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Abstract

We prove that if the least modulus of a distinct covering system is 4, its largest

modulus is at least 60; also, if the least modulus is 3, the least common multiple of

the moduli is at least 120; finally, if the least modulus is 4, the least common multiple

of the moduli is at least 360. The constants 60, 120, and 360 are best possible—they

cannot be replaced by larger constants.

1 Introduction

A covering system C is a set of congruences x ≡ ri (mod ni), i = 1, . . . , k, such that every
integer satisfies at least one of the congruences. Without loss of generality, we can assume
that 1 ≤ n1 ≤ · · · ≤ nk. A covering system is distinct if further 1 < n1 < n2 < · · · < nk.
Note that we allow 1 to be a modulus for a covering system in this paper but do not allow 1
to be a modulus for a distinct covering system. Throughout the paper we denote the least
modulus n1 of the covering by m, the largest modulus nk by M , and the least common
multiple of all moduli by L(C) = L. For example,

x ≡ 1 (mod 2), x ≡ 2 (mod 4), x ≡ 0 (mod 3), x ≡ 4 (mod 6), and x ≡ 8 (mod 12) (1)

is a distinct covering system with m = 2, M = 12, and L = 12.
Erdős [5] introduced the use of covering systems in number theory in the 1950s. He

constructed a distinct covering system with least modulus 3 and largest modulus 120. Erdős
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[5] wrote, “It seems likely that for every c there exists such a system all the moduli of which
are > c.” Proving or disproving this statement became the minimum modulus problem.
For decades many mathematicians believed that indeed, it is possible to construct covering
systems with arbitrarily large least modulus.

Swift [19] (1954) found a distinct covering with m = 4 and later on with m = 6. This
was improved throughout the years by Churchhouse [4] with m = 9 (1968), Krukenberg [14]
with m = 18 (1971), Choi [3] with m = 20 (1971), and Morikawa [15] with m = 24 (1981).
Twenty-five years later, Gibson [11] constructed a distinct covering with m = 25. In 2009,
Nielsen [16] introduced the use of recursion in covering systems and constructed a distinct
covering whose smallest modulus is 40. In the same paper Nielsen wrote, “The method
further demonstrates some of the difficulty in answering Erdős’ minimum modulus problem,
and leads the author to believe that it has negative solution.” Owens [17] refined Nielsen’s
approach and constructed a distinct covering system with minimum modulus 42.

In 1980, Erdős and Graham [6] investigated systems of congruences with all moduli in
[n, cn], where c > 0 is a fixed constant. They conjectured that for each c > 0 there exists n(c)
and ǫ(c) > 0, such that for each set of congruences with moduli n1 < · · · < nk all in [n, cn],
the density of the uncovered set is at least ǫ(c) provided n is sufficiently large, n ≥ n(c).

Erdős and Graham’s conjecture was proved in 2007 by Filaseta, Ford, Konyagin, Pomer-
ance, and Yu [8]. Building on the work of Filaseta et al., Hough [13] made a real breakthrough
and solved the minimum modulus problem. He showed that the minimum modulus in any
distinct covering system does not exceed 1016.

Erdős and Selfridge posed another famous problem, the odd covering problem. The prob-
lem is to determine whether there exists a distinct covering with all moduli odd integers.
Erdős was convinced [7] that such coverings exist and offered $25 for a proof that no such cov-
ering exists. Selfridge as recounted from the paper [9], was convinced that no such covering
exists and offered $2000 for the first example of an odd covering.

Work of Balister, Bolobas, Morris, Sahasrabudhe, and Tiba brings us the closest to
solving the odd covering problem. Balister et al. [1] show that if C is a distinct covering,
then either 2|L(C), or 9|L(C), or 15|L(C). The authors also show that the least modulus of a
distinct covering system does not exceed 616, 000, and that [2] there is no distinct covering
system in which all moduli are odd, squarefree integers.

So, in the last fifteen years several remarkable papers concerning coverings with large
minimum modulus appeared. In 1971, Krukenberg [14] wrote a Ph.D. dissertation where
he did an extensive study of covering systems with relatively small minimum modulus and
obtained a number of interesting results. Unfortunately, none of these results were published
in mathematical journals. We outline the main results of Krukenberg’s dissertation.

Krukenberg investigated the following problem. Suppose the least modulusm of a distinct
covering system is fixed. What is the least possible value of the largest modulus M of the
covering system? The covering system (1) with m = 2 and M = 12 has been well-known for
many years and Krukenberg constructed a distinct covering system with m = 3 and M = 36
and proved the following theorem.

2



Theorem 1 (Krukenberg).
(i) If the minimum modulus of a distinct covering system is 2, then its largest modulus

is at least 12;
(ii) If the minimum modulus of a distinct covering system is 3, then its largest modulus

is at least 36.

Krukenberg also found a distinct covering system with m = 4 and M = 60. Krukenberg
notes that the value of M = 60 is least possible when m = 4 and writes “but this result will
not be proved here.” When m = 5, Krukenberg constructed a distinct covering system with
M = 108 and conjectured that 108 is the least possible value of M in this case.

Krukenberg also provided a complete description of all distinct covering systems with
least common multiple of the moduli of the form L = 2a3b with a and b positive integers.

Theorem 2 (Krukenberg). Let C be a distinct covering system with least common multiple
of the moduli of the form L = 2a3b with a and b positive integers and least modulus m. Then

(i) m ≤ 4;
(ii) if m = 3, then a ≥ 3, and b ≥ 2;
(iii) if m = 3 and a = 3, then b ≥ 3;
(iv) there exist coverings with m = 3 for each L ∈ {2432, 2333};
(v) if m = 4, then a ≥ 5 and b ≥ 3;
(vi) there exist coverings with m = 4 for each L ∈ {2733, 2634, 2535} ;
(vii) there is no covering with m = 4 and L ∈ {2633, 2534}.

Krukenberg also constructed a distinct covering system where all moduli are squarefree
integers and the system does not use the modulus 3. The problem whether there exists
a distinct covering system with all moduli squarefree integers and least modulus 3, is still
open.

Finally, for m between 3 and 18 except for m = 7, Krukenberg constructed distinct
covering systems with least modulus m while trying to keep the least common multiple L
of all moduli small. Having L small is an advantage. It is much easier to understand the
structure of the covering system when L is small and to modify the covering system to
obtain a covering system with different properties. Below is a table comparing L in the
systems constructed by Churchhouse [4] to the systems constructed by Krukenberg when m
is between 3 and 9.

m L (Churchhouse) L (Krukenberg)
3 23 × 3× 5 23 × 3× 5
4 24 × 32 × 5 23 × 32 × 5
5 23 × 32 × 5× 7 25 × 32 × 5
6 25 × 32 × 5× 7 24 × 32 × 5× 7
7 25 × 33 × 5× 7
8 24 × 33 × 52 × 7 25 × 32 × 52 × 7
9 27 × 33 × 52 × 7 25 × 33 × 52 × 7
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In the table above there is no entry in the third column for m = 7 since Krukenberg
modified the covering with m = 6 to jump straight to one with m = 8.

As a result of the work of Krukenberg, we have an almost complete understanding of
distinct covering systems when m = 3 and m = 4. In this paper we tie a few loose ends left
when m = 3, 4 and lay the groundwork to extend Krukenberg’s work to larger m.

Filaseta, Yu, and the second author [10] showed that for each integer n ≥ 3 there is no
distinct covering system with all moduli in the interval [n, 6n]. We prove the result with a
larger constant.

Theorem 3. For each integer n ≥ 3, there is no distinct covering system with all moduli in
the interval [n, 8n].

In the fifty years since the Ph.D. thesis of Krukenberg, no proof of Krukenberg’s claim
that if m = 4, then M ≥ 60 has appeared. We supply a proof.

Theorem 4. If the minimum modulus in a distinct covering system is 4, then its largest
modulus is at least 60.

Recall that Churchhouse found a covering with m = 3 and L = 120 and Krukenberg
found one with m = 4 and L = 360. Can one replace the constants 120 and 360 by smaller
constants? We show that this is not the case.

Theorem 5.

(i) If the minimum modulus in a distinct covering is 3, then the least common multiple
of all the moduli is at least 120;

(ii) If the minimum modulus in a distinct covering is 4, then the least common multiple
of all the moduli is at least 360.

The paper is organized as follows. In Section 2, we introduce new notation which makes
analyzing coverings easier, refine an approach of Krukenberg on reducing the number of
congruences in a covering, and prove Theorem 3. In Section 3, we introduce another tool,
‘reduction of a covering’ and prove Theorem 4. In Section 4, we prove Theorem 5. Finally, in
Section 5, we formulate some open problems and indicate possible extensions of Krukenberg’s
work.

2 Reducing the number of congruences in a covering

system

First, we introduce a notation for congruences which is convenient when dealing with covering
systems.

Assume we are considering a covering with least common multiple of the moduli L =
pb11 · · · pbkk (unless specified otherwise, pk is the kth prime number). Consider the congruence
x ≡ r (mod n), where n > 1 has prime factorization n = pa11 · · · pakk . For the moment,
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we suppose al ≥ 1 for l = 1, . . . , k. Next, we find the remainders r1, r2, . . . , rk when r is
divided by pa11 , . . . , pakk respectively. Let d1 be the base p1-representation of r1 with its base
p1 digits written in reverse order. Define similarly, d2, . . . , dk. Then x ≡ r (mod n) is written
(d1| · · · | dk) in our notation.

For example, consider the congruence x ≡ 6 (mod 120). It is equivalent to the system of
congruences x ≡ 6 (mod 8), x ≡ 0 (mod 3), and x ≡ 1 (mod 5). Thus, for x ≡ 6 (mod 120)
we have 120 = 23 × 3 × 5, r1 = 6, r2 = 0, r3 = 1, and d1 = 011, d2 = 0, d3 = 1 (since 6 is
110 in base 2). So, x ≡ 6 (mod 120) is written (011| 0| 1).

A technical note on the above notation is that if we consider a congruence modulo
pa11 · · · pakk , we make sure that in the new notation we have a1 base p1 digits in the first
component, a2 base p2 digits in the second component, and so on. For example, x ≡
0 (mod 360) is (000| 00| 0), and not (0| 0| 0) (the congruence (0| 0| 0) is x ≡ 0 (mod 30)).

The reason we reverse the order of the digits is as follows. Imagine all nonnegative integers
organized as a tree with all integers at a vertex at the top, branching to two vertices, one
with even integers to the left labeled (0) in our notation, and one with odd integers to the
right labeled (1). Next, each of these two vertices branches into two vertices, so we get
vertices (00) and (01) on the left, and vertices (10) and (11) on the right. Having the base
2 digits in reverse order makes it faster to find our path in this tree.

Furthermore, if one or more of the exponents al in the factorization n = pa11 · · · pakk is
zero, then we put ∗ in the lth position of the notation for the congruence. For example,
x ≡ 1 (mod 10) is written (1| ∗ | 1).

Sometimes, it is possible to write several residue classes in a more compact way. For
example, suppose that at a certain stage of constructing a covering, the uncovered set consists
of the residue classes x ≡ 0 (mod 6) and x ≡ 4 (mod 6). In this case, we denote the uncovered
set by (0| 0, 1).

Finally, for brevity we truncate trailing ∗s. For example, if L = 60, the congruence
x ≡ 0 (mod 2) is written as (0) rather than (0| ∗ | ∗).

For a final example on this notation, let us analyze the distinct covering system given in
(1). The first two congruences are (1) and (01) leaving a congruence class modulo 4, namely
(00), uncovered. We split it into three classes modulo 12, namely (00| 0, 1, 2) which is our
way of writing the three congruences given by (00| 0), (00| 1), and (00| 2). We cover (00| 0)
by a congruence modulo 3, (∗| 0); we cover (00| 1) by a congruence modulo 6, (0| 1); finally,
we cover (00| 2) by a congruence modulo 12, (00| 2).

We refer to the representation of a residue class we just introduced as a coordinate
representation. This notation is in line with the geometric approach to covering systems of
Simpson and Zeilberger [18]. In the case when L is squarefree, congruences correspond to
points and hyperplanes in a certain k dimensional box.

If p is a prime, a is a nonnegative integer, and n is a positive integer, then pa||n means
that pa|n and pa+1 ∤ n.

Next, we define two operations on residue classes: splitting modulo p and reducing modulo
p.

Assume that p is a prime, a is a nonnegative integer, n is a positive integer, and pa||n.
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Splitting the residue class r (mod n) modulo p means that we replace it by p residue classes
modulo np (fibers) by consecutively appending the base-p digits 0, 1, . . . , p−1 in the position
corresponding to pa+1 in the coordinate representation of the residue class. We denote the
lth fiber described above by (r (mod n))p,l. For example, if we split (1| 1| 4) modulo 3, we
obtain the three fibers (1| 10, 11, 12| 4).

Similarly, assume that p is a prime, a and n are positive integers, and pa||n. Reducing
the residue class r (mod n) modulo p means that we delete the base-p digit in the position
corresponding to pa in the coordinate representation of the residue class. For example, if we
reduce (0| 21| 34) modulo 5 we get (0| 21| 3).

Our first tool is the following lemma which builds on ideas of Krukenberg [14].

Lemma 6. Let C be a covering system with least common multiple of the moduli L. Assume
pa||L for some prime p and a positive integer a. Denote by C0 the subset of congruences in
C whose moduli are not divisible by pa; also, let C1 be the subset of congruences in C whose
moduli are divisible by pa.

Next, for l = 0, . . . , p− 1, define Bl as the subset of congruences in C1 whose congruence
class has base-p digit corresponding to pa (in coordinate notation) equal to l.

Finally, let Dl be the set of congruences in Bl reduced modulo p.

Then one can replace the congruences in C1 by D =

p−1
⋂

l=0

Dl and we still have a covering;

that is, C0 ∪D is a covering system.

To clarify, what we do is sort the congruences with moduli divisible by pa by the base-p
digit corresponding to pa in bins Bl. Next, we delete the base-p digits corresponding to pa

from all congruences in the bins. Finally, we take the intersection of the union of the reduced
congruences in each bin. Note that the intersection of unions of sets can be written as a
union of intersections. Also, the intersection of the sets covered by several congruences is
either an empty set or the set covered by a single congruence with modulus the least common
multiple of the moduli of the congruences we intersect. The claim is that we can replace the
congruences in C1 by the congruences we obtain by the process described above.

For example, if we apply Lemma 6 with p = 3 to the covering in (1), the bins are
B0 = {(∗| 0)}, B1 = {(0| 1)}, and B2 = {(00| 2)}. Reducing modulo 3 we get D0 = {(∗| ∗)},
D1 = {(0| ∗)}, and D2 = {(00| ∗)}. So, D = {(00| ∗)}. We claim that replacing the
congruences with moduli 3, 6, and 12 by a single congruence modulo 4 still leaves us with a
covering. Indeed, (1), (01), and (00) is a covering.

Proof. Let R be the set uncovered by the congruences in C0. Note that the least common
multiple of the moduli in C0 divides L1 = L/p. Therefore, R can be expressed as a union of
residue classes modulo L1 and pa−1||L1.

Let r (mod L1) be one of the uncovered residue classes in R. We split it modulo p.
Consider the fiber (r (mod L1))p,0. It does not satisfy any of the congruences in C0 or in
bins B1, . . . , Bp−1. We say that a set of congruences C covers a certain set of integers S if
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every integer in S satisfies at least one congruence in C. Then, since C is a covering, the
congruences in bin B0 cover (r (mod L1))p,0.

Reducing modulo p we get that the congruences in bin D0 cover r (mod L1). Since this
is true for each residue class in R, we get that the congruences in bin D0 cover R.

Similarly, we get that the congruences in bin Dl cover R for each l = 1, . . . , p − 1.

Therefore, D =

p−1
⋂

l=0

Dl covers R, so we can replace C1 by D and still have a covering.

Corollary 7. Let C be a covering such that pa|L for some prime p and integer a ≥ 1. Suppose
that there are k congruences in C whose moduli are divisible by pa. Then, if k < p, we can
discard from C all congruences whose moduli are divisible by pa and still have a covering.

Proof. First, we justify that we need only consider the case a = νp(L), where νp(m) for
m ∈ N is the integer for which pνp(m)||m. Suppose we have established the result for the
case a = νp(L). With k as stated in the corollary, k is an upper bound on the number of
congruences in C with moduli divisible by pj for all j ∈ Z with a ≤ j ≤ νp(L). Then by
applying the corollary for a replaced by νp(L) to obtain a new covering and then applying
the corollary over and over again, one arrives at the covering C with all congruences having
moduli divisible by pa removed, proving the corollary. So, we suppose now a = νp(L).

Now, let a = νp(L). Since k < p, we see that there is an l ∈ {0, 1, . . . , p − 1} in
Lemma 6 such that Bl 6= ∅. Therefore, Dl and, hence, D is ∅. The corollary now follows
from Lemma 6.

Corollary 8 (Krukenberg). Let C be a distinct covering with all moduli in the interval [c, d].
If p is a prime and a is a positive integer such that pa(p + 1) > d, then we can discard all
congruences whose moduli are multiples of pa and still have a covering.

Proof. First, since pa(p + 1) < 2pa+1, there is at most one multiple of pa+1 in [c, d] so by
Corollary 7 we can discard the congruence with modulus pa+1 (if there is one). This leaves
us with at most p − 1 multiples of pa in [c, d], namely pa · 1, . . . , pa · (p − 1). By applying
Corollary 7 again, we can discard all moduli divisible by pa.

Corollary 9 (Krukenberg). Let C be a covering such that pa||L for some prime p and integer
a ≥ 1. Let C1 be the subset of C consisting of congruences whose moduli are divisible by pa.
Suppose |C1| = p and the moduli of the congruences in C1 are pam1, . . . , p

amp. Then
(i) one can replace the congruences in C1 by a single congruence with modulus

pa−1lcm(m1, . . . ,mp)

and the resulting set is still a covering.
(ii) if two of the above p congruences are in the same class modulo pa we can discard all

p congruences and the resulting set is still a covering.
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Proof. (i) Again, we use Lemma 6. Now, we split the p congruences into p bins Bl, with
l ∈ {0, 1, . . . , p− 1}, as in Lemma 6. The only case when D 6= ∅ is when there is exactly one
congruence in each bin and when the system of the p congruences reduced modulo p with
moduli pa−1m1, . . . , p

a−1mp has a solution. By a generalization of the Chinese remainder
theorem, if a finite system of congruences has a solution, the system of congruences is equiv-
alent to a single congruence whose modulus is the least common multiple of the congruences
in the finite system. Lemma 6 now implies (i).

(ii) Here we note that since a bin contains two or more congruences, at least one of the
remaining bins is empty, so D = ∅ in this case. Then the conclusion of Lemma 6 implies
(ii).

Next, we define a minimal covering system. A minimal covering system C is a covering
such that no proper subset of C is a covering system. Clearly, by discarding one by one
redundant congruences, after a finite number of steps, any finite covering system can be
reduced to a minimal covering system in at least one way.

Next, we use Lemma 6 to prove Theorem 3 under the assumption that Theorem 4 holds.

Proof of Theorem 3 assuming Theorem 4. Assume that for some integer m ≥ 3 there is a
distinct covering C with all moduli in the interval [m, 8m]. Let Cm be a minimal covering
which is a subset of C. Consider the least common multiple L of the moduli of the congruences
in Cm. By Corollary 7, if pa|L for some prime p and a positive integer a, then the interval
[m, 8m] contains at least p multiples of pa that are not multiples of pa+1. Since one of every p
consecutive multiples of pa is divisible by pa+1, we deduce that the interval [m, 8m] contains
at least p+ 1 multiples of pa.

Denote by M ⊆ [m, 8m] the set of moduli from the congruences in Cm. Let p ≥
√
7m+ 1

be a prime. The number of multiples of p in the interval [m, 8m] is

np :=

⌊

8m

p

⌋

−
⌊

m− 1

p

⌋

=
7m+ 1

p
−
{

8m

p

}

+

{

m− 1

p

}

,

where {x} denotes the fractional part of x. Since for each x, 0 ≤ {x} < 1, we get

np <
7m+ 1

p
+ 1 ≤

√
7m+ 1 + 1 ≤ p+ 1.

Thus, for each p ≥
√
7m+ 1, there are less than p+ 1 multiples of p in the interval [m, 8m].

Therefore, if n is a modulus of one of the congruences in Cm (that is n ∈ M), then all
the prime divisors of n are less than

√
7m+ 1. Since the density of integers covered by a

congruence modulo n is 1/n and Cm is a covering, we get

∑

m≤n≤8m
P (n)<

√
7m+1

1

n
≥

∑

n∈M

1

n
≥ 1, (2)
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where P (n) denotes the largest prime divisor of n.
Let

Sm =
∑

n∈M

1

n
and Tm =

∑

m≤n≤8m,

P (n)<
√
7m+1

1

n
.

We checked by direct computation and by using the inequality Tm−1 ≤ Tm + 1
m−1

that
Tm < 1 for all m ∈ [51, 616000]. Details on this computation are in Appendix A to the
paper. Since Balister et al. [1] showed that the minimum modulus of a distinct covering
system does not exceed 616000, Theorem 3 holds when m ≥ 51.

Also, since Krukenberg showed that there is no distinct covering system with moduli in
[3, 35], Theorem 3 holds when m = 3, and 4.

Furthermore, given Theorem 4, there is no distinct covering system with moduli in [4, 59];
therefore Theorem 3 holds when m = 5, 6, and 7.

There are nine occasions when m ∈ [8, 50] and Tm ≥ 1. They are shown below.

m 8 9 10
Tm 1.26537840136054 . . . 1.168553004535147 . . . 1.08327522675737 . . .

m 11 12 18
Tm 1.007525667674477 . . . 1.029053445452255 . . . 1.037818616878952 . . .

m 20 25 26
Tm 1.008475955572005 . . . 1.0628503734652 . . . 1.0276580657728 . . .

So far, we have used Corollary 7 only with a = 1. Next, we use Corollary 8 for all a ≥ 1.
Define

Lm =







































720 = 24 · 32 · 5, if m = 8;

5040 = 24 · 32 · 5 · 7, if m ∈ {9, 10, 11};
10080 = 25 · 32 · 5 · 7, if m = 12;

332640 = 25 · 33 · 5 · 7 · 11, if m = 18;

1663200 = 25 · 33 · 52 · 7 · 11, if m = 20;

43243200 = 26 · 33 · 52 · 7 · 11 · 13, if m ∈ {25, 26}.
Using Corollary 8, one checks directly that L divides Lm for each

m ∈ {8, 9, 10, 11, 12, 18, 20, 25, 26}.

Then for such m we have
∑

n∈M

1

n
≤

∑

d|Lm

m≤d≤8m

1

d
< 1, (3)

where the last inequality is done by a direct computation. As (3) contradicts the second
inequality in (2), the proof is complete.
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A natural question is whether one can replace the constant 8 in Theorem 3 by a larger
constant? If we try to prove Theorem 3 with a constant 9, the estimate of Tm for large m
is similar to what we did above. However, there are 97 values of m for which Tm > 1 and
dealing with these would make the proof of the theorem much longer. Moreover, dealing
with some of the smaller exceptions m would require more intricate approach than the one
in the proof of Theorem 3.

3 Reduction of a covering

Our second tool is reduction of a covering. We start with an example.
Consider the covering (1). Let a ∈ {0, 1, 2}. Since (1) is a covering, the residue class

3m+ a is covered by the congruences in (1).
Substituting 3m+a for x in each of the congruences of (1) and solving for m we get a new

covering system. When a = 0 we get m ≡ 1 (mod 2), m ≡ 2 (mod 4), m ≡ 0 (mod 1), and
two congruences have no solution; when a = 1 we obtain m ≡ 0 (mod 2), m ≡ 3 (mod 4),
m ≡ 1 (mod 2), and two congruences have no solution; finally, when a = 2 we have m ≡
1 (mod 2), m ≡ 0 (mod 4), m ≡ 2 (mod 4), and two congruences have no solution.

In general, let C be a covering system and let p be a prime. Let C0 be the subset of C
of congruences whose moduli are not divisible by p. Let M0 be the list of the moduli of
the congruences in C0. Similarly, let C1 be the subset of C of congruences whose moduli are
divisible by p, and let M1 be the list of the moduli of the congruences in C1.

To reduce the covering modulo p for each a ∈ {0, 1, . . . , p− 1} we substitute pm+ a for
x in each of the congruences of C and solve for m to get a new covering. This way we end
up with p coverings in which each modulus in M0 is used in all p coverings. However, if m
is a modulus in M1 it gets replaced by m/p and it is used in just one of the p coverings.

Indeed, if x ≡ r (mod n) is a congruence in C0 (so p ∤ n), substituting mp + a for x and
solving for m, we get m ≡ p−1(r − a) (mod n).

However, if x ≡ r (mod n) is a congruence in C1 (so p|n), substituting mp + a for x, we
get the congruence mp + a ≡ r (mod n). The last congruence has a solution if and only if
r ≡ a (mod p), in which case we get m ≡ (r − a)/p (mod n/p).

Next, we say that two congruences are in the same class modulo a positive integer q, if
the integers covered by the congruences all belong to one class modulo q. In other words, if
the two congruences are x ≡ r1 (mod n1) and x ≡ r2 (mod n2), we say that they are in the
same class modulo q if q|n1, q|n2, and r1 ≡ r2 (mod q).

Assume two congruences x ≡ r1 (mod n1) and x ≡ r2 (mod n2), both in C0 are in the same
class modulo q with p ∤ qn1n2. After reduction modulo p, we get mp ≡ (r1−a) (mod n1) and
mp ≡ (r2 − a) (mod n2). Suppose that the reduced congruences are m ≡ r′1 (mod n1) and
m ≡ r′2 (mod n2). Then mp ≡ r′1p ≡ (r1 − a) (mod n1) and mp ≡ r′2p ≡ (r2 − a) (mod n2).
Since q|n1, q|n2, we obtain r′1p ≡ r′2p (mod q). Furthermore, p ∤ q, so r′1 ≡ r′2 (mod q).
Therefore, the reduced congruences are still in the same class modulo q. Conversely, arguing
in the same way one gets that if the two congruences x ≡ r1 (mod n1) and x ≡ r2 (mod n2),
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both in C0 are not in the same class modulo q with p ∤ qn1n2, then after reduction, the
reduced congruences are not in the same class modulo q.

To summarize, we showed that the following lemma holds.

Lemma 10. Let C be a covering system and let p be a prime. Let C0 be the subset of C
of congruences whose moduli are not divisible by p. Let M0 be the list of the moduli of
the congruences in C0. Similarly, let C1 be the subset of C of congruences whose moduli are
divisible by p, and let M1 be the list of the moduli of the congruences in C1.

Reducing the covering C modulo p produces p coverings where
(i) each modulus in M0 is used in each of the p coverings but each modulus n in M1 is

replaced by n/p and is used in just one of the p coverings, and
(ii) if two congruences in C0 are in the same class modulo a positive integer q, then after

reduction they are in the same class modulo q in each of the p coverings; furthermore, if two
congruences in C0 are not in the same class modulo a positive integer q, then after reduction
they are not in the same class modulo q.

With the risk of stating the obvious and erring on the side of clarity, we state the following
lemma.

Lemma 11. Let r1 (mod m1) and r2 (mod m2) be two congruence (residue) classes with
m1 | m2. If there is an integer which belongs to both congruence classes, then every integer
in the congruence class r2 (mod m2) is in the congruence class r1 (mod m1).

Proof. Assume that there is an integer r in both r1 (mod m1) and r2 (mod m2). Then r ≡
r1 (modm1) and r ≡ r2 (modm2). Sincem1 | m2, r ≡ r2 (modm2) implies r ≡ r2 (modm1).
Thus, r1 ≡ r ≡ r2 (mod m1). Let m be an integer in the residue class r2 (mod m2), that
is, m ≡ r2 (mod m2). Then m ≡ r2 (mod m1) and since r1 ≡ r2 (mod m1), we obtain
m ≡ r1 (mod m1), so m is in the residue class r1 (mod m1). Therefore, if the residue classes
r1 (mod m1) and r2 (mod m2) intersect, then every element of r2 (mod m2) is an element of
r1 (mod m1).

We use the above lemma as follows. Suppose x ≡ r1 (mod m1) and x ≡ r2 (mod m2) are
two congruences in a certain distinct covering C andm1 | m2. If the sets of integers covered by
the two congruences intersect, then by Lemma 11, every integer covered by x ≡ r2 (mod m2)
is covered by x ≡ r1 (mod m1). Thus, we can discard the congruence x ≡ r2 (mod m2)
from the covering and still have a covering. Now, if we add a congruence to a covering, we
still have a covering, so we can change r2 to r′2 so that the two congruences do not intersect.
In fact, if the congruences in C with moduli which are proper divisors of m2 do not form a
covering, without loss of generality, we can assume that the congruence x ≡ r2 (mod m2)
does not intersect any of these congruences. For example, in a distinct covering, without
loss of generality, we can assume that a congruence modulo 16 does not cover any integers
covered by the congruences modulo 4 and 8.

Next, we prove that there is no distinct covering system with moduli in the interval [4, 59]
using a proof by contradiction. Our proof proceeds as follows. First, we use Corollary 8 and
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Corollary 9 to reduce the list of possible moduli in the covering to 17 integers. Next, we
reduce the covering modulo 3. We explore all ways in which it is possible to construct the
three coverings from Lemma 10 which satisfy condition (i) of the lemma. It turns out, this
can be done in two ways. In both cases, we obtain a contradiction by showing condition (ii)
of Lemma 10 with q = 5 is violated.

The reason the details of the proof of Theorem 4 are somewhat complicated is that using
moduli in [4, 59] one can get very close to a covering; more precisely, one can cover 179 out
of 180 classes modulo 180. In Appendix B we give an example of a distinct covering system
using congruences with moduli in [4, 56] and a congruence modulo 180.

Proof of Theorem 4. Assume that there exists a distinct covering C with all moduli in [4, 59].
Since every covering contains a subset which is a minimal covering, without loss of generality,
we can assume that C is a minimal covering. Let M be the set of the moduli of the
congruences in C. Also, let L be the least common multiple of the moduli in M.

By Corollary 8, if pa(p+ 1) > 59 for some prime p and a positive integer a, then pa does
not divide any modulus in M, so pa ∤ L. Since, 25 · 3 > 59, 33 · 4 > 59, 72 · 8 > 52 · 6 > 59,
and p(p+ 1) > 59 for p ≥ 11, we get L| (24 · 32 · 5 · 7). Therefore,

M ⊆ {4, 8, 16, 6, 12, 24, 48, 9, 18, 36, 5, 10, 20, 40, 15, 30, 45, 7, 14, 21, 28, 35, 42, 56}.
Without loss of generality, we can assume that

M = {4, 8, 16, 6, 12, 24, 48, 9, 18, 36, 5, 10, 20, 40, 15, 30, 45, 7, 14, 21, 28, 35, 42, 56}.
Indeed, for each modulus m is in the displayed set above which is not in M, we simply add
a congruence x ≡ 0 (mod m) to C.

When analyzing or constructing a covering using a given set of moduli, following Kruken-
berg [14], Nielsen [16], Balister et al. [2], we use the moduli in increasing order of arithmetic
complexity. For example, above we first list powers of 2, next, powers of 2 times 3, etc. and
we do not introduce moduli which are multiples of a not yet used prime p, until moduli with
all prime divisors less than p are used.

Next, by Corollary 9 we can replace the seven congruences in C with moduli divisible
by 7 by a single congruence modulo 120 = lcm(1, 2, 3, 4, 5, 6, 8) and still have a cover-
ing. Also, by Corollary 9 we can replace the two congruences with moduli 16, 48 by a
single congruence modulo 24 and still have a covering. Denote the resulting covering by
C ′ and denote the list of the moduli of the congruences in C ′ by M′. Then M′ is the list
[4, 8, 6, 12, 24, 24, 9, 18, 36, 5, 10, 20, 40, 15, 30, 120, 45], where [· · · ] is used to emphasize that
M′ is a list. Note that 24 appears twice in the last list meaning that we have two congruences
modulo 24 in C ′.

This concludes the first part of the proof.
Next, we reduce the covering C ′ modulo 3 and obtain three coverings, say C ′

0, C ′
1, C ′

2, whose
moduli areM′

0, M′
1, M′

2, respectively. By Lemma 10 the moduli inM0 = {4, 8, 5, 10, 20, 40}
can be used in all three coverings, and each modulus in

M1 = [2∗, 4∗, 8∗, 8∗, 3∗, 6∗, 12∗, 5∗, 10∗, 40∗, 15∗]
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can be used in just one of the coverings. We use * to the right of a modulus to indicate that
it can be used in at most one of the three coverings C ′

0, C ′
1, C ′

2.
After relabeling, we can assume that 2∗ is in M′

0.
Moreover, by Corollary 7, we can take congruences with moduli 3∗, 6∗, 12∗, 15∗ in only

one of C ′
0, C ′

1, C ′
2. (If we have just one or two congruences with moduli divisible by 3 in a

covering, we can discard them.)
It is relatively easy to see that we can take 3∗, 6∗, 12∗, 15∗ to be in M′

1 or M′
2. Indeed,

2∗, 4, 8 are already in M′
0. If 8∗ is also in M′

0, no additional congruences are needed to
construct the covering C ′

0. Note that the congruences with moduli 3∗, 6∗, 12∗ can cover a
congruence class modulo 4 (and some integers outside of it). If 8∗ is in M′

1 or M′
2 and

3∗, 6∗, 12∗, 15∗ are in M′
0, we can swap the congruences with moduli 3∗, 6∗, 12∗, 15∗ and the

congruence modulo 8∗ and we still have three coverings.
Thus, after relabeling we can assume that 3∗, 6∗, 12∗, 15∗ are in M′

1.
Next, we analyze how to allocate the moduli 5∗, 10∗, 40∗. We claim that M′

2 contains at
least one of the moduli 5∗, 10∗, 40∗. Otherwise,

M′
2 ⊆ [4, 8, 5, 10, 20, 40, 4∗, 8∗, 8∗].

Using Corollary 7 we discard any of 5, 10, 20, 40 from M′
2, leaving us with the impossible

task of constructing a covering using only congruences with moduli 4, 8, 4∗, 8∗, 8∗.
So, we allocated 5 out of 11 moduli in M1 and have partial information about three of

the remaining six moduli. It is possible to allocate the moduli 4∗, 8∗, 8∗, 5∗, 10∗, 40∗ and
to construct the three coverings. However, we will show that it cannot be done without
violating condition (ii) of Lemma 10. To this end, we consider two cases.

Case I: The congruences with moduli 20 and 40 in C ′ are not in the same class modulo 5.

By Lemma 10 the congruences with moduli 20 and 40 are not in the same class modulo
5 in C ′

0, C ′
1, and C ′

2, as well.
First, note that currently M′

0 contains {2∗, 4, 8, 5, 10, 20, 40} which is not sufficient to
construct a covering. (Discard 5, 10, 20, 40 using Corollary 7 and we are left only with moduli
2∗, 4, 8.) We assign 40∗ to M′

0, so that covering is possible with moduli from M′
0. All the

remaining five moduli 4∗, 8∗, 8∗, 5∗, 10∗ are divisors of 40∗, so the remaining two coverings
cannot benefit from us assigning a different modulus instead of 40 to M′

0.
Next, we concentrate on allocating 5∗, 10∗. We proved above that M′

2 contains at least
one of the moduli 5∗, 10∗ (since 40∗ is already allocated to M′

0). There are two subcases.

Subcase A: Exactly one of the moduli 5∗, 10∗ is in M′
2.

In this subcase,
M′

2 ⊆ [4, 8, 5, 10, 20, 40, 4∗, 8∗, 8∗, 5∗],
or

M′
2 ⊆ [4, 8, 5, 10, 20, 40, 4∗, 8∗, 8∗, 10∗].
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By Corollary 9 we can replace 5, 10, 20, 40, and one of 5∗ and 10∗ by a congruence modulo
8. Now, we need to construct a covering using moduli 4, 8, 8 and some of 4∗, 8∗, 8∗. The
covering C ′

2 can be completed only if all three moduli 4∗, 8∗, 8∗ are in M′
2.

Without loss of generality, we may assume we are left with

M′
1 = [4, 8, 5, 10, 20, 40, 3∗, 6∗, 12∗, 15∗, 5∗].

We finish this subcase by proving the following lemma.

Lemma 12. There is no covering with congruences whose moduli form the list

[4, 8, 3, 6, 12, 5, 5, 10, 20, 40, 15],

such that the congruence with modulus 20 and the congruence with modulus 40 are not in the
same class modulo 5.

Proof. We assume that there is such a covering and use Lemma 10 to reduce the covering
modulo 3. We get three coverings where each has moduli in the list [4, 8, 5, 5, 10, 20, 40] and
each of the moduli in [1∗, 2∗, 4∗, 5∗] is used in exactly one covering. Consider one of the three
coverings, say C ′′, which does not use the moduli 1∗ and 2∗. The moduli of C ′′ are in the
list [4, 4∗, 8, 5, 5, 5∗, 10, 20, 40]. Next, we apply Lemma 6 with p = 5 to the congruences with
moduli 5, 5, 5∗, 10, 20, 40. After reduction modulo 5 we need to place the reduced congruences
with moduli 1, 1, 1, 2, 4, 8 in five bins and take the intersection of the congruences in the five
bins. Consider a bin which does not contain a congruence with modulus one of 1, 1, 1, 2. This
bin contains the congruence modulo 4 or the congruence modulo 8 but not both, since 4 and
8 are not in the same bin (the congruences with moduli 20 and 40 are not in the same class
modulo 5). So, D is inside a residue class modulo 4. Thus, we can replace the congruences
with moduli 5, 5, 5∗, 10, 20, 40 by a single congruence modulo 4. This is a contradiction
because it requires building a covering with congruences with moduli 4, 4, 4, 8.

Subcase B: Both moduli 5∗, 10∗ are in M′
2.

Here
M′

2 ⊆ [4, 8, 5, 10, 20, 40, 4∗, 8∗, 8∗, 5∗, 10∗].
We apply Lemma 6 with p = 5 to the congruences with moduli 5, 10, 20, 40, 5∗, 10∗. Proceed-
ing word for word as in the proof of Lemma 12 we get that we can replace the congruences
with moduli 5, 10, 20, 40, 5∗, 10∗ by a single congruence modulo 4. Now, we need to construct
a covering using moduli 4, 8, 4 and some of the moduli 4∗, 8∗, 8∗. This can be done only if
4∗ and at least one 8∗ are in M′

2.
This leaves

M′
1 = [4, 8, 5, 10, 20, 40, 8∗, 3∗, 6∗, 12∗, 15∗].

Next, by using Corollary 9 we replace the congruences with moduli 5, 10, 20, 40, 15∗ by a sin-
gle congruence modulo 24. So, we need to construct a covering using moduli 4, 8, 8, 3, 6, 12, 24.
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Assume there is such a covering and reduce it modulo 3. We get three new coverings with
common moduli 4, 8, 8 and moduli to be used by just one of the three coverings: 1∗, 2∗, 4∗, 8∗.
Consider the covering which does not contain 1∗, 2∗. The moduli of the congruences of this
covering are at most 4, 8, 8, 4∗, 8∗, which is a contradiction.

This completes Case I.

Case II: The congruences with moduli 20 and 40 in C ′ are in the same class modulo 5.

First, we claim that M′
2 contains at least two of the moduli 5∗, 10∗, 40∗. Assume oth-

erwise. Then M′
2 contains at most the moduli 4, 8, 5, 10, 20, 40, 4∗, 8∗, 8∗ and one of the

moduli 5∗, 10∗, 40∗. By Corollary 9 we can discard from C ′
2 the congruences with moduli

5, 10, 20, 40 and the congruence with modulus 5∗, 10∗, or 40∗ since two of these congruences
are in the same class modulo 5. This leaves us at most with moduli 4, 8, 4∗, 8∗, 8∗ which are
not sufficient to construct a covering, proving the claim.

Thus, M′
0 contains at most one of the moduli 5∗, 10∗, 40∗. Allocating just one of

5∗, 10∗, 40∗ to M′
0 does not help construct C ′

0. For example, if 5∗ is in M′
0 and 10∗, 40∗ are

not in M′
0, again, using Corollary 9 we can discard from C ′

0 the congruences with moduli
5, 10, 20, 40, 5∗. To complete C ′

0 we need to assign to M′
0 one of the moduli 4∗, 8∗, 8∗. It is

possible to construct the covering C ′
0 by assigning to it one congruence modulo 8∗ and it is

the efficient way to do it. (The coverings C ′
1 and C ′

2 cannot benefit from swapping with C ′
0 a

congruence modulo 4 with a congruence modulo 8.) So, one modulus 8∗ is allocated to M′
0.

Next, we analyze how to split the moduli 5∗, 10∗, 40∗ among M′
1 and M′

2.
We claim that both moduli 5∗ and 10∗ are in M′

2. Assume otherwise. Then M′
2 contains

at most the moduli 4, 8, 5, 10, 20, 40, 4∗, 8∗, 40∗ and one of the moduli 5∗, 10∗. Apply Lemma
6 to the congruences in the above list which are multiples of 5. Note that in Case II, 4 and
8 are in the same bin and we have either 1 or 2 in a bin depending on whether 5∗ or 10∗ is
in M′

2. The only way that D is a nonempty set is when we have

|1|2|4, 8|1|8| or |1|2|4, 8|2|8|

in the five bins (here we use | as a separator between the bins and for brevity, instead of
writing ‘the congruence modulo 2 is in a certain bin’ we just write ‘2 is in the bin’). Thus,
we can replace the congruences with moduli which are multiples of 5 by a single congruence
modulo 8. Now, we need to construct a covering with moduli from the list 4, 8, 4∗, 8∗, 8
which is impossible.

Thus, we need to allocate both 5∗ and 10∗ to M′
2. There are two subcases depending on

how we allocate 40∗.

Subcase A: The modulus 40∗ is in M′
1.

In this subcase M′
2 contains the moduli 4, 8, 5, 10, 20, 40, 5∗, 10∗ and some of the moduli

4∗, 8∗. We apply Lemma 6 again to the congruences with moduli 5, 10, 20, 40, 5∗, 10∗. In
this case D is nonempty only if we have |1|2|4, 8|1|2| in the bins (again, 4 and 8 must be in
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the same bin). Therefore, we can replace the congruences with moduli 5, 10, 20, 40, 5∗, 10∗
by two congruences with moduli 4, 8 respectively. Now, we are left with moduli 4, 8, 4, 8
and some of 4∗, 8∗. So, we need to allocate 4∗ to M′

2. This leaves for M′
1 the mod-

uli 4, 8, 5, 10, 20, 40, 3∗, 6∗, 12∗, 15∗, 8∗, 40∗. We apply Lemma 6 again, this time to the
congruences with moduli 5, 10, 20, 40, 15∗, 40∗. Again, D is nonempty only if the content
of the bins is |1|2|4, 8|3|8| (in some order). Thus, we can replace the congruences with
moduli 5, 10, 20, 40, 15∗, 40∗ by a single congruence modulo 24. We are left with moduli
4, 8, 3∗, 6∗, 12∗, 24∗, 8∗. We already proved in Case 1, Subcase B that it is not possible to
construct a covering with moduli from the last list. The same proof works word for word
here, too, so we are done with this subcase.

Subcase B: The modulus 40∗ is in M′
2.

In this subcase, M′
2 contains the moduli 4, 8, 5, 10, 20, 40, 5∗, 10∗, 40∗ and some of the

moduli 4∗, 8∗. We apply Lemma 6 again to the congruences with moduli divisible by 5. The
congruences reduced modulo 5 have moduli 1, 2, 4, 8, 1, 2, 8 respectively. We need to place
seven congruences in five bins, so at least one bin contains only one congruence modulo
2, 4, or 8. Thus, one can replace the congruences with moduli 5, 10, 20, 40, 5∗, 10∗, 40∗ by a
single congruence modulo 2. This leaves M′

2 with moduli 2, 4, 8 and some of 4∗, 8∗, so we
allocate 8∗ to M′

2. Now, M′
1 = [4, 8, 5, 10, 20, 40, 3∗, 6∗, 12∗, 15∗, 4∗]. We apply Corollary

9 to the congruences with moduli 5, 10, 20, 40, 15∗. Since the congruences with moduli 20
and 40 in C ′ are in the same class modulo 5, we can discard the congruences with moduli
5, 10, 20, 40, 15∗. This leaves us the moduli 4, 8, 3, 6, 12, 4. We apply Corollary 9 again to
replace the congruences with moduli 3, 6, 12 by a single congruence modulo 4. Finally, we
are left with moduli 4, 8, 4, 4 which is not sufficient to construct a covering.

Having exhausted all cases, we obtain the proof of the theorem.

4 Covering systems with minimum least common mul-

tiple of the moduli

In this section we solve the problem of minimizing the least common multiple of the moduli
of a distinct covering system with a fixed minimum modulus m in the cases m = 3 and
m = 4.

First, we need a lemma which will help us reduce the number of cases we need to consider.
This lemma is Theorem 1 of Simpson and Zeilberger [18] with the extra condition that the
minimum modulus does not change.

Lemma 13. Let C be a distinct covering with minimum modulus m, and least common
multiple of the moduli L = L1q

α, where q is a prime, α ≥ 1, and q ∤ L1m. Suppose p
is a prime which does not divide L1, and m ≤ p < q. Then one can construct a distinct
covering C1 with the same minimum modulus m, and such that the least common multiple of
the moduli divides L1p

α.
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Proof. This proof relies on the coordinate notation for congruences we introduced. Note,
that the jth coordinate corresponds to the jth prime in the prime factorization of L. Up
to this point, everywhere the coordinate notation was used, the jth prime divisor of L was
simply the jth prime. The proof of this lemma and the example immediately after the lemma
are the only places where coordinate notation is used and the jth prime divisor of L may be
different from the jth prime.

Let q be the jth prime in the prime factorization of L. Write all congruences in C in
coordinate notation. We keep in C1 the congruences in which all base q digits in the jth
coordinate are ≤ p − 1 with no change and discard the remaining congruences. In the
congruences which survived, we interpret the jth component modulo p. We claim that the
congruences in C1 form a covering with least common multiple of the moduli L1p

α.
First, consider a residue class r1 modulo L1p

α. Write r1 in coordinate notation. Note
that all digits in the jth position do not exceed p − 1. The residue class r1 corresponds to
a residue class r modulo L1q

α where we have kept all digits in all positions the same (but
interpreted the digits in jth position modulo q). Since C is a covering, there is a congruence c
in C which covers the residue class r. The congruence c corresponds to a congruence c1 in C1,
where both congruences have the same digits in all positions in coordinate notation. Clearly,
c1 covers r1, so C1 is a covering. Moreover, C is a distinct covering, so by construction C1 is
a distinct covering (all we do is replace q by p in the prime factorization of the moduli and
discard some congruences).

Now, we need to show that the minimum modulus of C1 is still m. First, since q ∤ m the
congruence modulo m is not discarded. Next, since the new congruences we created all have
moduli which are multiples of p and p ≥ m we did not include in C1 any congruences with
moduli less than m.

For example, consider the covering C with L = 80 = 245, (1), (01), (001), (0001), (∗| 4),
(0| 3), (00| 2), (000| 1), (0000| 0). Proceeding as in the proof of Lemma 13 with q = 5 and
p = 3, we get the covering C1 with L = 48 = 243, (1), (01), (001), (0001), (00| 2), (000| 1),
(0000| 0).

Now, we turn to Theorem 5. Erdős constructed a covering C with least modulus m = 3.
Krukenberg [14] also constructed a covering C with least modulus m = 3, L(C) = 120,
without using the moduli 40 and 120. Here is a covering with the above properties (11),
(101), (∗| 2), (0| 1), (100| 1), (10| 0), (∗| ∗ | 4), (0| ∗ | 3), (∗| 0| 2), (0| 0| 1), (01| ∗ | 0),
(00| 0| 0). Next, we prove Theorem 5.

Proof of Theorem 5. First, we deal with part (i), the case m = 3. We need to show that if n
is less than 120 there is no distinct covering having as moduli only divisors of n which are at

least 3. Since the only n less than 120 for which
∑

d|n,d≥3

1

d
≥ 1 are 24, 36, 48, 60, 72, 84, 90, 96,

and 108, we only need to examine the numbers in this list.
We can eliminate some cases using the work of Krukenberg on coverings with least com-

mon multiple of the moduli of the form 2a3b, see Theorem 2. As proved by Krukenberg,
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there is no covering with m = 3, and L = 24, or 36, or 48, or 72, or 96, or 108. What is left
is to consider the cases when m = 3 and L = 60, or 84, or 90. By Lemma 13, if there is a
covering with m = 3 and L = 84, then there is a covering with m = 3 and L = 60.

To finish the proof, we need to show that there is no covering with m = 3 and L = 60 or
L = 90.

First, assume that there is a covering C with m = 3 and L = 60. Then the moduli of
the congruences are 4; 3, 6, 12; 5, 10, 20; 15, 30, and 60. Reduce the covering modulo 3.
We have to construct three coverings with shared moduli: 4, 5, 10, 20, and moduli used by
just one covering: 1∗, 2∗, 4∗, 5∗, 10∗, 20∗. Consider the covering, say C1 which does not
include 1∗, and includes at most one of 5∗, 10∗, and 20∗. Its moduli are 4, 5, 10, 20, some of
2∗, 4∗, and at most one of 5∗, 10∗, 20∗. We can discard from C1 all congruences with moduli
which are multiples of 5 (there at most four of them). Thus, C1 includes both congruences
with moduli 2∗ and 4∗. Let C2 be the covering including the congruence modulo 1∗. Then
the moduli of the congruences in C3 are at most 4, 5, 10, 20, 5∗, 10∗, 20∗. The sum of the
reciprocals of these moduli is at most .95 < 1, so a covering with m = 3 and L = 60 does
not exist.

Finally, assume that there is a covering C with m = 3 and L = 90. Then the moduli of
the congruences are 3, 6; 9, 18; 5, 10; 15, 30; 45, and 90. Reduce the covering modulo 5. We
obtain five coverings with shared moduli: 3, 6, 9, 18, and moduli used by just one covering:
1∗, 2∗, 3∗, 6∗, 9∗, 18∗. Consider the two coverings that do not contain any congruences
modulo 1∗, 2∗, or 3∗. Since the sum of the reciprocals of 3, 6, 9, 18 is 2/3, both coverings
need all three moduli 6∗, 9∗, 18∗. Thus, a covering with m = 3 and L = 90 does not exist
completing the proof of part (i) of the theorem.

Now, we turn to part (ii), the case m = 4.
Krukenberg [14] constructed a covering C with m = 4 and L(C) = 360. Here is a covering

which uses as moduli all divisors of 360 which are at least 4, except 360. It is (11), (101),
(0| 2), (100| 2), (01| 1), (∗| 02), (0| 01), (100| 01), (10| 00), (∗| ∗ | 4), (0| ∗ | 3), (100| ∗ | 3),
(00| ∗ | 2), (∗| 1| 0), (0| 1| 1), (10| 1| 1), (100| 1| 2), (∗| 00| 0), (0| 00| 1), (01| 00| 2).

We need to show that if n is less than 360 there is no covering using only distinct
divisors of n which are at least 4. Since the only positive integers n less than 360 for which
∑

d|n,d≥4

1

d
≥ 1 are 120, 168, 180, 240, 252, 280, 288, 300, and 336 we only need to examine these

values of n.
Since, 120|240, it is sufficient to show that 240 does not work.
Using Lemma 13 we can reduce the cases n = 168 = 23 · 3 · 7, n = 252 = 22 · 32 · 7, and

n = 336 = 24 · 3 · 7 to n = 120, n = 180, and n = 240 respectively.
As proved by Krukenberg, Theorem 2, n = 288 = 2532 does not work either.
Let us consider the case n = 280. Here and below, we assume as we may, all divisors of

n which are at least 4, appear as a modulus of some congruence. The sum of the reciprocals
of the divisors of 280 which are at least 4 is 1.0714 . . .. However, the congruences modulo 4,
5, and 7 cover a portion of the integers with density 1− 3

4
· 4
5
· 6
7
= 17

35
. Since 1

4
+ 1

5
+ 1

7
− 17

35
=
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.1071 . . ., there is no covering with m = 4 and L = 280.
Next, let n = 300. The sum of the reciprocals of the divisors of 300 which are at least

4 is 1.06. However, the intersection of the congruences modulo 4, 5, and 15 is at least
1
15

= .0666 . . .. Therefore, there is no covering with m = 4 and L = 280.
We are left with two remaining cases: n = 180 and n = 240. We consider each case in a

separate lemma.

Lemma 14. There is no distinct covering with m = 4 and L = 180.

Proof. Assume that C is a covering with moduli 4; 6, 12; 9, 18, 36; 5, 10, 20; 15, 30, 60; 45,
90, and 180. Let S be the set of congruences with moduli 4, 6, 12, 9, 18, 36. Note that the
density of the integers covered by congruences in S is at most 2

3
. Indeed, the sum of the

reciprocals of the moduli of congruences in S is 25
36

and the set of integers covered by the
congruences modulo 4 and modulo 9 intersect.

Next, reduce C modulo 5. We need to construct five coverings with common moduli 4,
6, 12, 9, 18, 36 and moduli used by just one covering: 1∗, 2∗, 4∗, 3∗, 6∗, 12∗, 9∗, 18∗, 36∗.

Consider the three coverings containing the congruences with moduli 1∗, 2∗, 3∗. One can
see that either the congruence modulo 2 and S do not form a covering or the congruence
modulo 3 and S do not form a covering. Otherwise, the set uncovered by S is inside a residue
class modulo 2 and inside a residue class modulo 3, that is, inside a residue class modulo 6.
This is not possible since the set uncovered by S has density at least 1/3.

Thus, the three coverings containing the congruences with moduli 1∗, 2∗, 3∗ contain at
least one more congruence. We can assume it has modulus 36∗ (all other ∗moduli are divisors
of 36). So, the fourth covering and the fifth covering need to split the moduli 4∗, 6∗, 12∗, 9∗,
18∗. Now, 1

4
+ 1

6
+ 1

12
+ 1

9
+ 1

18
= 2

3
. Recall that the set uncovered by S has density at least 1/3.

Thus, the only possible way to construct the remaining two coverings is if one covering uses
moduli 4∗ and 12∗ and the other covering uses 6∗, 9∗, 18∗. Therefore, we need to be able to
construct a covering using the moduli in the list [4, 4, 6, 12, 12, 9, 18, 36]. By Corollary 9 we
can replace the congruences with moduli 9, 18, 36 by a single congruence modulo 12. The
moduli of the congruences of the resulting covering are in the list [4, 4, 6, 12, 12, 12]. Since
the sum of the reciprocals of the elements of the list [4, 4, 6, 12, 12, 12] is less that one, it is
not possible to construct at least one of the five coverings we needed to construct.

The proof of the next lemma is somewhat complicated. However, we expect that the
methods used in the proof of the lemma will be useful when analyzing coverings with least
common multiple of the moduli of the form 2a3b5c.

Lemma 15. There is no distinct covering with m = 4 and L = 240.

Proof. In the proof of this lemma we use the notation (n, rn) to denote the congruence
x ≡ rn (mod n).

Assume that there is a covering

C = {(n, rn) | n ∈ {4, 8, 16, 6, 12, 24, 48, 5, 10, 20, 40, 80, 15, 30, 60, 120, 240}}.
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We introduce notation for some of the parts of C. Let

C1 = {(n, rn) | n ∈ {4, 8, 16}}, C3 = {(n, rn) | n ∈ {6, 12, 24, 48}},

C5 = {(n, rn) | n ∈ {10, 20, 40, 80}}, and C15 = {(n, rn) | n ∈ {15, 30, 60, 120, 240}}.
Also, let R be the set of the 9 integers in [0, 15] representing the 9 residue classes modulo

16 which are not covered by the congruences in C1. Note that by Lemma 11, without loss of
generality, we can assume that the congruences modulo 4, 8, and 16 do not intersect.

Let R0 = R ∩ {x ≡ 0 (mod 2)} and R1 = R ∩ {x ≡ 1 (mod 2)}.
For each r ∈ R denote by a3(r) the number of residue classes modulo 48 of the form

x ≡ r (mod 16), x ≡ a (mod 3), which are covered by C3. One way to visualize this is that
the residue class (r (mod 16)) splits into three fibers modulo 48. The quantity a3(r) counts
how many of these fibers are covered by C3.

Similarly, for each r ∈ R denote by a5(r) the number of residue classes modulo 80 of the
form x ≡ r (mod 16), x ≡ b (mod 5), which are covered by C5.

Then the number of residue classes modulo 240 which are not covered by any of the
congruences in C1, C3, C5, nor by the congruence (5, r5) is at least

A :=
∑

r∈R
(3− a3(r))(4− a5(r)). (4)

Note that the congruences in C15 can cover at most 5 residue classes modulo 240 which
are in the residue class (r (mod 16)). Thus, for each r ∈ R we have (3−a3(r))(4−a5(r)) ≤ 5.
Clearly, (3− a3(r))(4− a5(r)) 6= 5.

So, for each r ∈ R we have

(3− a3(r))(4− a5(r)) ≤ 4. (5)

Furthermore, for each r ∈ R,

if a3(r)a5(r) 6= 0, then a3(r)a5(r) ≥ 2. (6)

We give one more observation. Suppose r1 ∈ R, r2 ∈ R, and r1 6≡ r2 (mod 2). Then the
number of residue classes modulo 240 which are either ≡ r1 (mod 16) or ≡ r2 (mod 16) and
can be covered by C15 is at most 6. Indeed, the congruence modulo 15 can cover at most
two such classes, and each of (30, r30), (60, r60), (120, r120), and (240, r240) can cover at most
one. So, in this case

(3− a3(r1))(4− a5(r1)) + (3− a3(r2))(4− a5(r2)) ≤ 6. (7)

We can rewrite (4) as

A =
∑

r∈R
(12− 4a3(r)− 3a5(r) + a3(r)a5(r)) = 108− 4S3 − 3S5 +O, (8)
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where
S3 =

∑

r∈R
a3(r), S5 =

∑

r∈R
a5(r) , and O =

∑

r∈R
a3(r)a5(r).

The quantity O measures the amount of overlap between C3 and C5. Ideally, we want
O to be small. If possible, cover one set of r’s by C3 and a different set of r’s by C5, while
S3 and S5 are large, that is, cover a lot without much overlap. At least in the case of this
lemma, this proves impossible.

Next, we get bounds for S3 and S5.
For n ∈ {2, 4, 6, 8, 16} define

Mn = max
0≤j<n

|R ∩ {x ≡ j (mod n)}|.

Here Mn is the size of the largest portion of R in a residue class modulo n.
Then the congruence (6, r6) can contribute at most M2 to S3, the congruence (12, r12)

can contribute at most M4, etc.
Thus, S3 ≤ M2 +M4 +M8 +M16. Similarly, S5 ≤ M2 +M4 +M8 +M16. Define

D3 = (M2 +M4 +M8 +M16)− S3 and D5 = (M2 +M4 +M8 +M16)− S5.

In a certain sense, D3 and D5 measure the difference between the largest amount we
could possibly cover, and what we cover in reality with C3 and C5, respectively. For example,
if R consists of 1 class r such that r ≡ 0 (mod 2), and 8 classes r1 such that r1 ≡ 1 (mod 2),
and if we have a congruence (6, r6) with r6 ≡ 0 (mod 2), then D3 ≥ 7 (we could have covered
8 residue classes and covered just 1 instead).

Also, the number of residue classes modulo 240 which can be covered by C15 and are not
covered by C2 does not exceed 9 +M2 +M4 +M8 +M16. Therefore, if C is a covering, then
A ≤ 9 +M2 +M4 +M8 +M16. Recall that A is the number of residue classes modulo 240
which are not covered by any of the congruences in C1, C3, C5, nor by the congruence (5, r5).
These classes need to be covered by C15.

Define
D15 = 9 + (M2 +M4 +M8 +M16)− A.

Since by assumption C is a covering, D15 ≥ 0.
Using (8), we get

9 + 8(M2 +M4 +M8 +M16) ≥ 108 + 4D3 + 3D5 +D15 +O.

Since M4 ≤ 4, M8 ≤ 2, and M16 ≤ 1, we obtain

8M2 ≥ 43 + 4D3 + 3D5 +D15 +O. (9)

Next, we consider several cases, depending on the structure of C1. Without loss of
generality, we can assume r4 = 0. Since the set of all integers is invariant to translation by

21



an integer, if {(n, rn)|n ∈ L}, where L is a list of moduli, is a covering, then for any integer
a, {(n, rn + a)|n ∈ L} is also a covering.

Case I. r8 ≡ r16 ≡ 1 (mod 2).

In this case, |R0| = 4, |R1| = 5, and M2 = 5.
From (9) we get 0 ≥ 3 + 4D3 + 3D5 + D15 + O. Since D3 ≥ 0, D5 ≥ 0, D15 ≥ 0, and

O ≥ 0, we get a contradiction. There is no covering in Case I.

Case II. r8 ≡ 1 (mod 2) and r16 ≡ 0 (mod 2).

In this case, |R0| = 3, |R1| = 6, and M2 = 6.
From (9) we get 5 ≥ 4D3 + 3D5 + D15 + O. Thus, D3 ≤ 1 and D5 ≤ 1. Hence,

r6 ≡ 1 (mod 2) and r10 ≡ 1 (mod 2). We obtain that a3(r) ≥ 1 and a5(r) ≥ 1 for all r ∈ R1,
so O ≥ 6, a contradiction in this case, too.

Case III. r8 ≡ 0 (mod 2) and r16 ≡ 1 (mod 2).

In this case, |R0| = 2, |R1| = 7, and M2 = 7.
From (9) we get 13 ≥ 4D3 + 3D5 + D15 + O. Therefore D3 ≤ 3 and D5 ≤ 4. Again,

r6 ≡ r10 ≡ 1 (mod 2). So, a3(r) ≥ 1 and a5(r) ≥ 1 for all r ∈ R1. By (6), a3(r)a5(r) ≥ 2 for
all r ∈ R1. Therefore, O ≥ 14, so a covering does not exist in this case, too.

Case IV. r8 ≡ r16 ≡ 0 (mod 2).

Here, |R0| = 1, |R1| = 8, and M2 = 8. So, R0 = {r0} where r0 is an even integer in
[0, 15].

In this case, we can cover a lot with C3 and C5 but the overlap between them is too big
and again we fall short of constructing a covering.

First, note that
∑

r∈R1

a3(r) ≤ 8 + 4 + 2 + 1 = 15. Therefore, there exists r1 ∈ R1 such

that a3(r1) ≤ 1. By (5), we get a5(r1) ≥ 2. Thus, r10 ≡ r20 ≡ 1 (mod 2) (if any of the
congruences in C5 are used to cover R0, they should be the ones with the largest moduli since
|R0| = 1).

Since, r10 ≡ r20 ≡ 1 (mod 2), we have a5(r0) ≤ 2, and by (5) we get a3(r0) ≥ 1. Therefore,
r48 ≡ 0 (mod 2).

Similarly, as above,
∑

r∈R1

a5(r) ≤ 15. Therefore, there exists r′1 ∈ R1 such that a5(r
′
1) ≤ 1.

By (5), we get a3(r
′
1) ≥ 2. Thus, r6 ≡ r12 ≡ 1 (mod 2). So, a3(r0) ≤ 2. We proved above

that a3(r0) ≥ 1, so a3(r0) is either 1 or 2.
Assume that a3(r0) = 1. Then (5) implies a5(r0) ≥ 2, so r40 ≡ r80 ≡ 0 (mod 5). Hence,

a5(r) ≤ 2 for all r ∈ R1. This implies (3 − a3(r1))(4 − a5(r1)) ≥ 4. Also, (3 − a3(r0))(4 −
a5(r0)) ≥ 4. Thus,

(3− a3(r1))(4− a5(r1)) + (3− a3(r0))(4− a5(r0)) ≥ 8,
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which contradicts (7).
So, a3(r0) = 2, and r24 ≡ r48 ≡ 0 (mod 2).
Next, let R′

1 = {r ∈ R1 | r 6≡ r12 (mod 4)}. For all r ∈ R′
1 we have a3(r) = 1.

Also,
∑

r∈R′

1

a5(r) ≤ 4 + 4 + 2 + 1 = 11,

so there exists r∗1 ∈ R′
1 with a5(r

∗
1) ≤ 2.

Then (3 − a3(r
∗
1))(4 − a5(r

∗
1)) ≥ 4. By (7) we get ((3 − a3(r0))(4 − a5(r0)) ≤ 2. Thus,

a5(r0) = 2, and r40 ≡ r80 ≡ 0 (mod 2).
We have allocated all congruences in C3 and C5 to R0 and R1 (both R0 and R1 get two

congruences from C3 and two from C5). Since M2 = 8, (9) becomes

21 ≥ 4D3 + 3D5 +D15 +O. (10)

However, D3 ≥ 1, since (24, r24) covers just one class modulo 48, and D5 ≥ 1 since we
did not use (40, r40) in the most efficient way either.

Also, a3(r)a5(r) 6= 0 for all r ∈ R, so by (6) a3(r)a5(r) ≥ 2 for all r ∈ R, and O ≥ 18.
Substituting in (10) we get 21 ≥ 4 + 3 + 18, a contradiction.

We just considered the last remaining case, and this concludes the proof of Theorem 5.

5 Open problems and further work

Recall that Krukenberg constructed a distinct covering system with least modulus 5 and
largest modulus 108. He also conjectured that one cannot replace 108 by a smaller constant.

Problem 1. Prove or disprove that if the least modulus of a distinct covering system is 5,
then its largest modulus is at least 108.

We can show that if the least modulus of a distinct covering system is 5, then its largest
modulus is at least 84. However, the result is too weak and the proof too long, to be included
in this paper.

Krukenberg also provided a description of the covering systems with least common mul-
tiple of the moduli of the form 2a3b, see Theorem 2.

Problem 2. Describe the distinct covering systems with least common multiple of the
moduli of the form 2a3b5c where a, b, and c are positive integers.

Krukenberg [14] already provided such description in the case when L = 2a3b5c and one
of the exponents a, b, and c is zero. Using Krukenberg’s results and the results of this paper
one can find such a description when a ≥ b ≥ c ≥ 1 and the minimum modulus m = 2, 3, 4
with one exception. Extra work is needed to show that there is no distinct covering system
with m = 4 and L = 900 (our proof of this is too long and technical to be included here).
The more interesting case is when m ≥ 5.
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Furthermore, Krukenberg constructed a distinct covering system with m = 5 and L =
1440.

Problem 3. Prove or disprove that if the least modulus of a distinct covering system is 5,
then the least common multiple of its moduli is at least 1440.

Krukenberg also constructed a distinct covering system not using the modulus 3, with all
moduli squarefree integers. It is not known whether there exists a distinct covering system
with squarefree moduli and least modulus 3.

Problem 4. Prove or disprove that the least modulus of any distinct covering system with
squarefree moduli is 2.

Showing that the least modulus of any distinct covering system with squarefree moduli
is 2 will lead to a complete solution of the minimum modulus problem in the squarefree case.

Problem 5. Find the largest integer c such that there exists a finite set of congruences with
distinct moduli with the property that every integer satisfies at least c of the congruences.
In other words, what is the largest number of times we can cover the integers by a finite
system of congruences with distinct positive moduli?

For a positive integer n let c(n) be the largest number of times we can cover all integers
using congruences with moduli 1, 2, . . . , n respectively. Clearly, c(1) = 1. Also, c(n) ≤
c(n + 1) for all positive integers n (having more congruences allows us to cover more).
Furthermore, c(n + 1) ≤ c(n) + 1 for all n. Indeed, if a certain integer is covered c(n)
times by certain congruences with moduli 1, . . . , n, it can be covered at most once more by
a congruence with modulus n+ 1.

Recall that by Theorem 1 there is no distinct covering with moduli in the interval [2, 11],
and there is a distinct covering with moduli 2, 3, 4, 6, 12. Therefore, c(2) = · · · = c(11) = 1,
and c(12) = 2. Moreover, Krukenberg constructed a distinct covering with least modulus 13
and largest modulus 52562109600. Therefore, c(52562109600) ≥ 3.

Moreover, the sequence (c(n))∞n=1 is bounded. Recall that Balister et al. [1] showed that
the least modulus of any distinct covering system does not exceed 616000. If we consider a
system of congruences with moduli 1, 2, . . . , n respectively, where n > 616000, there is an
integer m which is not covered by any of the congruences with moduli 616001, 616002, . . . , n.
Even if m is covered by each of the congruences with moduli 1, . . . , 616000, then m is covered
616000 times. Thus, c(n) ≤ 616000 for all n.

Thus, c = lim
n→∞

c(n) exists and Problem 5 is to find c.

Problem 5 was considered by Harrington [12] who constructed three distinct covering
systems with nonintersecting sets of moduli, thus establishing c ≥ 4.

We have a heuristic based on several assumptions showing that c is either 4 or 5.
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A Some details on the computations in the proof of

Theorem 3

Here we provide some details on how we showed that Tm < 1 for all m in [51, 616000]. Using
the methods below, we only needed to calculate 19 values of Tm in the interval [67, 616000].

Recall that Tm =
∑

m≤n≤8m
P (n)<

√
7m+1

1

n
, where P (n) denotes the largest prime divisor of n.

First, we computed and stored P (n) for all n from 2 to 8 · 616000 = 4928000.
Next note that Tm−1 ≤ Tm + am−1, where we define am−1 to be 1

m−1
when P (m − 1) <√

7m− 6, and we define am−1 to be 0 when P (m− 1) ≥
√
7m− 6.

Indeed,

Tm−1 =
∑

m−1≤n≤8m−8
P (n)<

√
7m−6

1

n

= am−1 +
∑

m≤n≤8m−8
P (n)<

√
7m−6

1

n

≤ am−1 +
∑

m≤n≤8m
P (n)<

√
7m+1

1

n
.

So, we computed T616000 = 0.6886632306756396 . . ., and then using the inequality Tm−1 ≤
Tm+am−1 we get that T615999 ≤ T616000+

1
615999

. Iterating this method, we backtracked down
to the last value of m where the sum is less than 1, which got us to 286068. Thus, because

615999
∑

m=286068

am + T616000 = 0.9999973928615169 . . . < 1,

we get that Tm < 1 for all m ∈ [286068, 616000]. Next, we computed

T286067 = 0.6897176227760186 . . . ,

and backtracked again; we got

286066
∑

m=134747

am + T286067 = 0.9999955266833742 . . . < 1.
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Through these jumps, we confirmed that Tm < 1 for each m in the intervals

[286068, 616000], [134747, 286067], [65512, 134746], [33049, 65511], [17044, 33048],

[8837, 17043], [4807, 8836], [2739, 4806], [1597, 2738], [976, 1596], [610, 975],

[385, 609], [254, 384], [176, 253], [126, 175], [96, 125], [77, 95], [67, 76].

We had to compute 19 values of Tm to get to m = 67. We then computed directly all
values of Tm for m ∈ [3, 66].

B Construction of a distinct covering

Here we provide an example of a distinct covering system with a congruence modulo 180
and the remaining moduli in [4, 56]. The moduli we use are

4, 8, 16; 6, 12, 24, 48; 9, 18, 36; 5, 10, 20, 40; 15, 30; 45, 180; 7, 14, 21, 28, 35, 42, 56,

where the semicolons are used to separate the moduli involved in different stages of our
argument below.

The congruences modulo 4, 8, 16 which we use are (11), (101), and (1001). The uncovered
set after the first stage consists of a residue class modulo 2, (0), and a residue class modulo
16, (1000).

Splitting modulo 3, the uncovered set is (0| 0, 1, 2) and (1000| 0, 1, 2).
Next, we use the congruences modulo 12, 24, 48 to cover (1000). The congruences modulo

12, 24, 48 given by (10| 0), (100| 1), and (1000| 2) accomplish this.
We use the congruence modulo 6 given by (0| 2). After the second stage, the uncovered

set is (0| 0, 1).
We use the congruences modulo 9, 18, 36 to attack the residue class (0| 1), which is the

same as (0| 10, 11, 12). We take the congruences modulo 9, 18, 36 to be (∗|12), (0| 11), and
(01| 10). The uncovered set after the third stage is (0| 0) and (00| 10).

We split the uncovered set modulo 5, to get (0| 0| 0, 1, 2, 3, 4) and (00| 10| 0, 1, 2, 3, 4).
The congruences modulo 5, 10, and 20 are (∗| ∗ | 4), (0| ∗ | 3), and (00| ∗ | 2). Now,
the uncovered set is (0| 0| 0, 1), (01| 0| 2), and (00| 10| 0, 1). The congruence modulo 40 is
(011| ∗ | 2). The congruences modulo 15 and 30 are (∗| 0| 1) and (0| 0| 0), and they cover
(0| 0| 0, 1). We are left with the uncovered set (010| 0| 2) and (00| 10| 0, 1). We use the
congruences modulo 45 and 180, (∗| 10| 1) and (00| 10| 0) to cover (00| 10| 0, 1). We are
left with the single uncovered residue class (010| 0| 2) which we cover with the last seven
congruences (∗| ∗ | ∗ | 6), (0| ∗ | ∗ | 5), (∗| 0| ∗ | 4), (01| ∗ | ∗ | 3), (∗| ∗ | 2| 2), (0| 0| ∗ | 1),
and (010| ∗ | ∗ | 0).
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