Generalization of Greatest Common Divisor of Shifted Fibonacci Numbers

Tran Quang Do and Luu Ba Thang ${ }^{1}$
Department of Mathematics and Informatics
Hanoi National University of Education
136 Xuan Thuy
Cau Giay
Hanoi
Vietnam
quangdo1501@gmail.com thanglb@hnue.edu.vn

Abstract

Let F_{n} denote the n 'th Fibonacci number and let k be a positive integer. We find necessary and sufficient conditions on s and t so that the function $n \mapsto \operatorname{gcd}\left(F_{n}+\right.$ $s, F_{n+k}+t$) is unbounded.

1 Introduction

The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ and Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ are defined by the recursions

$$
F_{0}=0, F_{1}=1 ; F_{n}=F_{n-1}+F_{n-2}, n \geq 2
$$

and

$$
L_{0}=2, L_{1}=1 ; L_{n}=L_{n-1}+L_{n-2}, n \geq 2
$$

In 1971, Dudley and Tucker [3] showed that $\operatorname{gcd}\left(F_{n}+s, F_{n+1}+s\right)$ is unbounded for $s= \pm 1$. In 2011, Chen [1] determined $\operatorname{gcd}\left(F_{n}+s, F_{n+1}+s\right)$ for $s \in\{ \pm 1, \pm 2\}$ and proved that

[^0]$\operatorname{gcd}\left(F_{n}+s, F_{n+1}+s\right)$ is bounded for $s \neq \pm 1$. In 2018, Rahn and Kreh [7] determined $\operatorname{gcd}\left(F_{n}+s, F_{n+1}+s\right)$ for $s= \pm 3$. In 2016, Spilker [8] proved that $\operatorname{gcd}\left(F_{n}+s, F_{n+1}+s\right)$ divides $s^{2}+(-1)^{n}$. In 2020, Chen and Pan [2] considered general second-order linear homogeneous recurrence functions W_{n}. They proved a criterion of periodicity of $\operatorname{gcd}\left(W_{n}+s, W_{n+k}+t\right)$. They transformed also problems about the $\operatorname{gcd}\left(W_{n}+s, W_{n+k}+t\right)$ with arbitrarily k into those with $k=1$ and calculated on this way some $\operatorname{gcd}\left(W_{n}+s, W_{n+1}+t\right)$. In 2022, Hieu, Spilker, and Thang [5] investigated the necessary and sufficient conditions on $k \in \mathbb{N}, s, t \in \mathbb{Z}$, so that the function $\operatorname{gcd}\left(F_{n}+s, F_{n+k}+s\right)$ and the function $\operatorname{gcd}\left(F_{n}+s, F_{n+1}+t\right)$ are unbounded. They proposed the open problem to characterize the function $\operatorname{gcd}\left(F_{n}+s, F_{n+k}+t\right)$ for $k \in \mathbb{N}, s, t \in \mathbb{Z}$. Let \mathbb{N}_{0} denote the set of non-negative integers. In this article, given a positive integer k, we investigate necessary and sufficient conditions on $s, t \in \mathbb{Z}$ (depend on k), so that the function
\[

$$
\begin{aligned}
B_{s, t}^{k}: \mathbb{N}_{0} & \rightarrow \mathbb{N} \\
n & \mapsto \operatorname{gcd}\left(F_{n}+s, F_{n+k}+t\right)
\end{aligned}
$$
\]

is bounded (Theorem 1). If $B_{s, t}^{k}$ is bounded, it is periodic (Theorem 2). In more detail, we obtain the following results:

Theorem 1. Let $s, t \in \mathbb{Z}$ and $n \in \mathbb{N}_{0}$. The following assertions on $B_{s, t}^{k}(n)$ are equivalent:

1. $n \mapsto B_{s, t}^{k}(n)$ is unbounded on \mathbb{N}_{0};
2. $(s, t) \in \mathcal{R}:=\left\{ \pm\left(F_{j}, F_{j+k}\right): j \in \mathbb{Z}\right\}$;
3. $e_{s, t}^{k *}=0$,
where $e_{s, t}^{k}(n):=t^{2}-L_{k} s t+(-1)^{k} s^{2}-(-1)^{n} F_{k}^{2}$ and $e_{s, t}^{k *}:=e_{s, t}^{k}(0) e_{s, t}^{k}(1)$.
Theorem 2. If $(s, t) \notin \mathcal{R}$, then the function $B_{s, t}^{k}(n)$ is simply periodic on \mathbb{N}_{0}, which means there exists a positive integer p such that $B_{s, t}^{k}(n+p)=B_{s, t}^{k}(n)$ for all $n \geq 0$. A period $p \leq c^{2}$ can be chosen where $c:=\left|e_{s, t}^{k *}\right|$ such that

$$
F_{p} \equiv F_{0}(\bmod c) \text { and } F_{p+1} \equiv F_{1}(\bmod c)
$$

2 Auxiliary results

The following lemma contains some well-known facts on $\left(F_{n}\right)_{n \geq 0}$ and $\left(L_{n}\right)_{n \geq 0}$, which we have used. Notice that F_{n} and L_{n} can be extended to integer indices by the recursion.

Lemma 3 ([6]). Let $k \in \mathbb{N}, n, m \in \mathbb{Z}$. Then we have
(a) $F_{n}^{2}-F_{n-k} F_{n+k}=(-1)^{n-k} F_{k}^{2}$;
(b) $F_{n+2 k}=L_{k} F_{n+k}-(-1)^{k} F_{n}$;
(c) $F_{\frac{m-n}{2}}$ divides $F_{m}+F_{n}$ if $\frac{m-n}{2}$ is an odd integer;
(d) $F_{\frac{m-n}{2}}$ divides $F_{m}-F_{n}$ if $\frac{m-n}{2}$ is an even integer;
(e) $\frac{L_{k}^{2}}{4}-(-1)^{k}=\frac{5}{4} F_{k}^{2}$;
(f) $2 F_{n+k}=L_{k} F_{n}+L_{n} F_{k}$.

3 Proof of Theorem 1 and 2

Set $B:=B_{s, t}^{k}(n)$. We need the following lemma.
Lemma 4. Let $s, t \in \mathbb{Z}, n \in \mathbb{N}_{0}$. Then
(a) B divides $e_{s, t}^{k}(n)$;
(b) B divides $e_{s, t}^{k *}$.

Proof. By using Lemma 3 (a) we have:

$$
F_{n+k}^{2}-F_{n} F_{n+2 k}=(-1)^{n} F_{k}^{2} .
$$

By using Lemma 3 (b) we have:

$$
F_{n+k}^{2}-F_{n}\left(L_{k} F_{n+k}-(-1)^{k} F_{n}\right)=(-1)^{n} F_{k}^{2} .
$$

Since $B_{s, t}^{k}(n)=\operatorname{gcd}\left(F_{n}+s, F_{n+k}+t\right)$, by applying

$$
F_{n+k} \equiv-t(\bmod B) \text { and } F_{n} \equiv-s(\bmod B)
$$

we deduce that

$$
t^{2}-L_{k} s t+(-1)^{k} s^{2} \equiv(-1)^{n} F_{k}^{2} \quad(\bmod B)
$$

Hence, $e_{s, t}^{k}(n) \equiv 0(\bmod B)$ and $e_{s, t}^{k *} \equiv 0(\bmod B)$.

Corollary 5. If $s, t \in \mathbb{Z}$ and $e_{s, t}^{k *} \neq 0$, then the function $n \mapsto B_{s, t}^{k}(n)$ is bounded on \mathbb{N}_{0}.
Proof of Theorem 1. Now, we give a proof of Theorem 1 by the implications $(1) \Rightarrow(3) \Rightarrow$ (2) $\Rightarrow(1)$.
$(1) \Rightarrow(3)$: by Corollary 5 .
$(3) \Rightarrow(2)$: We have

$$
\begin{aligned}
t^{2}-L_{k} s t+(-1)^{k} s^{2} & =\left(t-\frac{L_{k}}{2} s\right)^{2}+\left((-1)^{k}-\frac{L_{k}^{2}}{4}\right) s^{2} \\
& =\left(t-\frac{L_{k}}{2} s\right)^{2}-\frac{5}{4} F_{k}^{2} s^{2} \quad(\text { by Lemma } 3 \text { (e)) }
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(t-\frac{L_{k}}{2} s\right)^{2}-\frac{5}{4} F_{k}^{2} s^{2}= \pm F_{k}^{2} \tag{1}
\end{equation*}
$$

If s is even, from (1) we have $F_{k} \left\lvert\, t-\frac{L_{k}}{2} s\right.$. Hence,

$$
\frac{t-\frac{L_{k}}{2} s}{F_{k}}-\frac{\sqrt{5}}{2} s=\left(\frac{t-\frac{L_{k}}{2} s}{F_{k}}+\frac{s}{2}\right)-s \frac{\sqrt{5}+1}{2}
$$

is integer in the quadratic field $\mathbb{Q}(\sqrt{5})$.
If s is odd, from (1) we have $\frac{t-\frac{L_{k}}{2} s}{F_{k}}=\frac{c}{2}$ where c is odd. Hence,

$$
\frac{t-\frac{L_{k}}{2}}{F_{k}}-\frac{\sqrt{5}}{2} s=\frac{c-s}{2}+s \frac{\sqrt{5}+1}{2}
$$

is integer in the quadratic field $\mathbb{Q}(\sqrt{5})$. By dividing F_{k}^{2} of two sides in (1), we have

$$
\begin{aligned}
\pm 1 & =\left(\frac{t-\frac{L_{k}}{2} s}{F_{k}}\right)^{2}-\frac{5}{4} s^{2} \\
& =\left(\frac{t-\frac{L_{k}}{2} s}{F_{k}}-\frac{\sqrt{5}}{2} s\right)\left(\frac{t-\frac{L_{k}}{2} s}{F_{k}}+\frac{\sqrt{5}}{2} s\right) .
\end{aligned}
$$

These fractions are units in the quadratic field $\mathbb{Q}(\sqrt{5})$, hence by [4, Theorem 257]

$$
\frac{t-\frac{L_{k}}{2} s}{F_{k}}+\frac{\sqrt{5}}{2} s= \pm \alpha^{j}, \text { where } \alpha:=\frac{1+\sqrt{5}}{2}, j \in \mathbb{Z}
$$

Since $\alpha^{j}=\frac{L_{j}+F_{j} \sqrt{5}}{2}$, we get $s= \pm F_{j}$ and

$$
t= \pm \frac{F_{j} L_{k}+F_{k} L_{j}}{2}= \pm F_{j+k} \quad(\text { by Lemma 3.f })
$$

This implies $(s, t) \in \mathcal{R}$.
$(2) \Rightarrow(1):$ If $(s, t)=\left(F_{j}, F_{j+k}\right)$, we choose n such that $\frac{n-j}{2}$ is an odd integer. Then

$$
\left.F_{\frac{n-j}{2}} \right\rvert\, F_{n}+F_{j} \text { and } \left.F_{\frac{n-j}{2}} \right\rvert\, F_{n+k}+F_{j+k} \text { (by Lemma } 3 \text { (c)). }
$$

If $(s, t)=-\left(F_{j}, F_{j+k}\right)$, we choose n such that $\frac{n-j}{2}$ is an even integer, then

$$
\left.F_{\frac{n-j}{2}} \right\rvert\, F_{n+k}-F_{j+k} \text { and } \left.F_{\frac{n-j}{2}} \right\rvert\, F_{n}-F_{j}(\text { by Lemma } 3 \text { (d) }) .
$$

Hence, $B_{s, t}^{k}(n)$ is unbounded. The proof of Theorem 1 is completed.
Proof of Theorem 2. The proof of Theorem 2 is completely analogous to the one in [8] with $k=1$ and $s=t$. Set $e_{s, t}^{k}(n):=t^{2}-L_{k} s t+(-1)^{k} s^{2}-(-1)^{n} F_{k}^{2}$ and $c:=\left|e_{s, t}^{k}(0) e_{s, t}^{k}(1)\right|$. Then $c \neq 0$ and $B_{s, t}^{k}(n)$ divides c for $(s, t) \notin \mathcal{R}$. Then there is a positive integer $p \leq c^{2}$ such that

$$
F_{n} \equiv F_{n+p}(\bmod c) \text { for all } n \in \mathbb{N} .
$$

We have $B_{s, t}^{k}(n)=\operatorname{gcd}\left(F_{n}+s, F_{n+k}+t\right) \mid c$ and $F_{n+p}-F_{n}, F_{n+k+p}-F_{n+k}$ are divisible by c, then

$$
B_{s, t}^{k}(n) \mid\left(\left(F_{n+p}-F_{n}\right)+\left(F_{n}+s\right)\right) \text { and } B_{s, t}^{k}(n) \mid\left(\left(F_{n+k+p}-F_{n+k}\right)+\left(F_{n+k}+t\right)\right) .
$$

Thus,

$$
B_{s, t}^{k}(n) \mid\left(F_{n+p}+s\right) \text { and } B_{s, t}^{k}(n) \mid\left(F_{n+k+p}+t\right)
$$

This implies $B_{s, t}^{k}(n) \mid \operatorname{gcd}\left(F_{n+k}+s, F_{n+p+k}+t\right)$. Hence, $B_{s, t}^{k}(n) \mid B_{s, t}^{k}(n+p)$. Similarly, we have also $B_{s, t}^{k}(n+p) \mid B_{s, t}^{k}(n)$. Therefore, $B_{s, t}^{k}(n+p)=B_{s, t}^{k}(n)$.

This p is a period of $B_{s, t}^{k}(n)$. However, a period p that we get by this method is not necessarily the smallest positive one. For example, if we choose $s=t=2$ and $k=1$ then we have $c=15$ and $F_{n+80} \equiv F_{n}(\bmod 15)$. Hence $p=80$ but 40 is also a period of $B_{1,2}^{1}(n)$ and it is the smallest one.

Remark 6. If $s=t$, we obtain Theorem 7 in [5]. If $k=1$, we obtain Theorem 8 in [5].
Remark 7. The same arguments as in the proof of Theorem 1 give the following result on Lucas numbers.

Theorem 8. Let $k \in \mathbb{N}, s, t \in \mathbb{Z}$. The following assertions on $B_{s, t}^{k *}(n)$ are equivalent:

1. The function $B_{s, t}^{k *}(n):=\operatorname{gcd}\left(L_{n}+s, L_{n+k}+t\right)$ is unbounded on \mathbb{N}_{0};
2. $(s, t) \in \mathcal{S}:=\left\{ \pm\left(L_{j}, L_{j+k}\right): j \in \mathbb{Z}\right\}$;
3. $t^{2}-L_{k} s t+(-1)^{k} s^{2}= \pm 5 F_{k}^{2}$.

4 Acknowledgment

The authors would like to thank the referee for useful comments and suggestions.

References

[1] K.-W. Chen, Greatest common divisors in shifted Fibonacci sequences, J. Integer Sequences 14 (2011), Article 11.4.7.
[2] K.-W. Chen and Y.-R. Pan, Greatest common divisors of shifted Horadam sequences, J. Integer Sequences 23 (2020), Article 20.5.8.
[3] U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences, Fibonacci Quart. 9 (1971), 89-91.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1954.
[5] L. D. Hieu, J. Spilker, and L. B. Thang, The greatest common divisor of shifted Fibonacci numbers, J. Integer Sequences 25 (2022), Article 22.1.7.
[6] T. Koshy, Fibonacci and Lucas Numbers With Applications, Wiley, 2001.
[7] A. Rahn and M. Kreh, Greatest common divisors of shifted Fibonacci sequence revisited, J. Integer Sequences 21 (2018), Article 18.6.7.
[8] J. Spilker, The GCD of the shifted Fibonacci sequence, in Jürgen Sander, Jörn Steuding, and Rasa Steuding, eds., From Arithmetic to Zeta-Functions, Springer, 2016, pp. 473483.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Keywords: Fibonacci number, Lucas number, recurrence, greatest common divisor.
(Concerned with sequences A000045 and A000204.)

Received October 18 2022; revised versions received November 8 2022; November 112022. Published in Journal of Integer Sequences, November 132022.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Corresponding author.

