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École Polytechnique

Institut Polytechnique de Paris
Palaiseau
France

hieu.le@polytechnique.edu

Jürgen Spilker
Institute of Mathematics
University of Freiburg

79085 Freiburg im Breisgau
Germany

juergen.spilker@t-online.de

Luu Ba Thang
Department of Mathematics and Informatics

Hanoi National University of Education
136 Xuan Thuy

Cau Giay
Hanoi

Vietnam
thanglb@hnue.edu.vn

Abstract

Let Fn and Ln denote the Fibonacci and Lucas numbers, respectively. We generalize
the well-known formula gcd(F6n+3 + 1, F6n+6 + 1) = L3n+2 if n is even. We find
conditions on a, s, and t so that the functions n 7→ gcd(Fn + s, Fn+a + s) and n 7→
gcd(Fn + s, Fn+1 + t) are unbounded. Finally, we generalize this for three shifted
Fibonacci numbers.
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1 Introduction

The Fibonacci sequence (Fn)n≥0 and Lucas sequence (Ln)n≥0 are defined by the recursions

F0 = 0, F1 = 1;Fn = Fn−1 + Fn−2, n ≥ 2;

and
L0 = 2, L1 = 1;Ln = Ln−1 + Ln−2, n ≥ 2.

Notice that Fn and Ln can be extended to integer indices by the recursion. In 1971, Dudley
and Tucker [3] showed that gcd(Fn + s, Fn+1 + s) is unbounded for s = ±1. In 2011, Chen
[1] determined gcd(Fn + s, Fn+1 + s) for s ∈ {±1,±2} and proved that gcd(Fn + s, Fn+1 + s)
is bounded for s 6= ±1. In 2018, Rahn and Kreh [7] determined gcd(Fn + s, Fn+1 + s)
for s = ±3. In 2016, Spilker [8] proved that gcd(Fn + s, Fn+1 + s) divides s2 + (−1)n. If
s 6= ±1 then the function n 7→ gcd(Fn + s, Fn+1 + s) is periodic. In 2020, Chen and Pan [2]
considered general second-order linear homogeneous recurrence functions Wn. They proved
a criterion of periodicity of gcd(Wn + s,Wn+k + t). They transformed problems about the
gcd(Wn + s,Wn+k + t) with arbitrarily k into those with k = 1 and calculated on this way
some gcd(Wn + s,Wn+1 + t).

Let N denote the set of positive integers, N0 denote the set of non-negative integers, and
Z denote the set of integers. In this article, we generalize these ideas to compute

gcd(F2an+2b+i + (−1)b, F2an+2b+i+k + (−1)bFk−1)

in Theorem 2. Then in Theorem 7, we investigate necessary and sufficien conditions on
a ∈ N, s ∈ Z, so that the function

Da,s : N0 → N

n 7→ gcd(Fn + s, Fn+a + s)

is bounded. In Theorem 8, we treat the same problem for Cs,t(n) := gcd(Fn + s, Fn+1 + t).
If Da,s(n) and Cs,t(n) are bounded, they are periodic (Theorem 9 and Theorem 10). Finally,
we prove that the function

Ea,s : N0 → N

n 7→ gcd(Fn + s, Fn+a + s, Fn+2a + s)

is bounded without exceptions.

2 Results

Firstly, we have a theorem on the gcd of Fibonacci numbers with shift 1 and with general
shift k ≥ 1.

2



Theorem 1. Let a, b, i ∈ Z with i = 2j + 1 and set

D := gcd(F2an+2b+i + (−1)b, F2an+2b+i+1 + (−1)b).

Then

D =

{

Fan+b+j, if an+ j is odd;

Lan+b+j, if an+ j is even

for all n ∈ N0.

Theorem 2. Let a, b, i, k ∈ Z with i = 2j − 1, k ≥ 1 and set

D := gcd(F2an+2b+i + (−1)b, F2an+2b+i+k + (−1)bFk−1).

Then

D =

{

Fan+b+j gcd(Lan+b+j−1, Fk), if an+ j is odd;

Lan+b+j gcd(Fan+b+j−1, Fk), if an+ j is even,

for all n ∈ N0.

Corollary 3. Let a, b, i ∈ Z with i = 2j − 1. Then

gcd(F2an+2b+i + (−1)b, F2an+2b+i+1) =

{

Fan+b+j, if an+ j is odd;

Lan+b+j, if an+ j is even,

for all n ∈ N0.

Corollary 4. Let a, b, i, j ∈ Z with i = 2j − 1. Then

gcd(F2an+2b+i + (−1)b, F2an+2b+i+2 + (−1)b) =

{

Fan+b+j, if an+ j is odd;

Lan+b+j, if an+ j is even,

for all n ∈ N0.

Corollary 5. Let a, b, i, j ∈ Z with i = 2j − 1. Then

gcd(F2an+2b+i + (−1)b, F2an+2b+i+3 + (−1)b) =

{

λFan+b+j, if an+ j is odd;

λLan+b+j, if an+ j is even,

for all n ∈ N0, where

λ :=

{

2, if an+ b+ j ≡ 1 (mod 3);

1, otherwise.
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Corollary 6. Let a, b, i ∈ Z with i = 2j − 1. Then

gcd(F2an+2b+i + (−1)b, F2an+2b+i+4 + (−1)b2) =

{

λFan+b+j, if an+ j is odd;

δLan+b+j, if an+ j is even,

for n ∈ N0, where

λ :=

{

3, if an+ b+ j ≡ 3 (mod 4);

1, otherwise,

and

δ :=

{

3, if an+ b+ j ≡ 1 (mod 4);

1, otherwise.

The next theorem characterizes the boundedness of Da,s(n) := gcd(Fn + s, Fn+a + s).

Theorem 7. Let a ∈ N, s ∈ Z, and set

S := {(1, 1), (1,−1), (3, 1), (3,−1)} ∪ {(4k + 2, F2k+1) : k ≥ 0} ∪ {(4k + 2,−F2k+1) : k ≥ 0}.

Then Da,s(n) is bounded on N0 if and only if (a, s) /∈ S.

Let es,t(n) := s2+st−t2+(−1)n and e∗s,t := es,t(0)es,t(1). We characterize the boundedness
of

Cs,t(n) := gcd(Fn + s, Fn+1 + t).

Theorem 8. Let s, t ∈ Z and n ∈ N0. The following assertions on Cs,t(n) are equivalent:

a) n 7→ Cs,t(n) is unbounded on N0;

b) (s, t) ∈ R := {±(Fj−1, Fj),±(Fj ,−Fj−1) : j ∈ N0};

c) e∗(s, t) = 0.

The next two theorems show the boundedness of Da,s(n) and Cs,t(n) respectively imply
periodicity.

Theorem 9. Let a ∈ N and s ∈ Z. If (a, s) /∈ S, then the function Da,s(n) is simply periodic
on N0, which means there exists a positive integer p such that Da,s(n+ p) = Da,s(n) for all
n ≥ 0. A period p ≤ c2 can be chosen such that

Fp ≡ 0 (mod c) and Fp+1 ≡ 1 (mod c) (1)

where c := |F 4
a − s4(La − 1 + (−1)a+1)2|.

Theorem 10. If (s, t) /∈ R, then the function Cs,t(n) is simply periodic on N0. A period
p ≤ c2 can be chosen by (1), where c := |(s2 + st− t2)2 − 1|.

4



A theorem on three shifted Fibonacci numbers is given in the following last main result.

Theorem 11. Let a ∈ N and s ∈ Z and set

Ea,s(n) := gcd(Fn + s, Fn+a + s, Fn+2a + s),

for all n ∈ N0. Then we have

a) Ea,s(n) divides d where

d :=

{

s(La − 1 + (−1)a+1), if s 6= 0;

Fa, if s = 0.

b) The function n 7→ Ea,s(n) is simply periodic.

3 Auxiliary results

In the following proofs we need some well-known facts on the sequences (Fn)n≥0 and (Ln)n≥0,
which we have collected in the following lemma:

Lemma 12 ([6]). Let n,m ∈ Z. Then we have

a) gcd(Fn, Fn+1) = 1;

b) gcd(Ln, Ln+1) = 1;

c) F−n = (−1)n+1Fn;

d) L−n = (−1)nLn;

e) gcd(Fm, Fn) = Fgcd(m,n);

f) Fm | Fn if and only if m | n;

g) F2n = FnLn;

h) Ln = Fn+1 + Fn−1;

i) 5Fn = Ln+1 + Ln−1;

j) Fm+n = FmLn + (−1)n+1Fm−n, m ≥ n;

k) Fm+n = FnLm + (−1)nFm−n, m ≥ n;

l) 5Fn = LmLn−m+1 + Lm−1Ln−m;

m) Fm+n = FmFn+1 + Fm−1Fn;

n) Fm+2nFm − F 2
m+n = (−1)m+1F 2

n ;

o) L4n+2 − 2 = L2
2n+1;

p) 5F 2
2n = L4n − 2.
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4 Proofs of Theorems 1 and 2 and Corollaries 3–6

Proof of Theorem 1. Using the property gcd(u, v) = gcd(u, v − u), observe that

D = gcd(F2an+2b+i + (−1)b, F2an+2b+2j).

By Lemma 12.g, we have
F2an+2b+2j = Fan+b+jLan+b+j.

If an+ j is odd, then by Lemma 12.k, it follows that

F2an+2b+i + (−1)b = Fan+b+jLan+b+j+1.

This implies
D = Fan+b+j gcd(Lan+b+j+1, Lan+b+j),

and hence by Lemma 12.b, we have D = Fan+b+j.
If an+ j is even, then

F2an+2b+i + (−1)b = Fan+b+j+1Lan+b+j.

and
D = Lan+b+j gcd(Fan+b+j+1, Fan+b+j) = Lan+b+j.

Proof of Theorem 2. Using Lemma 12.m, we deduce that

F2an+2b+i+k = FkF2an+2b+i+1 + Fk−1F2an+2b+i.

Thus, by gcd(u, v) = gcd(u, v − Fk−1u), we have

D = gcd(F2an+2b+i + (−1)b, FkF2an+2b+i+1).

Using Lemma 12.g, we deduce that

F2an+2b+i+1 = Fan+b+jLan+b+j.

Now we consider two cases: an+ j is odd or an+ j is even.
If an+ j is odd, then by Lemma 12.j, we have

F2an+2b+i + (−1)b = Fan+b+jLan+b+j−1 + (−1)an+b+j + (−1)b = Fan+b+jLan+b+j−1.

Thus, combining with Lemma 12.b, we have

D = Fan+b+j gcd(Lan+b+j−1, FkLan+b+j) = Fan+b+j gcd(Lan+b+j−1, Fk).

If an+ j is even, then by Lemma 12.k, we deduce that

F2an+2b+i + (−1)b = Lan+b+jFan+b+j−1 + (−1)an+b+j−1 + (−1)b = Lan+b+jFan+b+j−1.

Thus, combining with Lemma 12.a, we have that

D = Lan+b+j gcd(Fan+b+j−1, FkFan+b+j) = Lan+b+j gcd(Fan+b+j−1, Fk).
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Proof of Corollary 3 and Corollary 4. Notice that we have

gcd(Lan+b+j−1, F1) = gcd(Fan+b+j−1, F1) = 1,

and
gcd(Lan+b+j−1, F2) = gcd(Fan+b+j−1, F2) = 1.

So we obtain Corollary 3 and Corollary 4 from Theorem 2 by setting k = 1 or k = 2.

Proof of Corollary 5. We have

{

Fm ≡ 0 (mod 2), if and only if m ≡ 0 (mod 3);

Lm ≡ 0 (mod 2), if and only if m ≡ 0 (mod 3);

and

gcd(Fan+b+j−1, F3) =

{

2, if an+ b+ j ≡ 1 (mod 3);

1, otherwise;

and

gcd(Lan+b+j−1, F3) =

{

2, if an+ b+ j ≡ 1 (mod 3);

1, otherwise.

Therefore, we conclude that Corollary 5 is the case k = 3 in Theorem 2.

Example 13. If a = 3, b = 0, i = 3 and n is even, we get

gcd(F6n+3 + 1, F6n+6 + 1) = L3n+2.

Proof of Corollary 6. The proof is similar to the proof of Corollary 5 by using the fact that
F4 = 3 and

{

Fm ≡ 0 (mod 3) if and only if m ≡ 0 (mod 4);

Lm ≡ 0 (mod 3) if and only if m ≡ 2 (mod 4).

5 Proof of Theorem 7

Let D = Da,s(n). We need two lemmas.

Lemma 14. For all a ∈ N, s ∈ Z, and n ∈ N0, we have Da,s(n) divides the value
F 2
a + (−1)ns2(La − 1 + (−1)a+1).
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Proof. We apply Lemma 12.n and get on the one hand

Fn+2aFn − F 2
n+a = (−1)n+1F 2

a ,

hence
−sFn+2a − s2 ≡ (−1)n+1F 2

a (mod D).

On the other hand, we have

Fn+2a = Fn+aLa + (−1)a+1Fn

by Lemma 12.j and
Fn+2a ≡ −sLa + (−1)as (mod D).

Together, this gives us

s2(La + (−1)a+1 − 1) ≡ (−1)n+1F 2
a (mod D).

Lemma 15. Let (a, s) ∈ Z2 and a > 0. Then

1) F 2
a + s2(La − 1 + (−1)a+1) = 0 is impossible.

2) F 2
a − s2(La − 1 + (−1)a+1) = 0 implies (a, s) ∈ S.

Proof. Let (a, s) be a solution of the equation F 2
a + s2(La − 1+ (−1)a+1) = 0. If a = 1, then

1+ s2 = 0, a contradiction. If a > 1, then La − 1+ (−1)a+1 ≥ La − 2 > 0; hence Fa = 0 and
s = 0, also a contradiction.

Let (a, s) be a solution of the equation F 2
a − s2(La − 1 + (−1)a+1) = 0. Then we have

F 2
a = s2(La − 1 + (−1)a+1).

Now we consider two cases for a.

First case: a is odd, that is F 2
a = s2La. If a = 1, then 1 = s2 and (a, s) = (1,±1) ∈ S. We

can assume a ≥ 3. Let p a prime divisor of La, hence of Fa. Since

gcd(Fa, La) = gcd(Fa, La − Fa) = gcd(Fa, 2Fa−1) ∈ {1, 2},

we get p = 2, La = 22α, Fa = |s| 2α, α ≥ 1. Since a is odd and Fa is even, we see from Table 1
that a ≡ 3 (mod 6) and Fa 6≡ 0 (mod 4); hence α = 1, La = 4 and (a, s) = (3,±1) ∈ S.

a 3 5 7 9 11

Fa 2 5 13 34 89
Fa mod 2 0 1 1 0 1
Fa mod 4 2 1 3 2 1

Table 1: Residue
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Second case: a is even, that is F 2
a = s2(La − 2). If a ≡ 0 (mod 4), say a = 4k, k > 0,

then F 2
a = s25F 2

2k by Lemma 12.p and 5 is square, a contradiction. Now we can assume
a ≡ 2 (mod 4), say a = 4k + 2, k ≥ 0. Then La − 2 = L2

2k+1 by Lemma 12.o and

F 2
2k+1(L4k+2 − 2) = F 2

2k+1L
2
2k+1 = F 2

4k+2

by Lemma 12.g. This implies (a, s) = (4k + 2,±F2k+1) ∈ S. The proof is completed.

Proof of Theorem 7. First, let (a, s) ∈ N× Z, (a, s) /∈ S. By Lemma 15, we have

F 2
a + (−1)ns2(La − 1 + (−1)a+1) 6= 0 for n ∈ {0, 1}

and by Lemma 14, the function Da,s(n) is bounded.
On the other hand, if (a, s) ∈ S, then we see that Da,s is unbounded, since for n ∈ N by

Theorem 1, we have

D1,1(4n+ 1) = L2n and D1,−1(4n− 1) = F2n,

and by Corollary 5, we have

D3,1(4n+ 1) = λF2n+1 ≥ F2n+1 and D3,−1(4n+ 1) = λL2n+1 ≥ L2n+1.

If n = 4m+ 2k + 3 then

gcd(Fn + F2k+1, Fn+4k+2 + F2k+1) = gcd(Fn + F2k+1, Fn+4k+2 − Fn)

= gcd(F4m+2k+3 + F2k+1, F4m+6k+5 − F4m+2k+3)

= gcd(F2m+1L2m+2k+2, F4m+4k+4L2k+1)

( by Lemma 12.j and 12.k)

= L2m+2k+2 gcd(F2m+1, F2m+2k+2L2k+1) (by Lemma 12.g) .

Then L2m+2k+2 divides D4k+2,F2k+1
(n). Hence, D4k+2,F2k+1

(n) is unbounded.
Same argumentation, we obtain the unboundedness of D4k+2,−F2k+1

(n). So all (a, s) ∈ S
generate unbounded functions Da,s(n).

Remark 16. The same arguments as in the proof of Theorem 7 give the following result on
Lucas numbers.

Theorem 17. Let a ∈ N, s ∈ Z. Then the conditions a) and b) are equivalent:

a) The function D∗
a,s(n) = gcd(Ln + s, Ln+a + s) is unbounded on N0;

b) a = 4b, s = ±L2b for b ∈ N.
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6 Proof of Theorem 8

We need the following lemma.

Lemma 18. Let s, t ∈ Z, n ∈ N0. Then

1) C = Cs,t(n) divides es,t(n);

2) C divides e∗s,t.

Proof. Let n ∈ N0 and define M(n) and Q as follows:

M(n) :=

(

Fn+2 Fn+1

Fn+1 Fn

)

and Q :=

(

1 1
1 0

)

.

Then M(n+ 1) = QM(n) and M(n) = QnM(0). Taking determinants gives

(−1)n+1 = detM(n) = Fn+2Fn − F 2
n+1

= (Fn+1 + Fn)Fn − F 2
n+1

≡ (t+ s)s− t2 (mod C).

Hence es,t(n) ≡ 0 (mod C) and e∗s,t ≡ 0 (mod C).

Corollary 19. If s, t ∈ Z and e∗s,t 6= 0, then the function n 7→ Cs,t(n) is bounded on N.

Proof. Now, we give a proof of Theorem 8 by the circle (a) ⇒ (c) ⇒ (b) ⇒ (a).
(a) ⇒ (c) by Corollary 19.
(c) ⇒ (b) We have

±1 = s2 + st− t2

= (s+
t

2
)2 − 5(

t

2
)2

=
2s+ t+ t

√
5

2
· 2s+ t− t

√
5

2
.

These fractions are units in the quadratic field Q(
√
5); hence by [4, Theorem 257]

2s+ t+ t
√
5

2
= ±αj , where α :=

1 +
√
5

2
, j ∈ Z.

Since αj =
Lj + Fj

√
5

2
, we get t = ±Fj and

s = ±Lj − t

2
= ±Fj+1 + Fj−1 − Fj

2
= ±Fj−1, j ∈ Z.

Since F−j = (−1)j+1Fj, we get (s, t) ∈ R.
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(b) ⇒ (a) Let i ≥ 2. By Jacobson [5] we have

F2i3 ≡ 0 (mod 2i+1); F2i3−1 ≡ 1 (mod 2i+1).

Hence, by Lemma 12.m
F2i3+j = F2i3Fj+1 + F2i3−1Fj

≡ Fj (mod 2i+1)

and F2i3−j ≡ F−j ≡ (−1)j+1Fj (mod 2i+1). We see that the function n 7→ Cs,t(n) is
unbounded on N if (s, t) = −(Fj, Fj+1) and (s, t) = (−1)j(Fj,−Fj−1), j ∈ N0. If (s, t) =
(Fj, Fj−1), j ∈ N0, then

Cs,t(n) = gcd(Fn + Fj, Fn+1 + Fj+1)

= gcd(Fn−1 + Fj−1, Fn + Fj)

= gcd(Fn−2 + Fj−2, Fn−1 + Fj−1)

= gcd(Fn−j, Fn−j+1 + 1).

Since F2m = FmLm and F2m+1 + 1 = FmLm+1 if m is odd, we have for m is odd

Cs,t(2m+ j) = gcd(F2m, F2m+1 + 1) = Fm gcd(Lm, Lm+1) = Fm,

so Cs,t(n) is unbounded. The last case (s, t) = (−1)j+1(Fj,−Fj−1) = (F−j, F−(j−1)), j ∈ N0

is proved in a similar way. Thus, the proof of Theorem 8 is completed.

Remark 20. It is an open problem to characterize the general function

n 7→ gcd(Fn + s, Fn+a + t), a ∈ N, s, t ∈ Z.

7 Proof of periodicity (Theorem 9 and 10)

The proof of Theorem 9 and Theorem 10 are completely analogous to the one in [8] with
a = 1. Set cn := F 2

a + (−1)ns2(La − 1 + (−1)a+1) and c := |c0c1| , then c 6= 0 and Da,s(n)
divides c for (a, s) 6∈ S. Then there is an integer 1 ≤ p ≤ c2 such that Fn+p ≡ Fn (mod c)
for all n ∈ N. This p is a period of Da,s(n). Same argumentation, we obtain the proof of
Theorem 10.

A period p that we get by this method is not necessarily the smallest positive one. For
example, if a = 1, s = 2 in Theorem 9 or t = s = 2 in Theorem 10, then we have c = 15 and
Fn+80 ≡ Fn (mod 15). Hence p = 80, but 40 is also a period of D1,2(n) and it is the smallest
one [1].

One cannot always get the smallest period by this method. For example, if a = 4, s = −2
in Theorem 9; hence c = 319. Then 10 is the smallest period, but F10 6≡ F0 (mod 319). If
s = 7, t = 2 in Theorem 10, then we have c = 3480 and p = 840, but 120 is the smallest
period and F120 6≡ F0 (mod 3480).
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8 Gcd of three shifted Fibonacci numbers

Proof of Theorem 11. Fix a > 0, n ≥ 0 and s ∈ Z, and set E(n) = Ea,s(n). Then by Lemma
12.j, we have

Fn+2a = Fn+aLa + (−1)a+1Fn,

which gives us that
−s ≡ −sLa − (−1)a+1s (mod E(n)).

So E(n) divides s(La − 1 + (−1)a+1). If s = 0, then by Lemma 12.e we have

E(n) = gcd(Fn, Fn+a, Fn+2a) = Fgcd(n,n+a,n+2a) = Fgcd(n,a) = gcd(Fn, Fa).

Hence, E(n) divides Fa. Let

d :=

{

s(La − 1 + (−1)a+1), if s 6= 0;

Fa, if s = 0.

Then d 6= 0, and we deduce that E(n) divides d. In particular, the function E(n) is bounded.
As in the proof of Theorem 9, we conclude that this function is simply periodic.

Remark 21. If s = 0, then E(a) = gcd(Fa, F2a, F3a) = Fa so arbitrarily large values are
possible.
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