =
{B1,2, B2,1, C3}. For unlabeled disconnected posets, we have R2 = {21}, R3 = {1 + C2,
31}, and R4 = {1 + C3, 1 + B1,2, 1 + B2,1, C2 + C2, 21 + C2, 41}. We observe that, for
every 2 ≤ n ≤ 4, every member of Rn can be expressed as the direct sum of some members
of Qr, 1 ≤ r ≤ 3. In general, for Rn ∈ Rn, n ≥ 2, there exist Qni

∈ Qni
, 1 ≤ i ≤ m such

that

Rn
∼= Qn1

+Qn2
+ · · ·+Qnm

=
m∑

i=1

Qni
, (1)

where 2 ≤ m ≤ n and n =
∑m

i=1 ni. Here, m is the number of connected direct terms of Rn.
Since the direct sum of posets is commutative, we observe the following.

1. For n = 2, we have R2
∼= Q1 +Q1. Thus an R2 can be obtained only in one way with

2 connected direct terms.

2. For n = 3, we have R3
∼= Q1 + Q2

∼= Q2 + Q1 and R3
∼= Q1 + Q1 + Q1. Thus, an

R3 can be obtained in one way with 2 connected direct terms and in one way with 3
direct terms.
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3. For n = 4, all the ways in which an R4 can be obtained are given in Table 1. Here, we
see that an R4 can be obtained in two ways with 2 connected direct terms, in one way
with 3 connected direct terms, and in one way with 4 connected direct terms.

Number of Ways in which an
connected direct terms R4 can be obtained

2 Q2 +Q2

and Q1 +Q3
∼= Q3 +Q1

3 Q1 +Q1 +Q2
∼= Q1 +Q2 +Q1
∼= Q2 +Q1 +Q1

4 Q1 +Q1 +Q1 +Q1

Table 1: All the ways in which an R4 can be obtained as a direct sum of Qr, r ≤ 3.

We see that if the posets Rn ∈ Rn are obtained as above, some of the posets in Rn can
be isomorphic even though the collection of direct terms Qni

, 1 ≤ i ≤ m is nonisomorphic.
In this section, we establish the criterion for the direct sum so that all the posets in Rn

obtained as the direct sum of the posets Qni
, 1 ≤ i ≤ m are nonisomorphic. Here, for every

1 ≤ r ≤ n − 1, we must assume that the collection Qr is nonisomorphic. To make our
intuition more precise, we observe the connected direct terms of the posets R6 ∈ R6. We
see that an R6 can be obtained in all the ways given in Table 2.

Number of Ways in which an
connected direct terms R6 can be obtained

2 Q1 +Q5, Q2 +Q4,
and Q3 +Q3

3 Q1 +Q1 +Q4,
Q1 +Q2 +Q3,

and Q2 +Q2 +Q2

4 Q1 +Q1 +Q1 +Q3

and Q1 +Q1 +Q2 +Q2

5 Q1 +Q1 +Q1 +Q1 +Q2

6 Q1 +Q1 +Q1 +Q1 +Q1 +Q1

Table 2: All the ways in which an R6 can be obtained as a direct sum of Qr, r ≤ 5.

Here, in Table 2, we see that all the other direct sums in which an R6 can be obtained
are isomorphic to one of the direct sums given in the table. This observation shows that all
the direct sums in which a poset Rn can be obtained will be nonisomorphic if the sequence
〈n1, n2, . . ., nm〉, as in the equation (1), is nondecreasing, that is, n1 ≤ n2 ≤ · · · ≤ nm. We
prove this conjecture in the following. Recall the assumption that, for every 1 ≤ r ≤ n− 1,
the collection Qr is nonisomorphic.

4



Theorem 1. For all Rn ∈ Rn, let Rn =
∑m

i=1 Qni
, where n =

∑m

i=1 ni for some 2 ≤ m ≤ n,

such that the sequences 〈n1, n2, . . ., nm〉 are all nondecreasing and distinct. Then for every

pair of posets Rn,R
′
n ∈ Rn, we have Rn ≇ R′

n.

Proof. For Rn,R
′
n ∈ Rn, let Rn

∼=
∑m

i=1 Qni
and R′

n
∼=

∑m′

i=1 Qri , as in the hypothesis,
such that L = 〈n1, n2, . . ., nm〉 6= 〈r1, r2, . . ., rm′〉 = L′. If m 6= m′ then Rn and R′

n have
different numbers of connected direct terms and, clearly, Rn ≇ R′

n. Otherwise, let m = m′.
In this case, since both L and L′ contain nondecreasing lengths, there exist 1 ≤ s, t ≤ m,
such that ni 6= ri when s ≤ i ≤ t and ni = ri otherwise (in the simplest case, for example,
consider the sequences 〈1, 2, 3, 4, 5〉 and 〈1, 2, 2, 5, 5〉 where s = 3 and t = 4). Also, ri < ns

or ni < rs for all 1 ≤ i ≤ s − 1 (when s > 1); and nt < ri or rt < ni for all t + 1 ≤ i ≤ m

(when t < m− 1). Thus, there exist either s ≤ u ≤ t such that Qnu
≇ Qri for all 1 ≤ i ≤ m,

or s ≤ v ≤ t such that Qrv ≇ Qni
for all 1 ≤ i ≤ m. This shows that Rn ≇ R′

n.

4 Enumeration of unlabeled disconnected posets

To determine |Rn|, n ≥ 2, the observations in the previous section suggest that, for certain
2 ≤ m ≤ n (the number of connected direct terms of the Rn ∈ Rn), we must consider
only the distinct nondecreasing sequences 〈n1, n2, . . ., nm〉, as given in the equation (1). In
particular, we see that |R6| can be computed by using the direct sums given in Table 2 and
the numbers |Q1| = |Q2| = 1, |Q3| = 3, |Q4| = 10, and |Q5| = 44, see [3, 4, 7]. Here, we use
the notation Rm

n to denote the set of all posets Rn ∈ Rn with m connected direct terms.
Then we have Rn =

⋃n

m=2 R
m
n . Since the collections Rm

n , 2 ≤ m ≤ n of unlabeled posets
are pairwise disjoint, we have |Rn| =

∑n

m=2 |R
m
n |. Firstly, we compute |R2

6|. For R6 ∈ R2
6,

we have the following cases.

1. R6
∼= Q1 +Q5.

Since the direct terms are the posets with unequal numbers of elements, in this case,
we have |Q1| × |Q5| = 1× 44 = 44 disconnected posets.

2. R6
∼= Q2 +Q4.

Due to the reason same to the previous case, here, we have |Q2| × |Q4| = 1× 10 = 10
disconnected posets.

3. R6
∼= Q3 +Q3.

Since both the direct terms are the posets with the same number of elements (that is, a
direct term in the expression is repeated), in this case, we have

(
|Q3|+2−1

2

)
=

(
3+1
2

)
= 6

disconnected posets.

These give

|R2
6| = 44 + 10 + 6 = 60.
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Similarly, we have

|R3
6| = 10 + 3 + 1 = 14,

|R4
6| = 3 + 1 = 4,

|R5
6| = 1, and

|R6
6| = 1.

Finally, we have

|R6| =
6∑

m=2

|Rm
6 | = 60 + 14 + 4 + 1 + 1 = 80.

In the following, we establish, in general, the above observations consecutively.

Lemma 2. For given 2 ≤ t ≤ n, let R̃t
n ⊆ Rn be the collection of posets such that for

Rn ∈ R̃t
n, we have Rn

∼=
∑t

i=1 Qni
, where n =

∑t

i=1 ni and the sequence 〈n1, n2, . . ., nt〉 is
strictly increasing. Then |R̃t

n| =
∏t

i=1 |Qni
|.

Proof. Let Rn ∈ R̃t
n. As the sequence 〈n1, n2, . . ., nt〉 is strictly increasing, the direct terms

Qni
, 1 ≤ i ≤ t of Rn have different cardinalities. Thus, all the t direct terms of a poset Rn

can be chosen consecutively from one of the disjoint collections Qn1
, Qn2

, . . ., and Qnt
each

of which consists of all nonisomorphic connected posets. Therefore, |R̃t
n| equals the number

of the collections consisting of t distinct items each of which is chosen consecutively from
one of the collections consisting of |Qn1

|, |Qn2
|, . . ., and |Qnt

| distinct items, respectively.
Therefore, we have |R̃t

n| as follows:

|R̃t
n| = |Qn1

| × |Qn2
| × · · · × |Qnt

| =
t∏

i=1

|Qni
|. (2)

Lemma 3. For given 2 ≤ t ≤ n, let R̄t
n ⊆ Rn be the collection of posets such that for

Rn ∈ R̄t
n, we have Rn

∼=
∑t

i=1 Qni
, where n =

∑t

i=1 ni and the sequence 〈n1, n2, . . ., nt〉 is

constant. Then |R̄t
n| =

(
|Qr |+t−1

t

)
, where r = ni, 1 ≤ i ≤ t.

Proof. Let Rn ∈ R̄t
n. As the sequence 〈n1, n2, . . ., nt〉 is constant, we assume r = ni,

1 ≤ i ≤ t. Thus, every poset Qni
, 1 ≤ i ≤ t consists of r elements. This shows that

all the t direct terms of a poset Rn can be chosen from the same collection Qr consisting
of |Qr| nonisomorphic connected posets. Therefore, |R̄t

n| equals the number of t-element
combinations of |Qr| objects, with repetition. This gives |R̄t

n| as follows:

|R̄t
n| =

(
|Qr|+ t− 1

t

)

. (3)
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Theorem 4. For given 2 ≤ m ≤ n, let Rm
n ⊆ Rn be the collection of posets such that for

Rn ∈ Rm
n , we have Rn

∼=
∑m

i=1 Qni
, where n =

∑m

i=1 ni and the sequence 〈n1, n2, . . . , nm〉
is nondecreasing. Then, there exist q ≤ m and rk, tk, 1 ≤ k ≤ q such that |Rm

n | =
∏q

k=1

(
|Qrk

|+tk−1
tk

)
.

Proof. Let Rn ∈ Rm
n . Since the sequence 〈n1, n2, . . . , nm〉, as in the hypothesis, is nonde-

creasing, there exist q and rk, tk, 1 ≤ k ≤ q such that

r1 = n1 = n2 = · · · = nt1 ,

r2 = nt1+1 = nt1+2 = · · · = nt1+t2 ,

r3 = nt1+t2+1 = nt1+t2+2 = · · · = nt1+t2+t3 ,

...

rq = nt1+···+tq−1+1 = nt1+···+tq−1+2 = · · · = nm,

where r1 < r2 < · · · < rq and m = t1 + · · ·+ tq. Let Rrktk ∈ R̄tk
rktk

be the k-th subcollection
of tk consecutive connected direct terms of the poset Rn. Then, for every 1 ≤ k ≤ q, the
poset Rrktk can be expressed as follows:

Rrktk
∼= Qrk +Qrk + · · ·+Qrk

︸ ︷︷ ︸

tk terms

. (4)

Therefore, the poset Rn can be expressed as follows:

Rn
∼= Rr1t1 +Rr2t2 + · · ·+Rrqtq . (5)

Since the sequence 〈rk, rk, · · · , rk〉 is constant, all of the tk direct terms Qrk in (4) are
connected posets with rk elements. Then, by Lemma 3, we have |R̄tk

rktk
| as follows:

|R̄tk
rktk

| =

(
|Qrk |+ tk − 1

tk

)

. (6)

Since the sequence 〈r1, r2, · · · , rq〉 is strictly increasing, every direct term Rrktk in (5) is
itself a direct sum that consists of tk connected direct terms each consisting of rk elements.
Then, by Lemma 2, we have |Rm

n | as follows:

|Rm
n | =

q
∏

k=1

|R̄tk
rktk

|.

Then, by using the equation (6), we have |Rm
n | as follows:

|Rm
n | =

q
∏

k=1

(
|Qrk |+ tk − 1

tk

)

. (7)
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Note that the value of the parameter q, as in the equation (7), equals the number of
blocks with the same connected direct terms in the direct sum with m terms as considered
above. The following example illustrates Theorem 4.

Example 5. Let S = {R23 ∈ R6
23 : R23

∼= Q3 + Q3 + Q4 + Q4 + Q4 + Q5}. Here, we
describe the computation of |S| by using the equation (7). We have

R23
∼= Q3 +Q3 +Q4 +Q4 +Q4 +Q5

∼= (Q3 +Q3) + (Q4 +Q4 +Q4) + (Q5)
∼= R6 +R12 +Q5 (say),

where R6
∼= Q3 + Q3 and R12

∼= Q4 + Q4 + Q4. Note that, in the case of the direct sum
considered above, the value of the parameter q (the number of distinct blocks with repeated
connected direct terms), as in the equation (7), equals 3. Now we assume

S1 = {R6 ∈ R2
6 : R6

∼= Q3 +Q3},

S2 = {R12 ∈ R3
12 : R12

∼= Q4 +Q4 +Q4}, and

S3 = Q5.

Then

S = S1 ∪ S2 ∪ S3,

where the collections S1, S2, and S3 are pairwise disjoint. This implies

|S| = |S1| × |S2| × |S3|.

Here, we have

|S1| =

(
|Q3|+ 2− 1

2

)

=

(
3 + 1

2

)

= 6,

|S2| =

(
|Q4|+ 3− 1

3

)

=

(
10 + 2

3

)

= 220, and

|S3| = |Q5| = 44.

Therefore,

|S| = 6× 220× 44 = 58, 080.

Now, we give the enumeration formula for the unlabeled disconnected posets, in general,
as follows:

Theorem 6. Let Rn be the collection of posets such that for Rn ∈ Rn, we have Rn
∼=

∑m

i=1 Qnij
, 1 ≤ j ≤ pm, 2 ≤ m ≤ n for some pm ≤

(
n−1
m

)
, where n =

∑m

i=1 nij, 1 ≤
j ≤ pm and all the sequences 〈n1j, n2j , . . . , nmj〉, 1 ≤ j ≤ pm are nondecreasing. Then,

there exist qmj ≤ m and rmjk, tmjk, 1 ≤ k ≤ qmj, 1 ≤ j ≤ pm, 2 ≤ m ≤ n such that

|Rn| =
∑n

m=2

∑pm
j=1

∏qmj

k=1

(|Qrmjk
|+tmjk−1

tmjk

)
.
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Proof. Let Rn ∈ Rn. Then Rn ∈ Rmj
n for some 1 ≤ j ≤ pm and 2 ≤ m ≤ n. Since the

sequences 〈n1j, n2j , . . . , nmj〉, 1 ≤ j ≤ pm, as in the hypothesis, are nondecreasing, there
exist qmj and rmjk, tmjk, for 1 ≤ k ≤ qmj, 1 ≤ j ≤ pm, 2 ≤ m ≤ n such that

rmj1 = nij, 1 ≤ i ≤ tmj1,

rmj2 = nij, tmj1 + 1 ≤ i ≤ tmj2,

...

rmjqmj
= nij, tmj(q−1) + 1 ≤ i ≤ tmjqmj

,

where rmj1 < rmj2 < · · · < rmjqmj
and m = tmj1 + · · · + tmjqmj

. For certain m and j, let

Rrmjktmjk
∈ R̄

tmjk

rmjktmjk
be the k-th subcollection of tmjk consecutive direct terms of the poset

Rn. Then, for every 1 ≤ k ≤ qmj, the poset Rrmjktmjk
can be expressed as follows:

Rrmjktmjk
∼= Qrmjk

+Qrmjk
+ · · ·+Qrmjk

︸ ︷︷ ︸

tmjk terms

. (8)

Therefore, the poset Rn can be expressed as follows:

Rn
∼= Rrmj1tmj1

+Rrmj2tmj2
+ · · ·+Rrmjqmj

tmjqmj
. (9)

Since the sequence 〈rmjk, rmjk, · · · , rmjk〉 is constant, all of the tmjk direct terms Qrmjk
in (8)

are connected posets with rmjk elements. Again, since the sequence 〈rmj1, rmj2, · · · , rmjqmj
〉

is strictly increasing, each of the direct terms Rrmjktmjk
in (9) itself is a direct sum consisting

of the connected direct terms having rmjk elements. Then, by Theorem 4, we have |Rmj
n | as

follows:

|Rmj
n | =

qmj∏

k=1

(
|Qrmjk

|+ tmjk − 1

tmjk

)

. (10)

Since |Rn| equals the sum of |Rmj
n | for all possible values of m and j, where 2 ≤ m ≤ n and

1 ≤ j ≤ pm for some pm ≤
(
n−1
m

)
, we have |Rn| as follows:

|Rn| =
n∑

m=2

pm∑

j=1

|Rmj
n |, n ≥ 2.

Finally, by using the equation (10), we have |Rn| as follows:

|Rn| =
n∑

m=2

pm∑

j=1

qmj∏

k=1

(
|Qrmjk

|+ tmjk − 1

tmjk

)

, n ≥ 2. (11)

Note that for every 2 ≤ m ≤ n, the value of the parameter pm, as in (11), equals the
number of nondecreasing sequences 〈n1, n2, . . ., nm〉, as in (1), where ni ∈ {1, 2, . . . , n− 1}
for all 1 ≤ i ≤ m. Also, for every 2 ≤ m ≤ n and 1 ≤ j ≤ pm, the value of the parameter qmj,
as in (11), equals the number of blocks with same connected direct terms in the direct sum
corresponding to the j-th nondecreasing sequence with m numbers as constructed above.
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5 Enumeration algorithm

Recall that we do not determine explicitly the parameters pm, qmj, and rmjk, where 1 ≤ k ≤
qmj, 1 ≤ j ≤ pm, and 2 ≤ m ≤ n, as in the equation (11). Therefore, for given n ≥ 2,
the computation of |Rn| depends on determining these parameters by constructing mainly
the nondecreasing sequences 〈n1j, n2j , . . . , nmj〉 for all 1 ≤ j ≤ pm and 2 ≤ m ≤ n. Note
that, by inspection, we have pm ≤ n2 for all 2 ≤ m ≤ n. Also, we have qmj ≤ m + 1 for
all 1 ≤ j ≤ pm and 2 ≤ m ≤ n. Here, by using Algorithm 7 given below, we construct the
nondecreasing sequences 〈n1j, n2j , . . . , nmj〉 and determine the parameters pm, qmj, rmjk for
all 1 ≤ k ≤ qmj, 1 ≤ j ≤ pm, 2 ≤ m ≤ n, and finally compute the numbers |Rn| for n ≥ 2.

Algorithm 7. To compute V = |Rn|, the number of n-element unlabeled disconnected
posets, where n ≥ 2 is fixed.

(1) Initialize V = 0.

(2) Repeat (A) for m = 2 to n.

(A) Repeat (i) to (iv) for every nondecreasing sequence L(m, j) = 〈n1j , n2j , . . ., nmj〉,
1 ≤ j ≤ pm as is constructed in (i). (Here, the total number of repetitions equals
the value of the parameter pm in the equation (11)).

(i) Construct j-th nondecreasing sequence L(m, j) consisting of m integers cho-
sen from the integers 1, 2, . . . , n− 1.

(ii) Initialize S(m, j) as S(m, j) = 1.

(iii) Compute tmjk and repeat (a) below for every distinct rmjk in the sequence
L(m, j). (Here, the total number of distinct rmjk equals the value of the
parameter qmj in the equation (11)).

(a) Update S(m, j) with S(m, j)×
(|Qrmjk

|+tmjk−1

tmjk

)
.

(iv) Increase V by S(m, j).

(3) Return V .

Lemma 8. Algorithm 7 runs in time O(n5).

Proof. The constructions of the sequences L(m, j) in the step (i) have complexity equal
to m(n − 1). Since 1 ≤ tmjk, qmj ≤ m + 1 and tmjk is inversely proportional to qmj, the
computations of S(m, j) in the step (iii) have complexity equal to m + 1. Then m ≤ n

implies that the complexity m(n − 1) ≈ O(n(n − 1)) ≈ O(n2) and the complexity m + 1
≈ O(n + 1) ≈ O(n). Since 1 ≤ pm ≤ n2, the repetitions in the step (A) increase the
complexity to n2(O(n2) + O(n)) ≈ O(n4). Finally, the repetitions in the step (3) increase
the complexity to n(O(n4)) ≈ O(n5).
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6 Data

We implemented the enumeration algorithm into the computer and determined the number
of unlabeled disconnected posets up to 17 elements (Table 3 and Table 4) and the number of
unlabeled disconnected N -free posets up to 15 elements (Table 5) according to the number
of connected direct terms of the posets.

m� n 2 3 4 5 6 7 8 9 10 11 12 13

2 1 1 4 13 60 312 2075 17316 186173 2594568 47041877 1108710868
3 1 1 4 14 63 328 2159 17801 189406 2620368 47298156
4 1 1 4 14 64 331 2175 17885 189906 2623701
5 1 1 4 14 64 332 2178 17901 189990
6 1 1 4 14 64 332 2179 17904
7 1 1 4 14 64 332 2179
8 1 1 4 14 64 332
9 1 1 4 14 64
10 1 1 4 14
11 1 1 4
12 1 1
13 1

Total: 1 2 6 19 80 395 2487 19890 206565 2804453 49872647 1158843214

Table 3: The number of n-element unlabeled disconnected posets for 2 ≤ n ≤ 13 according
to the number of connected direct terms m, 2 ≤ m ≤ 13.
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m�n 14 15 16 17

2 33887448384 1339579736074 68314951618033 4484639396830962
3 1111998749 33943069332 1340826402638 68351780482060
4 47324726 1112260708 33946401908 1340882409188
5 2624201 47328080 1112287428 33946665077
6 190006 2624285 47328580 1112290782
7 17905 190009 2624301 47328664
8 2179 17905 190010 2624304
9 332 2179 17905 190010
10 64 332 2179 17905
11 14 64 332 2179
12 4 14 64 332
13 1 4 14 64
14 1 1 4 14
15 1 1 4
16 1 1
17 1

Total: 35049606566 1374685228988 69690886873398 4554367168841547

Table 4: The number of n-element unlabeled disconnected posets for 14 ≤ n ≤ 17 according
to the number of connected direct terms m, 2 ≤ m ≤ 17.

m�n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 4 12 46 173 727 3195 15017 74404 388895 2134070 12266637 73642052
3 1 1 4 13 49 188 795 3502 16436 81146 421816 2300237 13134628
4 1 1 4 13 50 191 810 3570 16758 82655 429138 2336477
5 1 1 4 13 50 192 813 3585 16826 82977 430668
6 1 1 4 13 50 192 814 3588 16841 83045
7 1 1 4 13 50 192 814 3589 16844
8 1 1 4 13 50 192 814 3589
9 1 1 4 13 50 192 814
10 1 1 4 13 50 192
11 1 1 4 13 50
12 1 1 4 13
13 1 1 4
14 1 1
15 1

Total: 1 2 6 18 65 241 984 4250 19590 95484 491459 2660030 15100494 89648378

Table 5: The number of n-element unlabeled disconnected N -free posets for 2 ≤ n ≤ 15
according to the number of connected direct terms m, 2 ≤ m ≤ 15.
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[6] M. Erné, On the cardinalities of finite topologies and the number of antichains in par-
tially ordered sets, Discrete Math. 35 (1981), 119–133.

[7] J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order
17 (2000), 333–341.

[8] S. M. Khamis, On numerical counting of prime, UPO, and the general type of posets
according to heights, Congr. Numer. 146 (2000), 157–171.

[9] S. M. Khamis, Height counting of unlabeled interval and N -free posets, Discrete Math.

275 (2004), 165–175.

[10] S. M. Khamis, Recognition of prime posets and one of its applications, J. Egypt. Math.

Soc. 14 (2006), 5–13.

[11] Y. Koda, The numbers of finite lattices and finite topologies, Bull. Inst. Combin. Appl.

10 (1994), 83–89.

[12] S. U. Mohammad, A Study of Recognition and Enumeration for Decomposable Ordered

Sets, Ph.D. Thesis, Dept. of Mathematics, Shahjalal University of Science and Technol-
ogy, Sylhet-3114, Bangladesh, 2022.

13



[13] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2022. Available
at https://oeis.org.

2020 Mathematics Subject Classification: Primary 06A07; Secondary 05A15, 11Y55.
Keywords: unlabeled posets, exact enumeration, direct sum, enumeration algorithm, poly-
nomial time-complexity.

(Concerned with sequences A000112, A202182, A263864, A349367, A349401, and A350783.)

Received February 08 2022; revised version received June 5 2022. Published in Journal of

Integer Sequences, June 16 2022.

Return to Journal of Integer Sequences home page.

14

https://oeis.org
https://oeis.org/A000112
https://oeis.org/A202182
https://oeis.org/A263864
https://oeis.org/A349367
https://oeis.org/A349401
https://oeis.org/A350783
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Nonisomorphic direct sum criterion
	Enumeration of unlabeled disconnected posets
	Enumeration algorithm
	Data
	Acknowledgment

