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Abstract

We derive analytical expressions for the position of irreducible fractions in the Farey
sequence Fy of order N for a particular choice of NV, obtaining an asymptotic behavior
with a lower error bound than in previous results when these fractions are in the vicinity
of 0/1, 1/2, or 1/1.

Franel’s famous formulation of Riemann’s hypothesis uses the summation of dis-
tances between irreducible fractions and evenly spaced points in [0,1]. We define
“partial Franel sum” as a summation of these distances over a subset of fractions
in Fy and we demonstrate that the partial Franel sum in the range [0,i/N], with
N =lem(1,2,...,1), grows strictly slower than O(log V).

1 Introduction and statement of the main results

The Farey sequence Fy of order N is an ascending sequence of irreducible fractions between
0 and 1 whose denominators do not exceed N [1]. Riemann’s hypothesis implies that the
irreducible fractions tend to be regularly distributed in [0, 1]. A formulation of this statement
follows [2, 3],

[Fiv]
n 1
> |Fn(n) — ——| = O(N2") |

where Fiy(n) is the n' irreducible fraction in Fly. Here we define the partial Franel sum in
the range [a1 /b1, as/bs] as

a a IN(GZ/bZ) n
P2 2) = F "
(bl’ b2) Z ‘ v(n) | Fv|

n=In(a1/b1)

Y
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where Iy (a/b) is the position that a/b occupies in Fy. Dress [4] established the upper
bound of the distance |Fy(n) —n/|Fy|| to be 1/N and to be located at Fy(2) = 1/N. This
motivates the study of partial Franel sums in ranges including 1/N. Furthermore, another
equivalent formulation of the Riemann’s hypothesis involving sums over irreducible fractions
in the range [0, 1/4] follows [5],

In(1/4)

> (#ntm - V) = o,
n=1 2|FN|

showing again the relevance of the vicinity of 1/N.

Guthery [6, Chapter 6] attempted to find a closed expression for the i" fraction in Fy end-
ing in an “analytical hole”. This paper achieves this goal for fractions in the range [0,i/N],
with N = lem(1,2,...,7) as explained in the following. Note that N = lem(1,2,...,i) =
e¥@ where 1(4) is the second Chebyshev function that fulfills the property ¢ (i) = (1+o0(1))i,
and hence i = (1 +0(1))log N.

Let the subsequence F K,l/ bioaz/ba ¢ p ~, contain all the fractions of Fy in [a1/b1, ag/bs).

The cardinality of Fit/® /% is well known to be [7]

b1, a2/b2
Fal/ )
N

T2

=3 (29 N2y o(Nleg N)
by b
As Iy (aa/bs) is the position that as/bs occupies in Fly, it follows that

(i) = e
2

A first result of this paper is the derivation of an analytical expression for Iy (1/q) where
N =1lem(1,2,...,i) and N/i < ¢ < N in Theorem 3 as

Iy G) :2+Né#—q®(i),

where (i) is the totient function and ®(¢) is the summatory totient function defined as

3@2 2
=——N NlogN) . 1
N+ O(NIog ) 1)

o) = "¢ 0)

Theorem 3 also includes a more general expression giving the location of other fractions
in Fly. To reach this relation a series of bijections are established in Theorem 1 between
Fy, with i < i, and subsequences of Fly covering all elements in F](\)/ L1/4 Thanks to these
bijections the cardinality of F ](\),/ LY can be expressed as function of all |Fy| as shown in

Corollary 2. These bijections are illustrated in Table 1 for N = lem(1,2,...,5) = 60. This
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result is used to derive the equivalent asymptotic estimate of (1) with a smaller residual
error in Corollary 4 as follows:

w(3) = (-0 o (e (13

where {z} =2 — |z and 04(x) is a decreasing function defined as

log®% &
= —A— 2
5a(x) = exp ( aoglogaﬁ02) , (2)

where A > 0.
As the final result of this work Theorem 5 establishes that the partial Franel sum in the
range [0, 1/(N/i)] is given by

P (T 57 ) = Oor)ditog )
with 0 < B < A and again N = lem(1,2,...,4). Therefore, this partial Franel sum grows
strictly slower than O(log N). If we would assume the Riemann hypothesis and a uniform
distribution density of Farey elements in [0, 1], we would expect this partial Franel sum to
decrease as O(log(N)/N1/27¢). Theorem 5 includes equivalent results for partial Franel sums
in ranges including 1/2 or 1/1. The generalization to compute partial Franel sums in the
vicinity of any irreducible fraction is explored. Earlier results of this work were applied to
resonance diagrams [8, 9].

The following definitions are used in the rest of the paper. We say that two elements of
a Farey sequence, a;/b; and ag /by, form a Farey pair if |aiby — asbi| = 1. In this report we
exceptionally allow 0/1 and 1/0 to form a Farey pair even if 1/0 is not a proper fraction.
The mediant of a Farey pair, a;/b; and ay/bs, is given by

a1 + as
by + by

which is an irreducible fraction existing between a;/b; and ay/by and forms two Farey pairs
with a; /by and ay/bs.

2 Results

Theorem 1. Let a; /by and as /by be a Farey pair with by > by. Let N be multiple of byi(i+1)
with 1 being a natural number such 0 <1 < N. Let q be an integer fulfilling

N

N
T o<t d big+by <N .
1) 9T p O it hs



Let F! be a subsequence of F; defined as

h h
E/_{k keﬂak(blq+b2)_blh<N}a

noting that for ay /by = 0/1 and ay/by = 1/0, F} = F;.
a1<1+a2 aj(g=1)+ag
b1a+by 7 by(g—1)+b2

There is a bijective map M between F, and Fy , given by

M: F FJE;ZiZ;i;EZ:BiZ; 7 h . k(a1q + az) — arh .
k k(blq + bg) — blh
a ay aj(q— a
ML F]\z;iﬂbj’ bhg_i;ibi = F;, 7 E . C](bm — lal) + bou — lay
l blu — la1

The bijective map is order-preserving when as /by > a1 /by and order-inverting when as /by <

al/bl.

Proof. We first demonstrate that M is injective. The fractions ZWIZQ and % form a

Farey pair since a,/b; and ay /by form a Farey pair:
[(a1q + a2)(bi(g — 1) + b2) — (big + b2)(ai(q — 1) + az)| = [boar — azbi| =1 .
Let u/l be the image of h/k under M,

u  k(aiq+az) —arh

I k(big+by) —bih

By virtue of this expression u/[ is obtained by applying the mediant operation successively

‘gigigj and Ziggjgigﬁ in the same fashion as h/k is obtained by applying the mediant

between 0/1 and 1/1, meaning

between

h (k—h)-04+h-1
k (k—h) - 1+h-1"
Uu
1

(k—h)-(a1q+a) +h-(ai(qg— 1)+ ay)
(k—h)-(big+b2) +h-(bi(g—1)+by)

Therefore u/l is a Farey fraction in the interval of interest:

arg+as ai(¢g—1)+as
big+by bi(g—1)+0by

The fraction u/l belongs to Fyy by definition of the domain F/, meaning that h/k belonging
to F! needs | < N. Therefore M is injective.



ajgtag aj(g—1)+ag
Now we demonstrate that M~! is also injective. Let u/l belong to Fy'"" @D+
assume ag /by > a1 /by, so that

and
a a u _ai(g—1)+a
bicq]ibjgfg bigg_ﬁbj 3)
Let h/k be the image of u/l under M~

ﬁ _q(byu —lay) + uby — lay

k biu — lay ’
This equality implies ged(h, k)= ged(ubs — lag, byu — lay). Using

ng(Ua l) = ng(ahbl) = ng(GQ,bz) =1,

(4)

ashy —a1be = 1, and known equalities [10] implies ged(h, k) = 1. Hence, h/k is an irreducible
fraction. Furthermore, operating with the inequalities in (3):

q(byu — lay) > —(uby —lag) > (biu —lai)(q — 1),

and therefore 0 < h < k. This shows that h/k belongs to F. In the following we demonstrate
that k < ¢ so that h/k belongs to F; too.
From relations (3) and (4)

ai(q—1)+ay l
k=bu—la <bl——F—= —lag= ————
! t=" bl(q—1)+b2 “ bl(q—1)+b2
and using that [ < N and b1(¢ — 1) > i%, which derives from ¢ > W]\il),
N 1+1
k< - <+,
Ao+ 145

If by > 0 this implies k& < ¢ and gathering the above results 0 < h < k < ¢ and ged(h, k)=1,
hence h/k € F;. To demonstrate that h/k belongs to F] it is easy to verify that k(byq+by) —
bih < N.

If b = 0 we are in the exceptional case included in this report of a;/b; = 0/1 and
as /by = 1/0, that implies h/k = (qu — l)/u. Note that & = u. We only need to show that
k < also in this case. From the inequalities in (3) and % >q > i%,

— < =< < —XZ

N~ qg 1l "q¢g-1" N
The fraction (i41)/N is not irreducible, as N is taken as a multiple of ¢(i + 1), and therefore
it does not belong to Fy. Similarly for i/N when ¢ > 1. In the range [i/N, (i + 1)/N] there
cannot be fractions with denominator N other than 1/N when ¢ = 1. Therefore if i = 1 we
directly have £k = u < ¢ and for ¢« > 1 we have [ < N — 1 and hence

i+ 1
N

? 1w 1 1+ 1
; .

k=u<l <7q.



ajgtag aj(g—1)+ag
Corollary 2. The cardinalities of Fy, F and Fy'**"" """9* qre related as follows:

o [fq= N/(bi), then

ajgtag aj(g—1)+ag

Bl > |F| = \FN

> |Fi[ —i.

o [fq< N/(bii) or by =0, then

ajqtag aj(g—1)+ag
F b1g+bg ’ by (q—1)+bgy
N

Bl = [F]| =

Proof. The first inequality is evident from the definition of F]. The first equality derives
from the bijective map in Theorem 1.

If ¢ = N/(bi7), let u/l be the image of h/k via the map M in Theorem 1, then [ =
k(N/i+ by) — bih. To prove that |F!| > |F;| — i we should count how many h/k € F; fulfill
k(N/i+ by) — byh > N. Dividing both sides of the later inequality by k and operating we
obtain W ON N -

bg—b1—>———,:NZ ,

k k 1 ki
h 1—k
> — by — >0.
bQ_bQ b1k>N i >0

To fulfill these inequalities it is required that k& = i. Otherwise for any k& < ¢ and recalling
that NV is a multiple of byi(i + 1):
i—k b 1+ 1

ki =k
which is inconsistent with the assumption by < b; in Theorem 1. Then, £ = ¢ implies
h/i < by/by < 1 and in F; there are fewer than ¢ irreducible fractions of the form h/i below
by /by, hence |F!| > |F;| — 1.

If ¢ < N/(byi) we define g > 0 such that ¢ = N/(b1i) — g; therefore, | = k(N/i — gby +
by) — bih. Now, we need to count how many h/k in F; have [ > N,

b2>N

(’i—k)>b1,

1—k
ki

h
b2—b1E—b19>N

and there are no h/k which can fulfill this equation as by — b1g < 0. Hence, |F;| = |F!| when
q < N/(bi).

If b, = 0 we should show that there are no h/k in |F;| fulfilling kbyqg — byh > N. The
largest possible value of ¢ is N/(by7) and therefore kbjqg — byh < kN/i —bjh < N, for i > 1,
so there is no h/k fulfilling the previous condition and |F;| = |F]|. Note that i = 1 and
h/k = 0/1 would not have given kbiqg — byh > N as bjg + by < N from the assumptions in
Theorem 1. O



N N
Theorem 3. Let N = bﬂcm(l,Q...,imaX), m < q < F, with al/bl and ag/bg
112 1?

forming a Farey pair, by > by and i < iyax. Then

e Forb; > 1:

In (%) — Iy <%> ts (g Z # - q@(i)) LO@2), (5)

j=1
with s = +1 when ay /by < as/by and s = —1 otherwise.

e Foray/by =0/1 and as/by = 1/0:
) i :
Iy (-) :2+NZM—q¢(z‘) .
q ~

Proof. To simplify equations we assume s = +1 in the following. We count the number
a1 ajgtag

of elements in F' ]\1’71 P12 yising the bijective maps described in Theorem 1 and adding up

the cardinalities of the sets involved from Corollary 2. Thanks to the fact that N is a

multiple of all natural numbers i’ such that i < i we can establish bijections between F/
ajptay aj(p—l)tag N

and Fy'772 1 =0%2 where p can take all values fulfilling ——————

b1 (’Ll + ].)

when scanning over all 7/ < ¢ and the corresponding p. For a given 4’

N .
< p < —, covering all
blZ/

aj ajgtas

: by 2 bra+b
elements in F! """

the number of values p takes is given by

N N  N/1 1
bii' b’ +1) b \& i +1)

ay alql+a2
In a first step we compute the number of elements in F]f,l N2 with ¢ = N/(bii),

i—1
alq/+a2 aq N 1 1 /
N<61Q/+b2) N(b1> bllz::l(z/ i1 (| 7,| )




In particular, when by = 0 the term O(4*) does not appear according to Corollary 2. In a
ajd’+ay  ajatay

second step we compute the number of elements in Fyy'* 2" "**" that is, ®(i)(q' —q) +O(i).

Adding both contributions gives

a1q + as a; goy N@Z—l)
ot S RN SR (et B =
N<b1q+b2> N(bl) Z 7
N
+ ®(4) (— —q) + O(i%)
bl?,

- Z@ D g0+ 07
which demonstrates the theorem for s = 1. For s = —1, following the same steps leads to
the desired result. O
Corollary 4. Let N = bilem(1,2,. .., inax) and <qg< with i < Imax. Then,

by(i+ 1) bi’

a1q + as 3 N2 {N}2 ,
- I tsoqg| e = + O(NS§ :
N (b1q -+ bz) N (51) 2(] <b%q2 blq ( A(Z))

with 64(z) defined in (2). In particular, for a;/by = 0/1 and as/by = 1/0,

(1) = (2] oo

and for a; /by = 1/2 and as/by = 1/1,

N<2qq111> N |FQN|+ ‘1<2]2Vq2 {2]\;}2>+0(N5A(>>'

Proof. The following known relations [11, 12] are needed:

Seh) = SN+ E(N), (0
k—

S A0 Sx i,

() = O(zlog®?z(loglogz)?) ,
E(x) = zH(x)+ O(zda(x)),



with A > 0 and d4(x) is a decreasing factor. From the definitions of i, ¢, and N it follows

that
N N
= |—|=—+0
! LIZHJ qb (1)
i < imae = (1+0(1))log N/b; .

Inserting the above equalities in expression (5) of Theorem 3,

ai1q + as ai N 6 3 .2 N . . .2
N (blq " 62) = Iy (—) + saﬁz Rt + sb—lH(z) —sqE(i) + O(%)
N
= () o S s s ~ EQ) + O
1T

]

Theorem 5. Let N be N = bjlem(1,2,...,4). Then the partial Franel sum over all Farey

N
: . a; 135 t a2
fractions in the range | —

, ——— | 18 giwen by the following expressions:
by 51% + by

e For al/bl = 0/1, a2/bQ = 1/0 CLTldfOT al/bl = 1/2, (12/1)2 = 0/1

IN(Nl/i)
0 1 ] j
P(I’N_/z) = ; FN(])—W = O(log(N)dp(log N)) ,
/(20) In(¥i5t)
1 N/(2¢ B ]
P (§’N/Z+1) - jzg%l) FN( ) |FN| O(log( )5B(lOgN)) ’

with 0 < B < A. The same result holds for a;/by = 1/2, ay/by = 1/1.

o Forb, >2 and by < by:

B (%)

<o Py O(IN) + O(iop(7)) ,

which cannot be further developed as no general expression for Iy(ay/by) is known.
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Proof. By virtue of Theorem 1 the partial Franel sum under study is written as

N i—1 ne IFl I (w)
p ﬂ alm + as _ Z Z Z /{:(alq + CLQ) — alh _ N k(b1g+b2)—b1h
b1’ 51%4-62 k(b1q+b2) —blh ’FN’ ’

V=1 g= 1 =2

where the sum over n runs over the elements h/k in F},, approximately n = I (h/k)+ O(7").
By virtue of Theorem 1 and Corollary 4

k(arq + az) — a1h> (alq + aQ) (h> y
I Iy (M) L () +0
N(k(b1q+b2)—b1h N\ byg + by S\ % (@)
a 3 N2 3 (NY* 3 |N|*h .
— J— - g P | _ N5 /
In <b1) +Sﬂ.2 b%q S7T2q{b1Q} +Sﬂ_2 blq i +O( A(Z )) ,

N
gb1

where we have used ¢/ = L J Furthermore

k(ai1qtaz)—aih a
a2 I O IR RREY £.8 SN P4 Y0
|FN| |FN| b%q ]\72 blq N2 blq '

The Farey element inside the partial Franel sum is approximated as

k(aig +az) —arh  k(ag+a) —ath Lo
/{:(blq + b2) — blh k:(blq + bQ) — blh bl b1
_s_ 1 La
b%ql%—q%—q% by
S bg h) aq 3
= ——(1—-—+—|+—+0(1/¢),

where we have used (bjas — a;by) = s. The partial Franel sum under study becomes

N .
i S @ v (&) shy | sq [NT o (0ald)
. ", |F| Bg2 ' N2 | by N ’
"=l e g

where the terms proportional to 1/q and h/k have canceled out leaving a negligible residue.
The sum over n has been evaluated just by multiplying by |F},| as the dependency on h/k
disappeared. Evaluating the asymptotics of the sums of the individual terms within the

10



absolute value gives

T b1+
N/
i—1 b1 / .4
2 - 9
pari ! N
=yt

N
i—1 byi’ .
5 /
DD DENEIE S
"=l a=g !

with 0 < B < A. Keeping the two dominant terms gives

N ap
P (a1 G1E+&2> < a In <b1>

— — — O@N) + O(idp(e
e, (iN) + O(ibn(i)

b |Fy|

which is the searched result for b; > 2. For 1 < b; < 2 we have

0_In(3) oy 1 In () L Iv(y)

v —O(1/N?), = — 2L _0O(1/N?), ———=L 0,

1 R - O T R T O 1T TRy
and O(idp(i)) dominates. The theorem is demonstrated. O
Appendix

Table 1 illustrates the bijections between the first 90 elements in Fyy and other Farey se-
quences of lower order.

11



g WEkowfl NG g Rk /U IN() | g RE w/l IN(Y)
€Fy, €Fy €eFy €Fy €eFy, €Fy
- - - 9 1 1 32 i = 31 |3 18 % = 61
160 9 o 2 131 1 5 32 |3 18 3 2 62
1 60 1 5 3 ]2 30 3 = 3 |3 18 2 > 63
159 1 = 4 |2 30 1 2= 34 |3 18 1 i 64
1 58 1 = 5 |2 29 4 2 3 |3 17 4 3 65
1 57 1 = 6 |2 29 1 2% 36 |3 17 4 5 66
1 56 1 = 7 |2 28 3 2 37 |3 17 2 2 67
155 1 i 8 |2 28 % = 38 |3 17 1 x 68
1 54 1 = 9 |2 271 3 2 39 |3 16 2 69
1 53 1 = 10 |2 271 = 40 |3 16 4 2 70
1 52 1 & 1 |2 2 3 Z 4 |3 16 2 2 71
1 51 1 % 12 |2 26 1 % 42 |3 16 1 = 72
1 50 1 = 13 |2 25 3 2 43 |4 15 1 % 73
1 49 1 i 4 |2 25 1 i 4 4 15 4 = 74
1 48 1 = 15 |2 24 2 2z 45 |4 15§ 2 75
141 1 = 16 |2 24 1 = 6 |4 15 2 2 76
1 46 1 = 17 |2 23 3 2z 47 |4 15 3 = 77
1 45 1 = 18 |2 23 1 = 48 |4 15 % 4 78
144 1 x 19 |2 22 1 2 49 |4 14 4 & 79
1 43 1 = 20 |2 22 1 = 5 |4 14 1 2 80
1 42 1 T 21 |2 21 % = 51 |4 14 4 % 81
14 4 + 2 |2 21 i e 52 |4 14 2 3 82
1 40 1 3 23 |3 20 3 3 53 |4 14 3 & 83
139 1 = 24 |3 20 % = 54 |4 14 1 = 84
1 38 1 + 25 |3 20 2 = 55 |4 13 4 5 85
1 37 1 = 26 |3 20 1 = 56 |4 13 = 86
1 36 1 = 27 |3 19 4 3 57 |4 13 3 2 87
1 3 1 i 28 |3 19 3 = 58 ||4 13 2 = 88
1 34 1 = 29 |[3 19 2 3 59 |4 13 3 = 89
133 1 & 30 |3 19 % = 60 |4 13 ¢ 5 90

Table 1: Correspondence between elements in Fy, with 0 < " < 5 and first 90 elements in
Fn, given by u/l = h/(hq — k) with N/(' +1) < ¢ < N/i and N = lem(1,2,3,4,5) = 60.
Note that the images of elements 1/1 and 0/1 of adjacent maps are equal and only the 1/1
case is shown on the table. The illustrated maps originate from the map M in Theorem 1
with a;/b; = 0/1 and as/by = 1/0.
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