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Abstract

Let F}, and L,, denote the Fibonacci and Lucas numbers, respectively. We generalize
the well-known formula ged(Feni3 + 1, Fonte + 1) = Lgpto if n is even. We find
conditions on a, s, and ¢ so that the functions n — gcd(F, + s, Fji4q + $) and n —
ged(F, + s, Fp1 + t) are unbounded. Finally, we generalize this for three shifted
Fibonacci numbers.
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1 Introduction
The Fibonacci sequence (F,),>0 and Lucas sequence (L,),>o are defined by the recursions
FOIO,Flzl;Fn: n,1+Fn,2,n22;

and
LO = 2,L1 = 1,Ln = Ln—l + Ln_Q,TL Z 2.

Notice that F,, and L, can be extended to integer indices by the recursion. In 1971, Dudley
and Tucker [3] showed that ged(F,, + s, F,+1 + s) is unbounded for s = +1. In 2011, Chen
[1] determined ged(F, + s, Frq1 + 5) for s € {£1,+£2} and proved that ged(F, + s, Fp1 + 5)
is bounded for s # £1. In 2018, Rahn and Kreh [7] determined ged(F,, + s, Fyi1 + )
for s = 4+3. In 2016, Spilker [8] proved that gcd(F), + s, F,.1 + s) divides s* + (—=1)". If
s # +1 then the function n — ged(F,, + s, F,+1 + s) is periodic. In 2020, Chen and Pan [2]
considered general second-order linear homogeneous recurrence functions W,,. They proved
a criterion of periodicity of ged(W,, + s, W,1x + t). They transformed problems about the
ged(W,, + s, W,k + t) with arbitrarily & into those with & = 1 and calculated on this way
some ged(W,, + s, W, 41 + t).

Let N denote the set of positive integers, Ny denote the set of non-negative integers, and
Z denote the set of integers. In this article, we generalize these ideas to compute

ged(Faansopri + (=1)°, Fognaoprive + (—1)°Fyy)

in Theorem 2. Then in Theorem 7, we investigate necessary and sufficien conditions on
a € N, s € Z, so that the function

Da,s :Ng — N
n > ged(F, + s, Fyia + 9)

is bounded. In Theorem 8, we treat the same problem for Cs;(n) := ged(F, + s, Flii1 + 1).
If D, s(n) and Cs¢(n) are bounded, they are periodic (Theorem 9 and Theorem 10). Finally,
we prove that the function

Ea75 : NO — N
n ged(F, + 8, Fria+ 8, Frioa + 5)

is bounded without exceptions.

2 Results

Firstly, we have a theorem on the gcd of Fibonacci numbers with shift 1 and with general
shift k > 1.



Theorem 1. Let a,b,i € Z with i =27 + 1 and set
D := ged(Foantapti + (—1)°, Foaniaprirt + (—1)°).

Then
D— Fonioyj, ifan+j is odd;
Lontorj, if an+j is even

for all n € Ny.

Theorem 2. Let a,b,i,k € Z withi=2j — 1,k > 1 and set
D = ged(Foantapti + (—1)°, Foantapirk + (—1)"Fioq).

Then
D — Fan-i—b-‘rj ng(Lan—i-b-i-j—la Fk)7 Zf an +] LS Odda
Lan+b+j ng(FarH»bJrjfla Fk)7 Zf an +j is even,

for all n € Ny.

Corollary 3. Let a,b,i € Z with 1 =2j — 1. Then

Fan+b+j7 ’lf an +] 18 Odd;

ged(Foantopri + (—1)°, Foantoprivt) = . .
Lontvtj, if an+j is even,

for all n € Ny.

Corollary 4. Let a,b,i,7 € Z with i =25 — 1. Then

Fan+b+j7 Zf an +] is Odda'

ged(Fogniopri + (= 1)%, Fognioprira + (—1)°) = - -
Lontvtj, if an+ 7 is even,

for all n € Ny.

Corollary 5. Let a,b,i,j € Z with 1 =2j — 1. Then

AFpivri, ifan+ 7 is odd;
ged(Faant2v4i + (1), Faansaviivs + (—1)°) = I f ] :
ALgnybrj, if an+j is even,
for all n € Ny, where
) — {2, ifan+b+j =1 (mod 3);

1 otherwise.
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Corollary 6. Let a,b,i € Z with 1 =2j — 1. Then

MNFongvrj,  if an+ 7 is odd;

cd(Foansavri + (—1)°, Fognpopriva + (—1)72) =
g ( 2an—+2b+ ( ) 2an+2b+i+4 ( ) ) {5Lan+b+j7 Zfa/n+j 18 even,

for n € Ny, where
o {3, ifan+b+ j =3 (mod 4);

1,  otherwise,

and
5 {3, ifan+b+j=1 (mod 4);

1,  otherwise.
The next theorem characterizes the boundedness of D, s(n) := ged(F, + s, Flrq + ).
Theorem 7. Let a € N,s € Z, and set
S:={(1,1),(1,-1),(3,1),(3, - 1)} U{(4k + 2, Fors1) : k > 0} U{(4k + 2, —Fp41) : k > 0}.
Then D, s(n) is bounded on Ny if and only if (a,s) ¢ S.

Let e, ¢(n) := s*+st—t*+(—1)" and e}, := e, ,(0)es(1). We characterize the boundedness
of
Csi(n) == ged(F, + s, Frp1 +1).

Theorem 8. Let s,t € Z and n € Ny. The following assertions on Cs4(n) are equivalent:
a) n— Csi(n) is unbounded on Ny;
b) (5,8) € R i= {£(Fy1, ), £(F,~Fy1)  j € No}:
c) e*(s,t) =0.

The next two theorems show the boundedness of D, (n) and C;,(n) respectively imply
periodicity.

Theorem 9. Leta € N and s € Z. If (a,s) ¢ S, then the function D, s(n) is simply periodic
on Ny, which means there ezists a positive integer p such that D, s(n +p) = Do s(n) for all
n > 0. A period p < ¢ can be chosen such that

F, =0 (mod ¢) and F,,1; =1 (mod c) (1)
where ¢ .= |F* — s*(L, — 1+ (—1)*1)2].

Theorem 10. If (s,t) ¢ R, then the function Csi(n) is simply periodic on Ny. A period
p < ¢ can be chosen by (1), where ¢ := |(s* + st — t*)? — 1].
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A theorem on three shifted Fibonacci numbers is given in the following last main result.
Theorem 11. Let a € N and s € Z and set
Eos(n) = ged(Fy + 5, Fypa + 5, Froa + 5),
for all n € Ny. Then we have
a) FE,s(n) divides d where

d-— $(La =14+ (=1)""),  if s #0;
T\ F, if s = 0.

b) The function n — E, ((n) is simply periodic.

3 Auxiliary results

In the following proofs we need some well-known facts on the sequences (F},),>0 and (L )n>0,
which we have collected in the following lemma:

Lemma 12 ([6]). Let n,m € Z. Then we have
a) ng<Fn7 Fn+1) = 1;

b) ged(Ly, Lyy1) = 1;

= (1) Fy;

= (=1)"Ly;
gcd(Fm,F) Focd(mon);

)

c) F

d) L

e)

f) F,. | F, if and only if m | n;
g) Fon = FyLy;

h) L, = Fu1+ Fo1;
i) 5F, = Lpy1+ L1
§) Fonin = FnLn + (=1)"" Fp, m > m;
k) F

)

)

) B

)

)

1

5F =L Ln m+1 +Lm an ms
m m+n—F Fn+1+Fm an7
n m+2nt; F7721+n - (_1)m+1F33

2 .
0 L4n+2_2 L3y



4 Proofs of Theorems 1 and 2 and Corollaries 3—6

Proof of Theorem 1. Using the property ged(u,v) = ged(u, v — u), observe that
D = ged(Fogntop+i + (—1)b7 Foantav12;)-
By Lemma 12.g, we have
F2an+2b+2j = an+b+jLan+b+j-
If an + j is odd, then by Lemma 12.k, it follows that
Foantopyi + (—1)b = FuntorjLantbrjt1-
This implies
D = Funtorj ng(Lan+b+j+17 LUerbJrj)u

and hence by Lemma 12.b, we have D = Fj,, 144;.
If an + j is even, then

b
Founzopri + (—1)° = an+b+j+1Lantb4j-

and
D = Lan+b+j ng(Fan+b+j+17 Fan+b+j) - Lan—i—b—&-j'

Proof of Theorem 2. Using Lemma 12.m, we deduce that
Foantootitk = FrFoantovtitt + Fr—1Foantopi-
Thus, by ged(u,v) = ged(u, v — Fy_1u), we have
D = ged(Faantavri + (—1)°, FiFaantoprivn)-
Using Lemma 12.g, we deduce that

F2an+2b+i+1 - Fan+b+jLan+b+j-

Now we consider two cases: an + j is odd or an + j is even.
If an 4+ j is odd, then by Lemma 12.j, we have

Foansavsi + (1) = FangvjLansvrjo1 + (=1 4+ (=1)" = Fonipij Lansbsjo1.
Thus, combining with Lemma 12.b, we have
D = Funyirj €ed(Lantbrj—15 Frlanybrj) = Fanvvrj 8¢d(Lantorj—1, Fi).
If an + j is even, then by Lemma 12.k, we deduce that
Faantobri + (=1)" = Lansorj Fansorjor + (1) 7+ (=1)° = Langorj Fantorj—1-
Thus, combining with Lemma 12.a, we have that

D= Lan+b+j ng(Fan+b+j—la FkFan+b+j) = Lan+b+j ng(Fan-l—b—i-j—h Fk)



Proof of Corollary 3 and Corollary 4. Notice that we have

ged(Lantbrj—1, F1) = ged(Fontprj—1, F1) = 1,

and
ged(Lan+brj-1, F2) = ged(Fapprj-1, F2) = 1.
So we obtain Corollary 3 and Corollary 4 from Theorem 2 by setting k =1 or k = 2. m

Proof of Corollary 5. We have

{Fm =0 (mod 2), if and only if m =0 (mod 3);
0

L,, =0 (mod 2), if and only if m = 0 (mod 3);
and
2, ifan+b+j=1 (mod 3);
ng(Fan-i-b-‘rj—la F3) = . J ( )
1, otherwise;
and
2, ifan+b+j5=1 (mod 3);
ged(Lantotj-1, F3) = . J ( )
1, otherwise.
Therefore, we conclude that Corollary 5 is the case k = 3 in Theorem 2. O

Example 13. If a = 3,0 = 0,7 = 3 and n is even, we get
ged(Fonys + 1, Fonie + 1) = Lapo.

Proof of Corollary 6. The proof is similar to the proof of Corollary 5 by using the fact that
F, =3 and

F,, =0 (mod 3) if and only if m =0 (mod 4);

L, =0 (mod 3) if and only if m =2 (mod 4).

5 Proof of Theorem 7

Let D = D, s(n). We need two lemmas.

Lemma 14. For alla € N;s € Z, and n € Ny, we have D, s(n) divides the value
F2 4 (=1)"s*(Ly — 1+ (—1)th).



Proof. We apply Lemma 12.n and get on the one hand
Fn+2aFn - F2-|—a == (—1)n+1Fa2,

n

hence
—5F, 19, — 8* = (=1)""'F? (mod D).

On the other hand, we have
Fn+2a - Fn+aLa + (_1)a+1Fn

by Lemma 12.j and
Frio,=—sL,+ (—1)% (mod D).

Together, this gives us
3Ly + (=1)*™ = 1) = (=1)""'F?  (mod D).

Lemma 15. Let (a,s) € Z* and a > 0. Then
1) F?+s*(L, — 1+ (—1)"") = 0 is impossible.
2) F? — s*(Ly — 1+ (—1)%TY) = 0 implies (a,s) € S.

Proof. Let (a, s) be a solution of the equation F? + s?(L, — 1+ (—1)"') = 0. If a = 1, then
1+ s% =0, a contradiction. If @ > 1, then L, — 1+ (—=1)*"* > L, —2 > 0; hence F, = 0 and
s = 0, also a contradiction.

Let (a,s) be a solution of the equation F? — s*(L, — 1+ (—1)*"') = 0. Then we have

F? =s*(L,— 1+ (=1)*™).

a

Now we consider two cases for a.

First case: a is odd, that is F? = s®L,. If a = 1, then 1 = s? and (a,s) = (1,£1) € S. We
can assume a > 3. Let p a prime divisor of L,, hence of F,. Since

ged(Fy, Ly) = ged(Fy,, L, — F,) = ged(Fy, 2F, 1) € {1,2},

we get p =2, L, = 2% F, = |s| 2% a > 1. Since a is odd and F}, is even, we see from Table 1
that a« =3 (mod 6) and F, # 0 (mod 4); hence a =1, L, = 4 and (a,s) = (3,£1) € S.

a 35 7 9 11
E, 2 5 13 34 89
F, mod2|{0 1 1 0 1
F, mod4|2 1 3 2 1

Table 1: Residue



Second case: a is even, that is F? = s*(L, —2). If a = 0 (mod 4), say a = 4k, k > 0,
then F? = s?5F3 by Lemma 12.p and 5 is square, a contradiction. Now we can assume
a =2 (mod 4), say a =4k + 2,k > 0. Then L, — 2 = L3, ., by Lemma 12.0 and

2 S ) 2 _ 2
F2k+1 (L4k+2 o 2) - F2k+1L2k:+1 - F4k+2

by Lemma 12.g. This implies (a, s) = (4k + 2, £F541) € S. The proof is completed.

Proof of Theorem 7. First, let (a,s) € N x Z, (a,s) ¢ S. By Lemma 15, we have
F?2 4 (=1)"s*(Ly — 1+ (=1)*") £ 0 for n € {0,1}

and by Lemma 14, the function D, s(n) is bounded.
On the other hand, if (a,s) € S, then we see that D, ; is unbounded, since for n € N by
Theorem 1, we have

Di1(4n+1) = Ly, and Dy 1 (4n — 1) = I,
and by Corollary 5, we have
Ds1(4n+1) = AFopyq > Foppg and Dy g (4n+ 1) = ALayi1 > Lop.
If n = 4m + 2k + 3 then

ged(Fy + Fopgr, Foyaryo + Fopgr) = ged(Fy + Fopy1, Fogarge — F)
gcd(Fumior+s + Fory1s Famrokts — Fiamyonya)
gcd(Fomi1 Lomtart2, Famiartalori1)

( by Lemma 12.j and 12.k)

Lomtok+2 8cd(Foma1, Fomiokiologr1) (by Lemma 12.g) .

Then Loy, top+o divides Dygyo g, ., (n). Hence, Dypio m,, ., (n) is unbounded.
Same argumentation, we obtain the unboundedness of D12 _p,, (7). So all (a,s) € S
generate unbounded functions D, s(n). O

Remark 16. The same arguments as in the proof of Theorem 7 give the following result on
Lucas numbers.

Theorem 17. Let a € N, s € Z. Then the conditions a) and b) are equivalent:
a) The function D} (n) = ged(Ly, + 8, Lyta + 8) is unbounded on No;
b) a=4b,s = £Lo, for b € N.



6 Proof of Theorem 8

We need the following lemma.
Lemma 18. Let s,t € Z,n € Ny. Then
1) C' = Cs(n) divides esi(n);
2) C divides e} ;.
Proof. Let n € Ny and define M (n) and @ as follows:

R Fn+2 Fn+1 - 11
M(n) = (Fn+1 P ) and @ = (1 O) :
Then M(n+1) = QM (n) and M(n) = Q"M (0). Taking determinants gives

(=)™ =det M(n) = F,oF, — F2 4

n

=(t+s)s—t* (mod C).
Hence e,(n) =0 (mod C') and e}, =0 (mod C).
Corollary 19. If s,t € Z and e}, # 0, then the function n + Cj;(n) is bounded on N.

Proof. Now, we give a proof of Theorem 8 by the circle (a) = (¢) = (b) = (a).
(a) = (c) by Corollary 19.
(¢) = (b) We have
+1 =" 4 st — t*

by tye
— )52
(s + 5 —5(3)
C 2s+t+tV5 2s+t—tV/5
- 5 5 :
These fractions are units in the quadratic field Q(v/5); hence by [4, Theorem 257]
25 +t+1tV5 ; 1 D
S—i_—w— = +a’, where o := +\/_, jEZ.
2 2
L+ F/5

Since o/ = , we get t = £F; and

2

Li—t  Fg+F_—F .
]2 =4 J 2] J ::I:ijl,]EZ.

s ==
Since F_; = (—=1)7T1F}, we get (s,t) € R.
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(b) = (a) Let i > 2. By Jacobson [5] we have
Fyis =0 (mod 2"™);  Fhig_y =1 (mod 2°).
Hence, by Lemma 12.m
Foigj = FoigFjiq + Foig 1 I
=F; (mod 2")

and Fyy ; = F_; = (=1)TF; (mod 2°*'). We see that the function n — Cj;(n) is
unbounded on N if (s,t) = —(F}, Fj41) and (s,t) = (=1)/(Fj,—F;_1),j € No. If (s,t) =
(F}, Fj-1),j € Ny, then

Csp(n) = ged(Fo + Fj, Fugr + Fip)

(
= ged(Fooy + Fioy, B + F5)
= ged(F,— 2+Fj 90, Fni + Fjq)
= ged(F,- jo Fn J+1+1)

Since Fy,, = F,,, L., and Fy, 11 + 1 = Fp, L,y if mis odd, we have for m is odd
Cs,t(2m + ]) = ng<F2ma Fomq1 + 1) = Fn ng(an Lm+1) = Fu,

so Cs4(n) is unbounded. The last case (s,t) = (—=1)7*H(F), —Fj_1) = (F_;, F_(;-1)),J € Ng
is proved in a similar way. Thus, the proof of Theorem 8 is completed.

Remark 20. It is an open problem to characterize the general function

n— ged(F, + s, Fig +t),a € Nys,t € Z.

7 Proof of periodicity (Theorem 9 and 10)

The proof of Theorem 9 and Theorem 10 are completely analogous to the one in [8] with
a=1. Set ¢, == F?+ (—=1)"s*(L, — 1 + (=1)*"") and ¢ := |cgey|, then ¢ # 0 and D, «(n)
divides ¢ for (a,s) € S. Then there is an integer 1 < p < ¢? such that F,,, = F, (mod ¢)
for all n € N. This p is a period of D, s(n). Same argumentation, we obtain the proof of
Theorem 10. [l

A period p that we get by this method is not necessarily the smallest positive one. For
example, if a = 1,s = 2 in Theorem 9 or t = s = 2 in Theorem 10, then we have ¢ = 15 and
Fhis0 = F, (mod 15). Hence p = 80, but 40 is also a period of D; 5(n) and it is the smallest
one [1].

One cannot always get the smallest period by this method. For example, if a = 4,5 = —2
in Theorem 9; hence ¢ = 319. Then 10 is the smallest period, but Fjy # Fy (mod 319). If
s = 7,t = 2 in Theorem 10, then we have ¢ = 3480 and p = 840, but 120 is the smallest
period and Fip9 #Z Fy (mod 3480).
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8 Gecd of three shifted Fibonacci numbers

Proof of Theorem 11. Fix a > 0,n > 0 and s € Z, and set E(n) = E, s(n). Then by Lemma
12.j, we have
Fn+2a = Fn+aLa + (_1)a+an7

which gives us that
—s=—5L, — (—1)""'s  (mod E(n)).

So E(n) divides s(L, — 1+ (—=1)™!). If s = 0, then by Lemma 12.e we have
E(n) = ged(Fy, Fuias Frioa) = Facdimntant2a) = Faedna) = ged(Fy, Fy).
Hence, F(n) divides F,. Let
. {S(La 1+ (=1, if s #£0;
Fy, it s =0.

Then d # 0, and we deduce that E(n) divides d. In particular, the function F(n) is bounded.
As in the proof of Theorem 9, we conclude that this function is simply periodic. O

Remark 21. If s = 0, then E(a) = gcd(Fy, Fau, F34) = F, so arbitrarily large values are
possible.
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