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Abstract

Let Fn denote the n’th Fibonacci number and let k be a positive integer. We find
necessary and sufficient conditions on s and t so that the function n 7→ gcd(Fn +
s, Fn+k + t) is unbounded.

1 Introduction

The Fibonacci sequence (Fn)n≥0 and Lucas sequence (Ln)n≥0 are defined by the recursions

F0 = 0, F1 = 1;Fn = Fn−1 + Fn−2, n ≥ 2;

and
L0 = 2, L1 = 1;Ln = Ln−1 + Ln−2, n ≥ 2.

In 1971, Dudley and Tucker [3] showed that gcd(Fn + s, Fn+1 + s) is unbounded for s = ±1.
In 2011, Chen [1] determined gcd(Fn + s, Fn+1 + s) for s ∈ {±1,±2} and proved that
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gcd(Fn + s, Fn+1 + s) is bounded for s 6= ±1. In 2018, Rahn and Kreh [7] determined
gcd(Fn+s, Fn+1+s) for s = ±3. In 2016, Spilker [8] proved that gcd(Fn+s, Fn+1+s) divides
s2 + (−1)n. In 2020, Chen and Pan [2] considered general second-order linear homogeneous
recurrence functions Wn. They proved a criterion of periodicity of gcd(Wn + s,Wn+k + t).
They transformed also problems about the gcd(Wn+s,Wn+k+t) with arbitrarily k into those
with k = 1 and calculated on this way some gcd(Wn + s,Wn+1 + t). In 2022, Hieu, Spilker,
and Thang [5] investigated the necessary and sufficient conditions on k ∈ N, s, t ∈ Z, so that
the function gcd(Fn + s, Fn+k + s) and the function gcd(Fn + s, Fn+1 + t) are unbounded.
They proposed the open problem to characterize the function gcd(Fn + s, Fn+k + t) for
k ∈ N, s, t ∈ Z. Let N0 denote the set of non-negative integers. In this article, given a
positive integer k, we investigate necessary and sufficient conditions on s, t ∈ Z (depend on
k), so that the function

Bk
s,t : N0 → N

n 7→ gcd(Fn + s, Fn+k + t)

is bounded (Theorem 1). If Bk
s,t is bounded, it is periodic (Theorem 2). In more detail, we

obtain the following results:

Theorem 1. Let s, t ∈ Z and n ∈ N0. The following assertions on Bk
s,t(n) are equivalent:

1. n 7→ Bk
s,t(n) is unbounded on N0;

2. (s, t) ∈ R := {±(Fj, Fj+k) : j ∈ Z};

3. ek∗s,t = 0,

where eks,t(n) := t2 − Lkst+ (−1)ks2 − (−1)nF 2
k and ek∗s,t := eks,t(0)e

k
s,t(1).

Theorem 2. If (s, t) /∈ R, then the function Bk
s,t(n) is simply periodic on N0, which means

there exists a positive integer p such that Bk
s,t(n+ p) = Bk

s,t(n) for all n ≥ 0. A period p ≤ c2

can be chosen where c :=
∣

∣ek∗s,t
∣

∣ such that

Fp ≡ F0 (mod c) and Fp+1 ≡ F1 (mod c).

2 Auxiliary results

The following lemma contains some well-known facts on (Fn)n≥0 and (Ln)n≥0, which we have
used. Notice that Fn and Ln can be extended to integer indices by the recursion.

Lemma 3 ([6]). Let k ∈ N, n,m ∈ Z. Then we have

(a) F 2
n − Fn−kFn+k = (−1)n−kF 2

k ;

(b) Fn+2k = LkFn+k − (−1)kFn;
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(c) Fm−n
2

divides Fm + Fn if
m− n

2
is an odd integer;

(d) Fm−n
2

divides Fm − Fn if
m− n

2
is an even integer;

(e)
L2
k

4
− (−1)k =

5

4
F 2
k ;

(f) 2Fn+k = LkFn + LnFk.

3 Proof of Theorem 1 and 2

Set B := Bk
s,t(n). We need the following lemma.

Lemma 4. Let s, t ∈ Z, n ∈ N0. Then

(a) B divides eks,t(n);

(b) B divides ek∗s,t.

Proof. By using Lemma 3 (a) we have:

F 2

n+k − FnFn+2k = (−1)nF 2

k .

By using Lemma 3 (b) we have:

F 2

n+k − Fn(LkFn+k − (−1)kFn) = (−1)nF 2

k .

Since Bk
s,t(n) = gcd(Fn + s, Fn+k + t), by applying

Fn+k ≡ −t (mod B) and Fn ≡ −s (mod B),

we deduce that
t2 − Lkst+ (−1)ks2 ≡ (−1)nF 2

k (mod B).

Hence, eks,t(n) ≡ 0 (mod B) and ek∗s,t ≡ 0 (mod B).

Corollary 5. If s, t ∈ Z and ek∗s,t 6= 0, then the function n 7→ Bk
s,t(n) is bounded on N0.

Proof of Theorem 1. Now, we give a proof of Theorem 1 by the implications (1) ⇒ (3) ⇒
(2) ⇒ (1).

(1) ⇒ (3): by Corollary 5.
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(3) ⇒ (2): We have

t2 − Lkst+ (−1)ks2 =

(

t− Lk

2
s

)2

+

(

(−1)k − L2
k

4

)

s2

=

(

t− Lk

2
s

)2

− 5

4
F 2

k s
2 (by Lemma 3 (e)).

Hence
(

t− Lk

2
s

)2

− 5

4
F 2

k s
2 = ±F 2

k . (1)

If s is even, from (1) we have Fk | t−
Lk

2
s. Hence,

t− Lk

2
s

Fk

−
√
5

2
s = (

t− Lk

2
s

Fk

+
s

2
)− s

√
5 + 1

2

is integer in the quadratic field Q(
√
5).

If s is odd, from (1) we have
t− Lk

2
s

Fk

=
c

2
where c is odd. Hence,

t− Lk

2

Fk

−
√
5

2
s =

c− s

2
+ s

√
5 + 1

2

is integer in the quadratic field Q(
√
5). By dividing F 2

k of two sides in (1), we have

±1 =

(

t− Lk

2
s

Fk

)2

− 5

4
s2

=

(

t− Lk

2
s

Fk

−
√
5

2
s

)(

t− Lk

2
s

Fk

+

√
5

2
s

)

.

These fractions are units in the quadratic field Q(
√
5), hence by [4, Theorem 257]

t− Lk

2
s

Fk

+

√
5

2
s = ±αj, where α :=

1 +
√
5

2
, j ∈ Z.

Since αj =
Lj + Fj

√
5

2
, we get s = ±Fj and

t = ±FjLk + FkLj

2
= ±Fj+k (by Lemma 3.f).

This implies (s, t) ∈ R.
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(2) ⇒ (1): If (s, t) = (Fj, Fj+k), we choose n such that
n− j

2
is an odd integer. Then

Fn−j

2

| Fn + Fj and Fn−j

2

| Fn+k + Fj+k (by Lemma 3 (c)).

If (s, t) = −(Fj, Fj+k), we choose n such that
n− j

2
is an even integer, then

Fn−j

2

| Fn+k − Fj+k and Fn−j

2

| Fn − Fj (by Lemma 3 (d) ).

Hence, Bk
s,t(n) is unbounded. The proof of Theorem 1 is completed.

Proof of Theorem 2. The proof of Theorem 2 is completely analogous to the one in [8] with
k = 1 and s = t. Set eks,t(n) := t2 −Lkst+ (−1)ks2 − (−1)nF 2

k and c :=
∣

∣eks,t(0)e
k
s,t(1)

∣

∣. Then
c 6= 0 and Bk

s,t(n) divides c for (s, t) 6∈ R. Then there is a positive integer p ≤ c2 such that

Fn ≡ Fn+p (mod c) for all n ∈ N.

We have Bk
s,t(n) = gcd(Fn + s, Fn+k + t) | c and Fn+p −Fn, Fn+k+p −Fn+k are divisible by c,

then

Bk
s,t(n) | ((Fn+p − Fn) + (Fn + s)) and Bk

s,t(n) | ((Fn+k+p − Fn+k) + (Fn+k + t)).

Thus,
Bk

s,t(n) | (Fn+p + s) and Bk
s,t(n) | (Fn+k+p + t).

This implies Bk
s,t(n) | gcd(Fn+k + s, Fn+p+k + t). Hence, Bk

s,t(n) | Bk
s,t(n + p). Similarly, we

have also Bk
s,t(n+ p) | Bk

s,t(n). Therefore, B
k
s,t(n+ p) = Bk

s,t(n).
This p is a period of Bk

s,t(n). However, a period p that we get by this method is not
necessarily the smallest positive one. For example, if we choose s = t = 2 and k = 1 then
we have c = 15 and Fn+80 ≡ Fn (mod 15). Hence p = 80 but 40 is also a period of B1

1,2(n)
and it is the smallest one.

Remark 6. If s = t, we obtain Theorem 7 in [5]. If k = 1, we obtain Theorem 8 in [5].

Remark 7. The same arguments as in the proof of Theorem 1 give the following result on
Lucas numbers.

Theorem 8. Let k ∈ N, s, t ∈ Z. The following assertions on Bk∗
s,t(n) are equivalent:

1. The function Bk∗
s,t(n) := gcd(Ln + s, Ln+k + t) is unbounded on N0;

2. (s, t) ∈ S := {±(Lj, Lj+k) : j ∈ Z};

3. t2 − Lkst+ (−1)ks2 = ±5F 2
k .
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