
23 11

Article 22.1.5
Journal of Integer Sequences, Vol. 25 (2022),2

3

6

1

47

Partial Franel Sums

R. Tomás
CERN

CH 1211 Geneva 23
Switzerland

rogelio.tomas@cern.ch

Abstract

We derive analytical expressions for the position of irreducible fractions in the Farey
sequence FN of order N for a particular choice of N , obtaining an asymptotic behavior
with a lower error bound than in previous results when these fractions are in the vicinity
of 0/1, 1/2, or 1/1.

Franel’s famous formulation of Riemann’s hypothesis uses the summation of dis-
tances between irreducible fractions and evenly spaced points in [0, 1]. We define
“partial Franel sum” as a summation of these distances over a subset of fractions
in FN and we demonstrate that the partial Franel sum in the range [0, i/N ], with
N = lcm(1, 2, . . . , i), grows strictly slower than O(logN).

1 Introduction and statement of the main results

The Farey sequence FN of order N is an ascending sequence of irreducible fractions between
0 and 1 whose denominators do not exceed N [1]. Riemann’s hypothesis implies that the
irreducible fractions tend to be regularly distributed in [0, 1]. A formulation of this statement
follows [2, 3],
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where FN(n) is the n
th irreducible fraction in FN . Here we define the partial Franel sum in

the range [a1/b1, a2/b2] as
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where IN (a/b) is the position that a/b occupies in FN . Dress [4] established the upper
bound of the distance |FN(n)− n/|FN || to be 1/N and to be located at FN(2) = 1/N . This
motivates the study of partial Franel sums in ranges including 1/N . Furthermore, another
equivalent formulation of the Riemann’s hypothesis involving sums over irreducible fractions
in the range [0, 1/4] follows [5],

IN (1/4)
∑

n=1

(

FN(n)−
IN(1/4)

2|FN |

)

= O(N
1
2
+ǫ) ,

showing again the relevance of the vicinity of 1/N .
Guthery [6, Chapter 6] attempted to find a closed expression for the ith fraction in FN end-

ing in an “analytical hole”. This paper achieves this goal for fractions in the range [0, i/N ],
with N = lcm(1, 2, . . . , i) as explained in the following. Note that N = lcm(1, 2, . . . , i) =
eψ(i), where ψ(i) is the second Chebyshev function that fulfills the property ψ(i) = (1+o(1))i,
and hence i = (1 + o(1)) logN .

Let the subsequence F
a1/b1, a2/b2
N of FN , contain all the fractions of FN in [a1/b1, a2/b2].

The cardinality of F
a1/b1, a2/b2
N is well known to be [7]
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∣

∣
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N2 +O(N logN) .

As IN (a2/b2) is the position that a2/b2 occupies in FN , it follows that

IN

(

a2
b2

)

=
∣

∣

∣
F

0/1, a2/b2
N

∣

∣

∣
=

3

π2

a2
b2
N2 +O(N logN) . (1)

A first result of this paper is the derivation of an analytical expression for IN (1/q) where
N = lcm(1, 2, . . . , i) and N/i ≤ q ≤ N in Theorem 3 as

IN

(

1

q

)

= 2 +N
i
∑

j=1

ϕ(j)

j
− qΦ(i) ,

where ϕ(i) is the totient function and Φ(i) is the summatory totient function defined as

Φ(i) =
i
∑

j=1

ϕ(j) .

Theorem 3 also includes a more general expression giving the location of other fractions
in FN . To reach this relation a series of bijections are established in Theorem 1 between
Fi′ , with i

′ ≤ i, and subsequences of FN covering all elements in F
0/1, 1/q
N . Thanks to these

bijections the cardinality of F
0/1, 1/q
N can be expressed as function of all |Fi′ | as shown in

Corollary 2. These bijections are illustrated in Table 1 for N = lcm(1, 2, . . . , 5) = 60. This
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result is used to derive the equivalent asymptotic estimate of (1) with a smaller residual
error in Corollary 4 as follows:

IN

(

1

q

)

=
3

π2
q

(

N2

q2
−

{

N

q

}2
)

+O

(

NδA

(⌊

N

q

⌋))

,

where {x} = x− ⌊x⌋ and δA(x) is a decreasing function defined as

δA(x) = exp

(

−A
log0.6 x

(log log x)0.2

)

, (2)

where A > 0.
As the final result of this work Theorem 5 establishes that the partial Franel sum in the

range [0, 1/(N/i)] is given by

P

(

0

1
,

1

N/i

)

= O(log(N)δB(logN)) ,

with 0 < B < A and again N = lcm(1, 2, . . . , i). Therefore, this partial Franel sum grows
strictly slower than O(logN). If we would assume the Riemann hypothesis and a uniform
distribution density of Farey elements in [0, 1], we would expect this partial Franel sum to
decrease as O(log(N)/N1/2−ǫ). Theorem 5 includes equivalent results for partial Franel sums
in ranges including 1/2 or 1/1. The generalization to compute partial Franel sums in the
vicinity of any irreducible fraction is explored. Earlier results of this work were applied to
resonance diagrams [8, 9].

The following definitions are used in the rest of the paper. We say that two elements of
a Farey sequence, a1/b1 and a2/b2, form a Farey pair if |a1b2 − a2b1| = 1. In this report we
exceptionally allow 0/1 and 1/0 to form a Farey pair even if 1/0 is not a proper fraction.
The mediant of a Farey pair, a1/b1 and a2/b2, is given by

a1 + a2
b1 + b2

which is an irreducible fraction existing between a1/b1 and a2/b2 and forms two Farey pairs
with a1/b1 and a2/b2.

2 Results

Theorem 1. Let a1/b1 and a2/b2 be a Farey pair with b1 > b2. Let N be multiple of b1i(i+1)
with i being a natural number such 0 < i < N . Let q be an integer fulfilling

N

b1(i+ 1)
< q ≤

N

b1i
and b1q + b2 ≤ N .
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Let F ′
i be a subsequence of Fi defined as

F ′
i =

{

h

k
:
h

k
∈ Fi , k(b1q + b2)− b1h ≤ N

}

,

noting that for a1/b1 = 0/1 and a2/b2 = 1/0, F ′
i = Fi.

There is a bijective map M between F ′
i and F

a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N , given by

M : F ′
i → F

a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N ,
h

k
7→

k(a1q + a2)− a1h

k(b1q + b2)− b1h
.

M−1 : F
a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N → F ′
i ,

u

l
7→

q(b1u− la1) + b2u− la2
b1u− la1

.

The bijective map is order-preserving when a2/b2 > a1/b1 and order-inverting when a2/b2 <
a1/b1.

Proof. We first demonstrate that M is injective. The fractions a1q+a2
b1q+b2

and a1(q−1)+a2
b1(q−1)+b2

form a

Farey pair since a1/b1 and a2/b2 form a Farey pair:

|(a1q + a2)(b1(q − 1) + b2)− (b1q + b2)(a1(q − 1) + a2)| = |b2a1 − a2b1| = 1 .

Let u/l be the image of h/k under M ,

u

l
=
k(a1q + a2)− a1h

k(b1q + b2)− b1h
.

By virtue of this expression u/l is obtained by applying the mediant operation successively

between a1q+a2
b1q+b2

and a1(q−1)+a2
b1(q−1)+b2

in the same fashion as h/k is obtained by applying the mediant

between 0/1 and 1/1, meaning

h

k
=

(k − h) · 0 + h · 1

(k − h) · 1 + h · 1
,

u

l
=

(k − h) · (a1q + a2) + h · (a1(q − 1) + a2)

(k − h) · (b1q + b2) + h · (b1(q − 1) + b2)
.

Therefore u/l is a Farey fraction in the interval of interest:

[

a1q + a2
b1q + b2

,
a1(q − 1) + a2
b1(q − 1) + b2

]

.

The fraction u/l belongs to FN by definition of the domain F ′
i , meaning that h/k belonging

to F ′
i needs l ≤ N . Therefore M is injective.
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Now we demonstrate that M−1 is also injective. Let u/l belong to F
a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N and
assume a2/b2 > a1/b1, so that

a1q + a2
b1q + b2

≤
u

l
≤
a1(q − 1) + a2
b1(q − 1) + b2

. (3)

Let h/k be the image of u/l under M−1,

h

k
=
q(b1u− la1) + ub2 − la2

b1u− la1
. (4)

This equality implies gcd(h, k)= gcd(ub2 − la2, b1u− la1). Using

gcd(u, l) = gcd(a1, b1) = gcd(a2, b2) = 1 ,

a2b1−a1b2 = 1, and known equalities [10] implies gcd(h, k) = 1. Hence, h/k is an irreducible
fraction. Furthermore, operating with the inequalities in (3):

q(b1u− la1) ≥ −(ub2 − la2) ≥ (b1u− la1)(q − 1),

and therefore 0 ≤ h ≤ k. This shows that h/k belongs to Fk. In the following we demonstrate
that k ≤ i so that h/k belongs to Fi too.

From relations (3) and (4)

k = b1u− la1 ≤ b1l
a1(q − 1) + a2
b1(q − 1) + b2

− la1 =
l

b1(q − 1) + b2

and using that l ≤ N and b1(q − 1) ≥ N
i+1

, which derives from q > N
b1(i+1)

,

k ≤
N

N
i+1

+ b2
=

i+ 1

1 + i+1
N
b2
< i+ 1 .

If b2 > 0 this implies k ≤ i and gathering the above results 0 ≤ h ≤ k ≤ i and gcd(h, k)=1,
hence h/k ∈ Fi. To demonstrate that h/k belongs to F ′

i it is easy to verify that k(b1q+ b2)−
b1h ≤ N .

If b2 = 0 we are in the exceptional case included in this report of a1/b1 = 0/1 and
a2/b2 = 1/0, that implies h/k = (qu − l)/u. Note that k = u. We only need to show that
k ≤ i also in this case. From the inequalities in (3) and N

i
≥ q > N

i+1
,

i

N
≤

1

q
≤
u

l
≤

1

q − 1
≤
i+ 1

N
.

The fraction (i+1)/N is not irreducible, as N is taken as a multiple of i(i+1), and therefore
it does not belong to FN . Similarly for i/N when i > 1. In the range [i/N, (i+ 1)/N ] there
cannot be fractions with denominator N other than 1/N when i = 1. Therefore if i = 1 we
directly have k = u ≤ i and for i > 1 we have l ≤ N − 1 and hence

k = u ≤ l
i+ 1

N
≤ i .
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Corollary 2. The cardinalities of Fi, F
′
i and F

a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N are related as follows:

• If q = N/(b1i), then

|Fi| ≥ |F ′
i | =

∣

∣

∣

∣

F
a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N

∣

∣

∣

∣

> |Fi| − i .

• If q < N/(b1i) or b2 = 0, then

|Fi| = |F ′
i | =

∣

∣

∣

∣

F
a1q+a2
b1q+b2

,
a1(q−1)+a2
b1(q−1)+b2

N

∣

∣

∣

∣

.

Proof. The first inequality is evident from the definition of F ′
i . The first equality derives

from the bijective map in Theorem 1.
If q = N/(b1i), let u/l be the image of h/k via the map M in Theorem 1, then l =

k(N/i + b2)− b1h. To prove that |F ′
i | > |Fi| − i we should count how many h/k ∈ Fi fulfill

k(N/i + b2) − b1h > N . Dividing both sides of the later inequality by k and operating we
obtain

b2 − b1
h

k
>
N

k
−
N

i
= N

i− k

ki
,

b2 ≥ b2 − b1
h

k
> N

i− k

ki
≥ 0 .

To fulfill these inequalities it is required that k = i. Otherwise for any k < i and recalling
that N is a multiple of b1i(i+ 1):

b2 > N
i− k

ki
≥ b1

i+ 1

k
(i− k) > b1 ,

which is inconsistent with the assumption b2 < b1 in Theorem 1. Then, k = i implies
h/i < b2/b1 < 1 and in Fi there are fewer than i irreducible fractions of the form h/i below
b2/b1, hence |F ′

i | > |Fi| − i.
If q < N/(b1i) we define g > 0 such that q = N/(b1i) − g; therefore, l = k(N/i − gb1 +

b2)− b1h. Now, we need to count how many h/k in Fi have l > N ,

b2 − b1
h

k
− b1g > N

i− k

ki
,

and there are no h/k which can fulfill this equation as b2 − b1g < 0. Hence, |Fi| = |F ′
i | when

q < N/(b1i).
If b2 = 0 we should show that there are no h/k in |Fi| fulfilling kb1q − b1h > N . The

largest possible value of q is N/(b1i) and therefore kb1q − b1h ≤ kN/i− b1h < N , for i > 1,
so there is no h/k fulfilling the previous condition and |Fi| = |F ′

i |. Note that i = 1 and
h/k = 0/1 would not have given kb1q − b1h > N as b1q + b2 ≤ N from the assumptions in
Theorem 1.
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Theorem 3. Let N = b1lcm(1, 2 . . . , imax),
N

b1(i+ 1)
< q ≤

N

b1i
, with a1/b1 and a2/b2

forming a Farey pair, b1 > b2 and i < imax. Then

• For b1 > 1:

IN

(

a1q + a2
b1q + b2

)

= IN

(

a1
b1

)

+ s

(

N

b1

i
∑

j=1

ϕ(j)

j
− qΦ(i)

)

+O(i2) , (5)

with s = +1 when a1/b1 < a2/b2 and s = −1 otherwise.

• For a1/b1 = 0/1 and a2/b2 = 1/0:

IN

(

1

q

)

= 2 +N
i
∑

j=1

ϕ(j)

j
− qΦ(i) .

Proof. To simplify equations we assume s = +1 in the following. We count the number

of elements in F
a1
b1
,
a1q+a2
b1q+b2

N using the bijective maps described in Theorem 1 and adding up
the cardinalities of the sets involved from Corollary 2. Thanks to the fact that N is a
multiple of all natural numbers i′ such that i′ ≤ i we can establish bijections between F ′

i

and F
a1p+a2
b1p+b2

,
a1(p−1)+a2
b1(p−1)+b2

N where p can take all values fulfilling
N

b1(i′ + 1)
< p ≤

N

b1i′
, covering all

elements in F
a1
b1
,
a1q+a2
b1q+b2

N when scanning over all i′ ≤ i and the corresponding p. For a given i′

the number of values p takes is given by

N

b1i′
−

N

b1(i′ + 1)
=
N

b1

(

1

i′
−

1

i′ + 1

)

.

In a first step we compute the number of elements in F
a1
b1
,
a1q

′+a2
b1q

′+b2
N with q′ = N/(b1i),

IN

(

a1q
′ + a2

b1q′ + b2

)

− IN

(

a1
b1

)

=
N

b1

i−1
∑

i′=1

(

1

i′
−

1

i′ + 1

)

(|F ′
i′ | − 1)

=
N

b1

i−1
∑

i′=1

[(

1

i′
−

1

i′ + 1

)

Φ(i′) +O(i′)

]

=
N

b1

i−1
∑

j=1

ϕ(j)

j
−
N

b1

Φ(i− 1)

i
+O(i2) .
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In particular, when b2 = 0 the term O(i2) does not appear according to Corollary 2. In a

second step we compute the number of elements in F
a1q

′+a2
b1q

′+b2
,

a1q+a2
b1q+b2

N , that is, Φ(i)(q′−q)+O(i).
Adding both contributions gives

IN

(

a1q + a2
b1q + b2

)

− IN

(

a1
b1

)

=
N

b1

i−1
∑

j=1

ϕ(j)

j
−
N

b1

Φ(i− 1)

i

+ Φ(i)

(

N

b1i
− q

)

+O(i2)

=
N

b1

i
∑

j=1

ϕ(j)

j
− qΦ(i) +O(i2) ,

which demonstrates the theorem for s = 1. For s = −1, following the same steps leads to
the desired result.

Corollary 4. Let N = b1lcm(1, 2, . . . , imax) and
N

b1(i+ 1)
< q ≤

N

b1i
, with i < imax. Then,

IN

(

a1q + a2
b1q + b2

)

= IN

(

a1
b1

)

+ s
3

π2
q

(

N2

b21q
2
−

{

N

b1q

}2
)

+O(NδA(i)) ,

with δA(x) defined in (2). In particular, for a1/b1 = 0/1 and a2/b2 = 1/0,

IN

(

1

q

)

=
3

π2
q

(

N2

q2
−

{

N

q

}2
)

+O(NδA(i)) ,

and for a1/b1 = 1/2 and a2/b2 = 1/1,

IN

(

q + 1

2q + 1

)

=
|FN |

2
+

3

π2
q

(

N2

22q2
−

{

N

2q

}2
)

+O(NδA(i)) .

Proof. The following known relations [11, 12] are needed:

N
∑

k=1

ϕ(k) =
3

π2
N2 + E(N), (6)

N
∑

k=1

ϕ(k)

k
=

6

π2
N +H(N) ,

E(x) = O(x log2/3 x(log log x)4/3) ,

E(x) = xH(x) +O(xδA(x)) ,
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with A > 0 and δA(x) is a decreasing factor. From the definitions of i, q, and N it follows
that

i =

⌊

N

qb1

⌋

=
N

qb1
+O(1) ,

i < imax = (1 + o(1)) logN/b1 .

Inserting the above equalities in expression (5) of Theorem 3,

IN

(

a1q + a2
b1q + b2

)

= IN

(

a1
b1

)

+ s
N

b1

6

π2
i− sq

3

π2
i2 + s

N

b1
H(i)− sqE(i) +O(i2)

= IN

(

a1
b1

)

+ s
N

b1

6

π2
i− sq

3

π2
i2 + sq(iH(i)− E(i)) +O(i2)

= IN

(

a1
b1

)

+ s
N

b1

6

π2
i− sq

3

π2
i2 +O(NδA(i))

= IN

(

a1
b1

)

+ s
3

π2

N2

b21q
− s

3

π2
q

{

N

b1q

}2

+O(NδA(i)) .

Theorem 5. Let N be N = b1lcm(1, 2, . . . , i). Then the partial Franel sum over all Farey

fractions in the range

[

a1
b1
,
a1

N
b1i

+ a2

b1
N
b1i

+ b2

]

is given by the following expressions:

• For a1/b1 = 0/1, a2/b2 = 1/0 and for a1/b1 = 1/2, a2/b2 = 0/1:

P

(

0

1
,

1

N/i

)

=

IN( 1
N/i)
∑

j=1

∣

∣

∣

∣

FN(j)−
j

|FN |

∣

∣

∣

∣

= O(log(N)δB(logN)) ,

P

(

1

2
,
N/(2i)

N/i+ 1

)

=

IN(N/(2i)
N/i+1)
∑

j=IN( 1
2)

∣

∣

∣

∣

FN(j)−
j

|FN |

∣

∣

∣

∣

= O(log(N)δB(logN)) ,

with 0 < B < A. The same result holds for a1/b1 = 1/2, a2/b2 = 1/1.

• For b1 > 2 and b2 < b1:

IN

(

a1
N
b1i

+a2

b1
N
b1i

+b2

)

∑

j=IN

(

a1
b1

)

∣

∣

∣

∣

FN(j)−
j

|FN |

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

a1
b1

−
IN

(

a1
b1

)

|FN |

∣

∣

∣

∣

∣

∣

O(iN) +O(iδB(i)) ,

which cannot be further developed as no general expression for IN(a1/b1) is known.
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Proof. By virtue of Theorem 1 the partial Franel sum under study is written as

P

(

a1
b1
,
a1

N
b1i

+ a2

b1
N
b1i

+ b2

)

=
i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′

i′
|

∑

n=2

∣

∣

∣

∣

∣

∣

k(a1q + a2)− a1h

k(b1q + b2)− b1h
−
IN

(

k(a1q+a2)−a1h
k(b1q+b2)−b1h

)

|FN |

∣

∣

∣

∣

∣

∣

,

where the sum over n runs over the elements h/k in F ′
i′ , approximately n = Ii′(h/k)+O(i′).

By virtue of Theorem 1 and Corollary 4

IN

(

k(a1q + a2)− a1h

k(b1q + b2)− b1h

)

= IN

(

a1q + a2
b1q + b2

)

+ sIi′

(

h

k

)

+O(i′)

= IN

(

a1
b1

)

+ s
3

π2

N2

b21q
− s

3

π2
q

{

N

b1q

}2

+ s
3

π2

⌊

N

b1q

⌋2
h

k
+O(NδA(i

′)) ,

where we have used i′ =
⌊

N
qb1

⌋

. Furthermore

IN

(

k(a1q+a2)−a1h
k(b1q+b2)−b1h

)

|FN |
=

IN

(

a1
b1

)

|FN |
+

s

b21q
−

sq

N2

{

N

b1q

}2

+
s

N2

⌊

N

b1q

⌋2
h

k
+O

(

δA(i
′)

N

)

.

The Farey element inside the partial Franel sum is approximated as

k(a1q + a2)− a1h

k(b1q + b2)− b1h
=

k(a1q + a2)− a1h

k(b1q + b2)− b1h
−
a1
b1

+
a1
b1

=
s

b21q

1

1 + b2
qb1

− h
qk

+
a1
b1

=
s

b21q

(

1−
b2
qb1

+
h

qk

)

+
a1
b1

+O(1/q3) ,

where we have used (b1a2 − a1b2) = s. The partial Franel sum under study becomes

i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′
i′ |

∣

∣

∣

∣

∣

∣

a1
b1

−
IN

(

a1
b1

)

|FN |
−

sb2
b31q

2
+
sq

N2

{

N

b1q

}2

+O

(

δA(i
′)

N

)

∣

∣

∣

∣

∣

∣

,

where the terms proportional to 1/q and h/k have canceled out leaving a negligible residue.
The sum over n has been evaluated just by multiplying by |F ′

i′ | as the dependency on h/k
disappeared. Evaluating the asymptotics of the sums of the individual terms within the

10



absolute value gives

i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′
i′ | = O (iN) ,

i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′
i′ |

q2
= O

(

i4

N

)

,

i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′
i′ |

q

N2
= O(log i) ,

i−1
∑

i′=1

N
b1i

′

∑

q= N
b1(i

′+1)
+1

|F ′
i′ |
δA(i

′)

N
= O (iδB(i)) ,

with 0 < B < A. Keeping the two dominant terms gives

P

(

a1
b1
,
a1

N
b1i

+ a2

b1
N
b1i

+ b2

)

≤

∣

∣

∣

∣

∣

∣

a1
b1

−
IN

(

a1
b1

)

|FN |

∣

∣

∣

∣

∣

∣

O(iN) +O(iδB(i)) ,

which is the searched result for b1 > 2. For 1 ≤ b1 ≤ 2 we have

0

1
−
IN
(

0
1

)

|FN |
= O(1/N2) ,

1

2
−
IN
(

1
2

)

|FN |
= O(1/N2) ,

1

1
−
IN
(

1
1

)

|FN |
= 0 ,

and O(iδB(i)) dominates. The theorem is demonstrated.

Appendix

Table 1 illustrates the bijections between the first 90 elements in F60 and other Farey se-
quences of lower order.
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i′ q h/k u/l IN(
u
l
) i′ q h/k u/l IN(

u
l
) i′ q h/k u/l IN(

u
l
)

∈ Fi′ ∈ FN ∈ Fi′ ∈ FN ∈ Fi′ ∈ FN

- - - 0
1

1 1 32 1
1

1
31

31 3 18 1
3

3
53

61

1 60 0
1

1

60
2 1 31 1

1
1

30
32 3 18 1

2
2
35

62

1 60 1
1

1
59

3 2 30 1
2

2
59

33 3 18 2
3

3
52

63

1 59 1
1

1
58

4 2 30 1
1

1
29

34 3 18 1
1

1
17

64

1 58 1
1

1
57

5 2 29 1
2

2
57

35 3 17 1
3

3
50

65

1 57 1
1

1
56

6 2 29 1
1

1
28

36 3 17 1
2

2
33

66

1 56 1
1

1
55

7 2 28 1
2

2
55

37 3 17 2
3

3
49

67

1 55 1
1

1
54

8 2 28 1
1

1
27

38 3 17 1
1

1
16

68

1 54 1
1

1
53

9 2 27 1
2

2
53

39 3 16 1
3

3
47

69

1 53 1
1

1
52

10 2 27 1
1

1
26

40 3 16 1
2

2
31

70

1 52 1
1

1
51

11 2 26 1
2

2
51

41 3 16 2
3

3
46

71

1 51 1
1

1
50

12 2 26 1
1

1
25

42 3 16 1
1

1

15
72

1 50 1
1

1
49

13 2 25 1
2

2
49

43 4 15 1
4

4
59

73

1 49 1
1

1
48

14 2 25 1
1

1
24

44 4 15 1
3

3
44

74

1 48 1
1

1
47

15 2 24 1
2

2
47

45 4 15 1
2

2
29

75

1 47 1
1

1
46

16 2 24 1
1

1
23

46 4 15 2
3

3
43

76

1 46 1
1

1
45

17 2 23 1
2

2
45

47 4 15 3
4

4
57

77

1 45 1
1

1
44

18 2 23 1
1

1
22

48 4 15 1
1

1
14

78

1 44 1
1

1
43

19 2 22 1
2

2
43

49 4 14 1
4

4
55

79

1 43 1
1

1
42

20 2 22 1
1

1
21

50 4 14 1
3

3
41

80

1 42 1
1

1
41

21 2 21 1
2

2
41

51 4 14 1
2

2
27

81

1 41 1
1

1
40

22 2 21 1
1

1

20
52 4 14 2

3
3
40

82

1 40 1
1

1
39

23 3 20 1
3

3
59

53 4 14 3
4

4
53

83

1 39 1
1

1
38

24 3 20 1
2

2
39

54 4 14 1
1

1
13

84

1 38 1
1

1
37

25 3 20 2
3

3
58

55 4 13 1
4

4
51

85

1 37 1
1

1
36

26 3 20 1
1

1
19

56 4 13 1
3

3
38

86

1 36 1
1

1
35

27 3 19 1
3

3
56

57 4 13 1
2

2
25

87

1 35 1
1

1
34

28 3 19 1
2

2
37

58 4 13 2
3

3
37

88

1 34 1
1

1
33

29 3 19 2
3

3
55

59 4 13 3
4

4
49

89

1 33 1
1

1
32

30 3 19 1
1

1
18

60 4 13 1
1

1

12
90

Table 1: Correspondence between elements in Fi′ , with 0 < i′ < 5 and first 90 elements in
FN , given by u/l = h/(hq − k) with N/(i′ + 1) < q ≤ N/i′ and N = lcm(1, 2, 3, 4, 5) = 60.
Note that the images of elements 1/1 and 0/1 of adjacent maps are equal and only the 1/1
case is shown on the table. The illustrated maps originate from the map M in Theorem 1
with a1/b1 = 0/1 and a2/b2 = 1/0.
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345–367.

[5] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith.
75 (1996), 351–374.

[6] S. B. Guthery, A Motif of Mathematics: History and Application of the Mediant and
the Farey Sequence, Docent Press, 2011.
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