

Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.5

Partial Franel Sums

R. Tomás CERN CH 1211 Geneva 23 Switzerland rogelio.tomas@cern.ch

Abstract

We derive analytical expressions for the position of irreducible fractions in the Farey sequence F_N of order N for a particular choice of N, obtaining an asymptotic behavior with a lower error bound than in previous results when these fractions are in the vicinity of 0/1, 1/2, or 1/1.

Franel's famous formulation of Riemann's hypothesis uses the summation of distances between irreducible fractions and evenly spaced points in [0, 1]. We define "partial Franel sum" as a summation of these distances over a subset of fractions in F_N and we demonstrate that the partial Franel sum in the range [0, i/N], with $N = \operatorname{lcm}(1, 2, \ldots, i)$, grows strictly slower than $O(\log N)$.

1 Introduction and statement of the main results

The Farey sequence F_N of order N is an ascending sequence of irreducible fractions between 0 and 1 whose denominators do not exceed N [1]. Riemann's hypothesis implies that the irreducible fractions tend to be regularly distributed in [0, 1]. A formulation of this statement follows [2, 3],

$$\sum_{n=1}^{|F_N|} \left| F_N(n) - \frac{n}{|F_N|} \right| = O(N^{\frac{1}{2}+\epsilon}) ,$$

where $F_N(n)$ is the nth irreducible fraction in F_N . Here we define the partial Franel sum in the range $[a_1/b_1, a_2/b_2]$ as

$$P\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}\right) = \sum_{n=I_N(a_1/b_1)}^{I_N(a_2/b_2)} \left|F_N(n) - \frac{n}{|F_N|}\right| ,$$

where $I_N(a/b)$ is the position that a/b occupies in F_N . Dress [4] established the upper bound of the distance $|F_N(n) - n/|F_N||$ to be 1/N and to be located at $F_N(2) = 1/N$. This motivates the study of partial Franel sums in ranges including 1/N. Furthermore, another equivalent formulation of the Riemann's hypothesis involving sums over irreducible fractions in the range [0, 1/4] follows [5],

$$\sum_{n=1}^{I_N(1/4)} \left(F_N(n) - \frac{I_N(1/4)}{2|F_N|} \right) = O(N^{\frac{1}{2}+\epsilon}) ,$$

showing again the relevance of the vicinity of 1/N.

Guthery [6, Chapter 6] attempted to find a closed expression for the i^{th} fraction in F_N ending in an "analytical hole". This paper achieves this goal for fractions in the range [0, i/N], with N = lcm(1, 2, ..., i) as explained in the following. Note that $N = \text{lcm}(1, 2, ..., i) = e^{\psi(i)}$, where $\psi(i)$ is the second Chebyshev function that fulfills the property $\psi(i) = (1+o(1))i$, and hence $i = (1 + o(1)) \log N$.

Let the subsequence $F_N^{a_1/b_1, a_2/b_2}$ of F_N , contain all the fractions of F_N in $[a_1/b_1, a_2/b_2]$. The cardinality of $F_N^{a_1/b_1, a_2/b_2}$ is well known to be [7]

$$\left|F_N^{a_1/b_1, a_2/b_2}\right| = \frac{3}{\pi^2} \left(\frac{a_2}{b_2} - \frac{a_1}{b_1}\right) N^2 + O(N \log N) .$$

As $I_N(a_2/b_2)$ is the position that a_2/b_2 occupies in F_N , it follows that

$$I_N\left(\frac{a_2}{b_2}\right) = \left|F_N^{0/1, a_2/b_2}\right| = \frac{3}{\pi^2} \frac{a_2}{b_2} N^2 + O(N\log N) .$$
(1)

A first result of this paper is the derivation of an analytical expression for $I_N(1/q)$ where N = lcm(1, 2, ..., i) and $N/i \le q \le N$ in Theorem 3 as

$$I_N\left(\frac{1}{q}\right) = 2 + N \sum_{j=1}^{i} \frac{\varphi(j)}{j} - q\Phi(i) ,$$

where $\varphi(i)$ is the totient function and $\Phi(i)$ is the summatory totient function defined as

$$\Phi(i) = \sum_{j=1}^{i} \varphi(j) \; .$$

Theorem 3 also includes a more general expression giving the location of other fractions in F_N . To reach this relation a series of bijections are established in Theorem 1 between $F_{i'}$, with $i' \leq i$, and subsequences of F_N covering all elements in $F_N^{0/1, 1/q}$. Thanks to these bijections the cardinality of $F_N^{0/1, 1/q}$ can be expressed as function of all $|F_{i'}|$ as shown in Corollary 2. These bijections are illustrated in Table 1 for $N = \text{lcm}(1, 2, \ldots, 5) = 60$. This result is used to derive the equivalent asymptotic estimate of (1) with a smaller residual error in Corollary 4 as follows:

$$I_N\left(\frac{1}{q}\right) = \frac{3}{\pi^2}q\left(\frac{N^2}{q^2} - \left\{\frac{N}{q}\right\}^2\right) + O\left(N\delta_A\left(\left\lfloor\frac{N}{q}\right\rfloor\right)\right) ,$$

where $\{x\} = x - \lfloor x \rfloor$ and $\delta_A(x)$ is a decreasing function defined as

$$\delta_A(x) = \exp\left(-A \frac{\log^{0.6} x}{(\log \log x)^{0.2}}\right) ,$$
 (2)

where A > 0.

As the final result of this work Theorem 5 establishes that the partial Franel sum in the range [0, 1/(N/i)] is given by

$$P\left(\frac{0}{1}, \frac{1}{N/i}\right) = O(\log(N)\delta_B(\log N)) ,$$

with 0 < B < A and again N = lcm(1, 2, ..., i). Therefore, this partial Franel sum grows strictly slower than $O(\log N)$. If we would assume the Riemann hypothesis and a uniform distribution density of Farey elements in [0, 1], we would expect this partial Franel sum to decrease as $O(\log(N)/N^{1/2-\epsilon})$. Theorem 5 includes equivalent results for partial Franel sums in ranges including 1/2 or 1/1. The generalization to compute partial Franel sums in the vicinity of any irreducible fraction is explored. Earlier results of this work were applied to resonance diagrams [8, 9].

The following definitions are used in the rest of the paper. We say that two elements of a Farey sequence, a_1/b_1 and a_2/b_2 , form a Farey pair if $|a_1b_2 - a_2b_1| = 1$. In this report we exceptionally allow 0/1 and 1/0 to form a Farey pair even if 1/0 is not a proper fraction. The mediant of a Farey pair, a_1/b_1 and a_2/b_2 , is given by

$$\frac{a_1 + a_2}{b_1 + b_2}$$

which is an irreducible fraction existing between a_1/b_1 and a_2/b_2 and forms two Farey pairs with a_1/b_1 and a_2/b_2 .

2 Results

Theorem 1. Let a_1/b_1 and a_2/b_2 be a Farey pair with $b_1 > b_2$. Let N be multiple of $b_1i(i+1)$ with i being a natural number such 0 < i < N. Let q be an integer fulfilling

$$\frac{N}{b_1(i+1)} < q \le \frac{N}{b_1 i}$$
 and $b_1 q + b_2 \le N$.

Let F'_i be a subsequence of F_i defined as

$$F'_{i} = \left\{ \frac{h}{k} : \frac{h}{k} \in F_{i}, \ k(b_{1}q + b_{2}) - b_{1}h \le N \right\} ,$$

noting that for $a_1/b_1 = 0/1$ and $a_2/b_2 = 1/0$, $F'_i = F_i$. There is a bijective map M between F'_i and $F_N^{\frac{a_1(q+a_2)}{b_1(q-1)+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}}$, given by

$$\begin{split} M: \ F'_i \to F_N^{\frac{a_1q+a_2}{b_1q+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}} \ , \qquad \frac{h}{k} \mapsto \frac{k(a_1q+a_2)-a_1h}{k(b_1q+b_2)-b_1h} \ . \\ M^{-1}: \ F_N^{\frac{a_1q+a_2}{b_1q+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}} \to F'_i \ , \qquad \frac{u}{l} \mapsto \frac{q(b_1u-la_1)+b_2u-la_2}{b_1u-la_1} \ . \end{split}$$

The bijective map is order-preserving when $a_2/b_2 > a_1/b_1$ and order-inverting when $a_2/b_2 < a_1/b_1$.

Proof. We first demonstrate that M is injective. The fractions $\frac{a_1q+a_2}{b_1q+b_2}$ and $\frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}$ form a Farey pair since a_1/b_1 and a_2/b_2 form a Farey pair:

$$|(a_1q + a_2)(b_1(q - 1) + b_2) - (b_1q + b_2)(a_1(q - 1) + a_2)| = |b_2a_1 - a_2b_1| = 1.$$

Let u/l be the image of h/k under M,

$$\frac{u}{l} = \frac{k(a_1q + a_2) - a_1h}{k(b_1q + b_2) - b_1h} \; .$$

By virtue of this expression u/l is obtained by applying the mediant operation successively between $\frac{a_1q+a_2}{b_1q+b_2}$ and $\frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}$ in the same fashion as h/k is obtained by applying the mediant between 0/1 and 1/1, meaning

$$\frac{h}{k} = \frac{(k-h) \cdot 0 + h \cdot 1}{(k-h) \cdot 1 + h \cdot 1} ,$$

$$\frac{u}{l} = \frac{(k-h) \cdot (a_1q + a_2) + h \cdot (a_1(q-1) + a_2)}{(k-h) \cdot (b_1q + b_2) + h \cdot (b_1(q-1) + b_2)} .$$

Therefore u/l is a Farey fraction in the interval of interest:

$$\left[\frac{a_1q + a_2}{b_1q + b_2}, \frac{a_1(q-1) + a_2}{b_1(q-1) + b_2}\right]$$

The fraction u/l belongs to F_N by definition of the domain F'_i , meaning that h/k belonging to F'_i needs $l \leq N$. Therefore M is injective.

Now we demonstrate that M^{-1} is also injective. Let u/l belong to $F_N^{\frac{a_1q+a_2}{b_1q+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}}$ and assume $a_2/b_2 > a_1/b_1$, so that

$$\frac{a_1q + a_2}{b_1q + b_2} \le \frac{u}{l} \le \frac{a_1(q - 1) + a_2}{b_1(q - 1) + b_2} \quad . \tag{3}$$

Let h/k be the image of u/l under M^{-1} ,

$$\frac{h}{k} = \frac{q(b_1u - la_1) + ub_2 - la_2}{b_1u - la_1} \ . \tag{4}$$

This equality implies $gcd(h, k) = gcd(ub_2 - la_2, b_1u - la_1)$. Using

$$gcd(u, l) = gcd(a_1, b_1) = gcd(a_2, b_2) = 1$$
,

 $a_2b_1 - a_1b_2 = 1$, and known equalities [10] implies gcd(h, k) = 1. Hence, h/k is an irreducible fraction. Furthermore, operating with the inequalities in (3):

$$q(b_1u - la_1) \ge -(ub_2 - la_2) \ge (b_1u - la_1)(q - 1),$$

and therefore $0 \le h \le k$. This shows that h/k belongs to F_k . In the following we demonstrate that $k \le i$ so that h/k belongs to F_i too.

From relations (3) and (4)

$$k = b_1 u - la_1 \le b_1 l \frac{a_1(q-1) + a_2}{b_1(q-1) + b_2} - la_1 = \frac{l}{b_1(q-1) + b_2}$$

and using that $l \leq N$ and $b_1(q-1) \geq \frac{N}{i+1}$, which derives from $q > \frac{N}{b_1(i+1)}$,

$$k \le \frac{N}{\frac{N}{i+1} + b_2} = \frac{i+1}{1 + \frac{i+1}{N}b_2} < i+1$$
.

If $b_2 > 0$ this implies $k \leq i$ and gathering the above results $0 \leq h \leq k \leq i$ and gcd(h, k)=1, hence $h/k \in F_i$. To demonstrate that h/k belongs to F'_i it is easy to verify that $k(b_1q+b_2) - b_1h \leq N$.

If $b_2 = 0$ we are in the exceptional case included in this report of $a_1/b_1 = 0/1$ and $a_2/b_2 = 1/0$, that implies h/k = (qu - l)/u. Note that k = u. We only need to show that $k \leq i$ also in this case. From the inequalities in (3) and $\frac{N}{i} \geq q > \frac{N}{i+1}$,

$$\frac{i}{N} \leq \frac{1}{q} \leq \frac{u}{l} \leq \frac{1}{q-1} \leq \frac{i+1}{N} \ .$$

The fraction (i+1)/N is not irreducible, as N is taken as a multiple of i(i+1), and therefore it does not belong to F_N . Similarly for i/N when i > 1. In the range [i/N, (i+1)/N] there cannot be fractions with denominator N other than 1/N when i = 1. Therefore if i = 1 we directly have $k = u \leq i$ and for i > 1 we have $l \leq N - 1$ and hence

$$k = u \le l \frac{i+1}{N} \le i \; .$$

Corollary 2. The cardinalities of F_i , F'_i and $F_N^{\frac{a_1q+a_2}{b_1q+b_2},\frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}}$ are related as follows:

• If $q = N/(b_1 i)$, then

$$|F_i| \ge |F'_i| = \left| F_N^{\frac{a_1q+a_2}{b_1q+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}} \right| > |F_i| - i .$$

• If
$$q < N/(b_1 i)$$
 or $b_2 = 0$, then

$$|F_i| = |F'_i| = \left| F_N^{\frac{a_1q+a_2}{b_1q+b_2}, \frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}} \right| .$$

Proof. The first inequality is evident from the definition of F'_i . The first equality derives from the bijective map in Theorem 1.

If $q = N/(b_1i)$, let u/l be the image of h/k via the map M in Theorem 1, then $l = k(N/i + b_2) - b_1h$. To prove that $|F'_i| > |F_i| - i$ we should count how many $h/k \in F_i$ fulfill $k(N/i + b_2) - b_1h > N$. Dividing both sides of the later inequality by k and operating we obtain

$$b_2 - b_1 \frac{h}{k} > \frac{N}{k} - \frac{N}{i} = N \frac{i-k}{ki} ,$$

 $b_2 \ge b_2 - b_1 \frac{h}{k} > N \frac{i-k}{ki} \ge 0 .$

To fulfill these inequalities it is required that k = i. Otherwise for any k < i and recalling that N is a multiple of $b_1i(i+1)$:

$$b_2 > N \frac{i-k}{ki} \ge b_1 \frac{i+1}{k} (i-k) > b_1$$
,

which is inconsistent with the assumption $b_2 < b_1$ in Theorem 1. Then, k = i implies $h/i < b_2/b_1 < 1$ and in F_i there are fewer than *i* irreducible fractions of the form h/i below b_2/b_1 , hence $|F'_i| > |F_i| - i$.

If $q < N/(b_1 i)$ we define g > 0 such that $q = N/(b_1 i) - g$; therefore, $l = k(N/i - gb_1 + b_2) - b_1 h$. Now, we need to count how many h/k in F_i have l > N,

$$b_2 - b_1 \frac{h}{k} - b_1 g > N \frac{i-k}{ki}$$
,

and there are no h/k which can fulfill this equation as $b_2 - b_1 g < 0$. Hence, $|F_i| = |F'_i|$ when $q < N/(b_1 i)$.

If $b_2 = 0$ we should show that there are no h/k in $|F_i|$ fulfilling $kb_1q - b_1h > N$. The largest possible value of q is $N/(b_1i)$ and therefore $kb_1q - b_1h \le kN/i - b_1h < N$, for i > 1, so there is no h/k fulfilling the previous condition and $|F_i| = |F'_i|$. Note that i = 1 and h/k = 0/1 would not have given $kb_1q - b_1h > N$ as $b_1q + b_2 \le N$ from the assumptions in Theorem 1.

Theorem 3. Let $N = b_1 \operatorname{lcm}(1, 2..., i_{\max})$, $\frac{N}{b_1(i+1)} < q \leq \frac{N}{b_1 i}$, with a_1/b_1 and a_2/b_2 forming a Farey pair, $b_1 > b_2$ and $i < i_{\max}$. Then

• For $b_1 > 1$:

$$I_N\left(\frac{a_1q+a_2}{b_1q+b_2}\right) = I_N\left(\frac{a_1}{b_1}\right) + s\left(\frac{N}{b_1}\sum_{j=1}^i\frac{\varphi(j)}{j} - q\Phi(i)\right) + O(i^2) , \qquad (5)$$

with s = +1 when $a_1/b_1 < a_2/b_2$ and s = -1 otherwise.

• For $a_1/b_1 = 0/1$ and $a_2/b_2 = 1/0$:

$$I_N\left(\frac{1}{q}\right) = 2 + N \sum_{j=1}^i \frac{\varphi(j)}{j} - q\Phi(i) \; .$$

Proof. To simplify equations we assume s = +1 in the following. We count the number of elements in $F_N^{\frac{a_1}{b_1}, \frac{a_1q+a_2}{b_1q+b_2}}$ using the bijective maps described in Theorem 1 and adding up the cardinalities of the sets involved from Corollary 2. Thanks to the fact that N is a multiple of all natural numbers i' such that $i' \leq i$ we can establish bijections between F'_i and $F_N^{\frac{a_1p+a_2}{b_1p+b_2}, \frac{a_1(p-1)+a_2}{b_1(p-1)+b_2}}$ where p can take all values fulfilling $\frac{N}{b_1(i'+1)} , covering all elements in <math>F_N^{\frac{a_1}{b_1}, \frac{a_1q+a_2}{b_1q+b_2}}$ when scanning over all $i' \leq i$ and the corresponding p. For a given i' the number of values p takes is given by

$$\frac{N}{b_1 i'} - \frac{N}{b_1 (i'+1)} = \frac{N}{b_1} \left(\frac{1}{i'} - \frac{1}{i'+1}\right)$$

In a first step we compute the number of elements in $F_N^{\frac{a_1}{b_1},\frac{a_1q'+a_2}{b_1q'+b_2}}$ with $q' = N/(b_1i)$,

$$I_N\left(\frac{a_1q'+a_2}{b_1q'+b_2}\right) - I_N\left(\frac{a_1}{b_1}\right) = \frac{N}{b_1}\sum_{i'=1}^{i-1}\left(\frac{1}{i'}-\frac{1}{i'+1}\right)(|F'_{i'}|-1)$$
$$= \frac{N}{b_1}\sum_{i'=1}^{i-1}\left[\left(\frac{1}{i'}-\frac{1}{i'+1}\right)\Phi(i')+O(i')\right]$$
$$= \frac{N}{b_1}\sum_{j=1}^{i-1}\frac{\varphi(j)}{j} - \frac{N}{b_1}\frac{\Phi(i-1)}{i} + O(i^2) .$$

In particular, when $b_2 = 0$ the term $O(i^2)$ does not appear according to Corollary 2. In a second step we compute the number of elements in $F_N^{\frac{a_1q'+a_2}{b_1q'+b_2}, \frac{a_1q+a_2}{b_1q+b_2}}$, that is, $\Phi(i)(q'-q)+O(i)$. Adding both contributions gives

$$I_N\left(\frac{a_1q + a_2}{b_1q + b_2}\right) - I_N\left(\frac{a_1}{b_1}\right) = \frac{N}{b_1} \sum_{j=1}^{i-1} \frac{\varphi(j)}{j} - \frac{N}{b_1} \frac{\Phi(i-1)}{i} + \Phi(i)\left(\frac{N}{b_1i} - q\right) + O(i^2)$$
$$= \frac{N}{b_1} \sum_{j=1}^{i} \frac{\varphi(j)}{j} - q\Phi(i) + O(i^2) ,$$

which demonstrates the theorem for s = 1. For s = -1, following the same steps leads to the desired result.

Corollary 4. Let $N = b_1 \operatorname{lcm}(1, 2, \dots, i_{\max})$ and $\frac{N}{b_1(i+1)} < q \leq \frac{N}{b_1 i}$, with $i < i_{\max}$. Then,

$$I_N\left(\frac{a_1q + a_2}{b_1q + b_2}\right) = I_N\left(\frac{a_1}{b_1}\right) + s\frac{3}{\pi^2}q\left(\frac{N^2}{b_1^2q^2} - \left\{\frac{N}{b_1q}\right\}^2\right) + O(N\delta_A(i)) ,$$

with $\delta_A(x)$ defined in (2). In particular, for $a_1/b_1 = 0/1$ and $a_2/b_2 = 1/0$,

$$I_N\left(\frac{1}{q}\right) = \frac{3}{\pi^2}q\left(\frac{N^2}{q^2} - \left\{\frac{N}{q}\right\}^2\right) + O(N\delta_A(i)) ,$$

and for $a_1/b_1 = 1/2$ and $a_2/b_2 = 1/1$,

$$I_N\left(\frac{q+1}{2q+1}\right) = \frac{|F_N|}{2} + \frac{3}{\pi^2}q\left(\frac{N^2}{2^2q^2} - \left\{\frac{N}{2q}\right\}^2\right) + O(N\delta_A(i)) .$$

Proof. The following known relations [11, 12] are needed:

$$\sum_{k=1}^{N} \varphi(k) = \frac{3}{\pi^2} N^2 + E(N), \qquad (6)$$

$$\sum_{k=1}^{N} \frac{\varphi(k)}{k} = \frac{6}{\pi^2} N + H(N) ,$$

$$E(x) = O(x \log^{2/3} x (\log \log x)^{4/3}) ,$$

$$E(x) = x H(x) + O(x \delta_A(x)) ,$$

with A > 0 and $\delta_A(x)$ is a decreasing factor. From the definitions of i, q, and N it follows that

$$i = \left\lfloor \frac{N}{qb_1} \right\rfloor = \frac{N}{qb_1} + O(1) ,$$

$$i < i_{\max} = (1 + o(1)) \log N/b_1$$

Inserting the above equalities in expression (5) of Theorem 3,

$$I_{N}\left(\frac{a_{1}q+a_{2}}{b_{1}q+b_{2}}\right) = I_{N}\left(\frac{a_{1}}{b_{1}}\right) + s\frac{N}{b_{1}}\frac{6}{\pi^{2}}i - sq\frac{3}{\pi^{2}}i^{2} + s\frac{N}{b_{1}}H(i) - sqE(i) + O(i^{2})$$

$$= I_{N}\left(\frac{a_{1}}{b_{1}}\right) + s\frac{N}{b_{1}}\frac{6}{\pi^{2}}i - sq\frac{3}{\pi^{2}}i^{2} + sq(iH(i) - E(i)) + O(i^{2})$$

$$= I_{N}\left(\frac{a_{1}}{b_{1}}\right) + s\frac{N}{b_{1}}\frac{6}{\pi^{2}}i - sq\frac{3}{\pi^{2}}i^{2} + O(N\delta_{A}(i))$$

$$= I_{N}\left(\frac{a_{1}}{b_{1}}\right) + s\frac{3}{\pi^{2}}\frac{N^{2}}{b_{1}^{2}q} - s\frac{3}{\pi^{2}}q\left\{\frac{N}{b_{1}q}\right\}^{2} + O(N\delta_{A}(i)) .$$

Theorem 5. Let N be $N = b_1 \operatorname{lcm}(1, 2, ..., i)$. Then the partial Francel sum over all Farey fractions in the range $\left[\frac{a_1}{b_1}, \frac{a_1 \frac{N}{b_1 i} + a_2}{b_1 \frac{N}{b_1 i} + b_2}\right]$ is given by the following expressions:

• For $a_1/b_1 = 0/1$, $a_2/b_2 = 1/0$ and for $a_1/b_1 = 1/2$, $a_2/b_2 = 0/1$:

$$P\left(\frac{0}{1}, \frac{1}{N/i}\right) = \sum_{j=1}^{I_N\left(\frac{1}{N/i}\right)} \left|F_N(j) - \frac{j}{|F_N|}\right| = O(\log(N)\delta_B(\log N)) ,$$
$$P\left(\frac{1}{2}, \frac{N/(2i)}{N/i+1}\right) = \sum_{j=I_N\left(\frac{1}{2}\right)}^{I_N\left(\frac{N/(2i)}{N/i+1}\right)} \left|F_N(j) - \frac{j}{|F_N|}\right| = O(\log(N)\delta_B(\log N)) ,$$

with 0 < B < A. The same result holds for $a_1/b_1 = 1/2$, $a_2/b_2 = 1/1$.

• For $b_1 > 2$ and $b_2 < b_1$:

$$\sum_{j=I_N\left(\frac{a_1}{b_1}\right)}^{I_N\left(\frac{a_1}{b_1}\frac{N}{b_1}i+a_2\right)} \left|F_N(j) - \frac{j}{|F_N|}\right| \le \left|\frac{a_1}{b_1} - \frac{I_N\left(\frac{a_1}{b_1}\right)}{|F_N|}\right| O(iN) + O(i\delta_B(i)) ,$$

which cannot be further developed as no general expression for $I_N(a_1/b_1)$ is known.

Proof. By virtue of Theorem 1 the partial Franel sum under study is written as

$$P\left(\frac{a_1}{b_1}, \frac{a_1\frac{N}{b_1i} + a_2}{b_1\frac{N}{b_1i} + b_2}\right) = \sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1i'+1}}^{N} \sum_{n=2}^{|F'_{i'}|} \left| \frac{k(a_1q + a_2) - a_1h}{k(b_1q + b_2) - b_1h} - \frac{I_N\left(\frac{k(a_1q + a_2) - a_1h}{k(b_1q + b_2) - b_1h}\right)}{|F_N|} \right|$$

where the sum over n runs over the elements h/k in $F'_{i'}$, approximately $n = I_{i'}(h/k) + O(i')$. By virtue of Theorem 1 and Corollary 4

$$I_N\left(\frac{k(a_1q+a_2)-a_1h}{k(b_1q+b_2)-b_1h}\right) = I_N\left(\frac{a_1q+a_2}{b_1q+b_2}\right) + sI_{i'}\left(\frac{h}{k}\right) + O(i')$$

= $I_N\left(\frac{a_1}{b_1}\right) + s\frac{3}{\pi^2}\frac{N^2}{b_1^2q} - s\frac{3}{\pi^2}q\left\{\frac{N}{b_1q}\right\}^2 + s\frac{3}{\pi^2}\left\lfloor\frac{N}{b_1q}\right\rfloor^2\frac{h}{k} + O(N\delta_A(i'))$,

where we have used $i' = \left\lfloor \frac{N}{qb_1} \right\rfloor$. Furthermore

$$\frac{I_N\left(\frac{k(a_1q+a_2)-a_1h}{k(b_1q+b_2)-b_1h}\right)}{|F_N|} = \frac{I_N\left(\frac{a_1}{b_1}\right)}{|F_N|} + \frac{s}{b_1^2q} - \frac{sq}{N^2}\left\{\frac{N}{b_1q}\right\}^2 + \frac{s}{N^2}\left\lfloor\frac{N}{b_1q}\right\rfloor^2\frac{h}{k} + O\left(\frac{\delta_A(i')}{N}\right) + \frac{s}{b_1^2q}\left\lfloor\frac{N}{b_1q}\right\rfloor^2\frac{h}{k} + O\left(\frac{\delta_A(i')}{N}\right)$$

The Farey element inside the partial Franel sum is approximated as

$$\begin{aligned} \frac{k(a_1q+a_2)-a_1h}{k(b_1q+b_2)-b_1h} &= \frac{k(a_1q+a_2)-a_1h}{k(b_1q+b_2)-b_1h} - \frac{a_1}{b_1} + \frac{a_1}{b_1} \\ &= \frac{s}{b_1^2 q} \frac{1}{1+\frac{b_2}{qb_1}-\frac{h}{qk}} + \frac{a_1}{b_1} \\ &= \frac{s}{b_1^2 q} \left(1 - \frac{b_2}{qb_1} + \frac{h}{qk}\right) + \frac{a_1}{b_1} + O(1/q^3) ,\end{aligned}$$

where we have used $(b_1a_2 - a_1b_2) = s$. The partial Franel sum under study becomes

$$\sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1(i'+1)}+1}^{\frac{N}{b_1i'}} |F_{i'}'| \left| \frac{a_1}{b_1} - \frac{I_N\left(\frac{a_1}{b_1}\right)}{|F_N|} - \frac{sb_2}{b_1^3 q^2} + \frac{sq}{N^2} \left\{\frac{N}{b_1 q}\right\}^2 + O\left(\frac{\delta_A(i')}{N}\right) \right| ,$$

where the terms proportional to 1/q and h/k have canceled out leaving a negligible residue. The sum over n has been evaluated just by multiplying by $|F'_i|$ as the dependency on h/k disappeared. Evaluating the asymptotics of the sums of the individual terms within the absolute value gives

$$\sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1(i'+1)}+1}^{\frac{N}{b_1i'}} |F'_{i'}| = O(iN) ,$$

$$\sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1(i'+1)}+1}^{\frac{N}{b_1i'}} \frac{|F'_{i'}|}{q^2} = O\left(\frac{i^4}{N}\right) ,$$

$$\sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1i'}+1}^{\frac{N}{b_1i'}} |F'_{i'}| \frac{q}{N^2} = O(\log i) ,$$

$$\sum_{i'=1}^{i-1} \sum_{q=\frac{N}{b_1i'}+1}^{\frac{N}{b_1i'}} |F'_{i'}| \frac{\delta_A(i')}{N} = O(i\delta_B(i)) ,$$

with 0 < B < A. Keeping the two dominant terms gives

$$P\left(\frac{a_1}{b_1}, \frac{a_1\frac{N}{b_1i} + a_2}{b_1\frac{N}{b_1i} + b_2}\right) \le \left|\frac{a_1}{b_1} - \frac{I_N\left(\frac{a_1}{b_1}\right)}{|F_N|}\right| O(iN) + O(i\delta_B(i)) ,$$

which is the searched result for $b_1 > 2$. For $1 \le b_1 \le 2$ we have

$$\frac{0}{1} - \frac{I_N\left(\frac{0}{1}\right)}{|F_N|} = O(1/N^2) , \quad \frac{1}{2} - \frac{I_N\left(\frac{1}{2}\right)}{|F_N|} = O(1/N^2) , \quad \frac{1}{1} - \frac{I_N\left(\frac{1}{1}\right)}{|F_N|} = 0 ,$$

and $O(i\delta_B(i))$ dominates. The theorem is demonstrated.

Appendix

Table 1 illustrates the bijections between the first 90 elements in F_{60} and other Farey sequences of lower order.

i'	q	h/k	u/l	$I_N(\frac{u}{l})$	i'	q	h/k	u/l	$I_N(\frac{u}{l})$	i'	q	h/k	u/l	$I_N(\frac{u}{l})$
		$\in F_{i'}$	$\in F_N$				$\in F_{i'}$	$\in F_N$				$\in F_{i'}$	$\in F_N$	
-	-	-	$\frac{0}{1}$	1	1	32	$\frac{1}{1}$	$\frac{1}{31}$	31	3	18	$\frac{1}{3}$	$\frac{3}{53}$	61
1	60	$\frac{0}{1}$	$\frac{1}{60}$	2	1	31	$\frac{1}{1}$	$\frac{1}{30}$	32	3	18	$\frac{1}{2}$	$\frac{2}{35}$	62
1	60	$\frac{1}{1}$	$\frac{1}{59}$	3	2	30	$\frac{1}{2}$	$\frac{2}{59}$	33	3	18	$\frac{2}{3}$	$\frac{3}{52}$	63
1	59	$\frac{1}{1}$	$\frac{1}{58}$	4	2	30	$\frac{1}{1}$	$\frac{1}{29}$	34	3	18	$\frac{1}{1}$	$\frac{1}{17}$	64
1	58	$\frac{1}{1}$	$\frac{1}{57}$	5	2	29	$\frac{1}{2}$	$\frac{2}{57}$	35	3	17	$\frac{1}{3}$	$\frac{3}{50}$	65
1	57	$\frac{1}{1}$	$\frac{1}{56}$	6	2	29	$\frac{1}{1}$	$\frac{1}{28}$	36	3	17	$\frac{1}{2}$	$\frac{2}{33}$	66
1	56	$\frac{1}{1}$	$\frac{1}{55}$	7	2	28	$\frac{1}{2}$	$\frac{2}{55}$	37	3	17	$\frac{2}{3}$	$\frac{3}{49}$	67
1	55	$\frac{1}{1}$	$\frac{1}{54}$	8	2	28	$\frac{1}{1}$	<u>1</u> <u>27</u> <u>2</u>	38	3	17	$\frac{1}{1}$	$\frac{1}{16}$	68
1	54	$\frac{1}{1}$	$\frac{1}{53}$	9	2	27	$\frac{1}{2}$	53	39	3	16	$\frac{1}{3}$	$\frac{3}{47}$	69
1	53	$\frac{1}{1}$	$\frac{1}{52}$	10	2	27	1 1	$\frac{1}{26}$	40	3	16	$\frac{1}{2}$	$\frac{2}{31}$	70
1	52	$\frac{1}{1}$	$\frac{1}{51}$	11	2	26	$\frac{1}{2}$	$\frac{2}{51}$	41	3	16	$\frac{2}{3}$	$\frac{3}{46}$	71
1	51	$\frac{1}{1}$	$\frac{1}{50}$	12	2	26	$\frac{1}{1}$	$\frac{1}{25}$	42	3	16	$\frac{1}{1}$	$\frac{1}{15}$	72
1	50	$\frac{1}{1}$	$\frac{1}{49}$	13	2	25	$\frac{1}{2}$	$\frac{2}{49}$	43	4	15	$\frac{1}{4}$	$\frac{4}{59}$	73
1	49	$\frac{1}{1}$	$\frac{1}{48}$	14	2	25	$\frac{1}{1}$	$\frac{1}{24}$	44	4	15	$\frac{1}{3}$	$\frac{3}{44}$	74
1	48	$\frac{1}{1}$	$\frac{1}{47}$	15	2	24	$\frac{1}{2}$	$\frac{2}{47}$	45	4	15	$\frac{1}{2}$	$\frac{2}{29}$	75
1	47	1	$\frac{1}{46}$	16	2	24	1	$\frac{1}{23}$	46	4	15	2/3	$\frac{3}{43}$	76
1	46	1	$\frac{1}{45}$	17	2	23	<u>1</u> 2	$\frac{2}{45}$	47	4	15	$\frac{3}{4}$	$\frac{4}{57}$	77
1	45	$\frac{1}{1}$	$\frac{1}{44}$	18	2	23	$\frac{1}{1}$	$\frac{1}{22}$	48	4	15	$\frac{1}{1}$	$\frac{1}{14}$	78
1	44	$\frac{1}{1}$	$\frac{1}{43}$	19	2	22	$\frac{1}{2}$	$\frac{2}{43}$	49	4	14	$\frac{1}{4}$	$\frac{4}{55}$	79
1	43	1	$\frac{1}{42}$	20	2	22	1	$\frac{1}{21}$	50	4	14	$\frac{1}{3}$	$\frac{3}{41}$	80
1	42	1	$\frac{1}{41}$	21	2	21	1 2	$\frac{2}{41}$	51	4	14	1 2	$\frac{2}{27}$	81
1	41	1	$\frac{1}{40}$	22	2	21	1	$\frac{\frac{1}{20}}{20}$	52	4	14	$\frac{2}{3}$	$\frac{3}{40}$	82
1	40	1	$\frac{1}{39}$	23	3	20	1 3	$\frac{3}{59}$	53	4	14	$\frac{3}{4}$	$\frac{4}{53}$	83
1	39	1	1 38	24	3	20	1/2	$\frac{2}{39}$	54	4	14	1	$\frac{1}{13}$	84
1	38	1	$\frac{1}{37}$	25	3	20	2 3	$\frac{3}{58}$	55	4	13	1 4	$\frac{4}{51}$	85
1	37	1	1 36	26	3	20	1	$\frac{1}{19}$	56	4	13	1 3	$\frac{3}{38}$	86
1	36	1	1 35	27	3	19	1 3	3 56	57	4	13	1 2	$\frac{\frac{2}{25}}{25}$	87
1	35	1	1 34	28	3	19	1/2	$\frac{2}{37}$	58	4	13	2 3	$\frac{3}{37}$	88
1	34	1	1 33	29	3	19	2 3	$\frac{3}{55}$	59	4	13	$\frac{3}{4}$	$\frac{4}{49}$	89
1	33	$\frac{1}{1}$	$\frac{1}{32}$	30	3	19	$\frac{1}{1}$	$\frac{1}{18}$	60	4	13	$\frac{1}{1}$	$\frac{1}{12}$	90

Table 1: Correspondence between elements in $F_{i'}$, with 0 < i' < 5 and first 90 elements in F_N , given by u/l = h/(hq - k) with $N/(i' + 1) < q \leq N/i'$ and N = lcm(1, 2, 3, 4, 5) = 60. Note that the images of elements 1/1 and 0/1 of adjacent maps are equal and only the 1/1 case is shown on the table. The illustrated maps originate from the map M in Theorem 1 with $a_1/b_1 = 0/1$ and $a_2/b_2 = 1/0$.

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford Science Publications, 1996.
- [2] J. Franel, Les suites de Farey et le problème des nombres premiers, Nachr. von der Ges. der Wiss. zu Göttingen Math.-Phys. Kl. (1924), 198–201.

- [3] E. Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Nachr. von der Ges. der Wiss. zu Göttingen Math.-Phys. Kl. (1924), 202–206.
- [4] F. Dress, Discrépance des suites de Farey, J. Théor. Nombres Bordeaux 11 (1999), 345–367.
- [5] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith. 75 (1996), 351–374.
- [6] S. B. Guthery, A Motif of Mathematics: History and Application of the Mediant and the Farey Sequence, Docent Press, 2011.
- [7] C. Cobeli, M. Vâjâitu, and A. Zaharescu, On the intervals of a third between Farey fractions, Bull. Math. Soc. Sci. Math. Roumanie, 53 (2010), 239–250.
- [8] R. Tomás, From Farey sequences to resonance diagrams, *Phys. Rev. ST Accel. Beams* 17 (2014), 014001.
- [9] R. Tomás, Asymptotic behavior of a series of Euler's totient function $\varphi(k)$ times the index of 1/k in a Farey sequence, preprint, 2014. Available at https://arxiv.org/pdf/1406.6991.pdf.
- [10] R. Tomás, Equalities between greatest common divisors involving three coprime pairs, Notes Number Theory Discrete Math. 26 (2020), 5–7.
- [11] S. Kanemitsu, T. Kuzumaki, and M. Yoshimoto, Some sums involving Farey fractions II, J. Math. Soc. Japan 52 (2000), 915–947.
- [12] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.

2010 Mathematics Subject Classification: Primary 11B57; Secondary 11M26. Keywords: Farey sequence, Riemann hypothesis.

Received September 2 2021; revised version received September 5 2021; September 12 2021; January 2 2022; January 11 2022. Published in *Journal of Integer Sequences*, January 12 2022.

Return to Journal of Integer Sequences home page.