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Abstract

We present a few algorithms and methods to count fixes of permutations acting on

monotone Boolean functions.

1 Introduction

Let B denote the set {0, 1} and Bn the set of n-element sequences of B. A Boolean function
with n variables is any function from Bn into B. There are 2n elements in Bn and 22

n

Boolean functions with n variables. There is the order relation in B (namely: 0 ≤ 0, 0 ≤ 1,
1 ≤ 1) and the partial order in Bn: for any two elements: x = (x1, . . . , xn), y = (y1, . . . , yn)
in Bn,

x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ n.

The function h : Bn → B is monotone if

x ≤ y ⇒ h(x) ≤ h(y).

Let Dn denote the set of monotone functions with n variables and let dn denote |Dn|. Known
values of dn, for n = 0, . . . , 8 are presented in the table at the end of this paper. The values dn
for n ≤ 4 were published by Dedekind [6], Church [4, 5] gave the values d5 and d7, Ward [14]
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the value d6, and the last known value d8 was published by Wiedemann [15]. Dedekind
numbers were also considered in [1, 2, 3, 7, 13].

We have the partial order in Dn defined as follows:

g ≤ h if and only if g(x) ≤ h(x) for all x ∈ Bn.

We represent the elements of Dn as strings of bits of length 2n. Two elements of D0 will
be represented as 0 and 1; any element g ∈ D1 can be represented as a concatenation
g(0) ∗ g(1), where g(0), g(1) ∈ D0 and g(0) ≤ g(1). Hence, D1 = {00, 01, 11}. Each
element g ∈ D2 is a concatenation (string) of four bits: g(00) ∗ g(10) ∗ g(01) ∗ g(11) which
can be represented as a concatenation g0 ∗ g1, where g0, g1 ∈ D1 and g0 ≤ g1. Hence,
D2 = {0000, 0001, 0011, 0101, 0111, 1111}. Similarly any element g ∈ Dn can be represented
as a concatenation g0 ∗ g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1.

Let Sn denote the set of permutations on {1, . . . , n}. Every permutation π ∈ Sn defines
the permutation on Bn by π(x) = x ◦ π (we treat each element x ∈ Bn as a function
x : {1, . . . , n} → {0, 1}). Note that x ≤ y if and only if π(x) ≤ π(y). The permutation π

also generates the permutation on Dn. Namely, by π(g) = g ◦π. Note that π(g) is monotone
if g is monotone. Two functions f, g ∈ Dn are equivalent if there is a permutation π ∈ Sn

such that f = π(g). By Rn we denote the set of equivalence classes and by rn we denote the
number of the equivalence classes. Known values of rn (for n ≤ 8) are given in the table at
the end of this paper. The number of the equivalence classes can be computed by Burnside’s
lemma; see [10, §38]. Namely,

rn =
1

n!

∑

π∈Sn

|Fix(π,Dn)|,

where Fix(π,Dn) is the set of fixes of the permutation π acting on Dn. A function f ∈ Dn

is a fix of π if π(f) = f .
In 1985 and 1986 Liu and Hu [8, 9] used Burnside’s lemma to compute rn for all n ≤ 7.

Recently, Pawelski [11] computed r8.
In this paper we propose a new framework to study monotone Boolean functions and

present a few algorithms and methods to count fixes of permutations acting on Dn. The
main contributions of the paper are Theorem 4 and Lemma 6 which give formulas for the
set of fixes of the composition π ◦ ρ of two permutations, provided π and ρ satisfy certain
conditions. A special case of Lemma 6 was used by Pawelski [11] to count and generate
fixes of several permutations acting on Dn. For completeness, in Sections 6.5 and 6.6, we
present a method which was used by Pawelski [11] to compute fixes of the permutation
(12)(34)(56)(78) acting on D8.

2 Posets

A poset (partially ordered set) (S,≤) consists of a set S (called the carrier) together with a
binary relation (partial order) ≤ which is reflexive, transitive and antisymmetric. For two
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posets (S,≤) and (T,≤) by S × T we denote the cartesian product with the order defined
as follows: (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. For two disjoint posets (S,≤) and (T,≤) by
S + T we denote the disjoint union (sum) with the order defined as follows:

x ≤ y iff (x, y ∈ S and x ≤ y) or (x, y ∈ T and x ≤ y).

Given two posets (S,≤) and (T,≤) a function f : S → T is monotone, if x ≤ y implies
f(x) ≤ f(y). By T S we denote the poset of all monotone functions from S to T with the
partial order defined as follows:

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ S.

In this paper we use the following notation:

• An denotes an antichain of order n, i.e. a poset of n elements, where no two distinct
elements are related. We only deal with antichains with the carrier being a finite subset
of natural numbers.

• B denotes the poset of two bits {0, 1} ordered by 0 ≤ 0, 0 ≤ 1, 1 ≤ 1.

• Bn denotes the poset BAn of all (monotone) functions from An into B. Note that each
function from An to B is monotone. The poset Bn is isomorphic to

– the poset of all subsets of {1, . . . , n} ordered by the inclusion,

– the poset of all n-strings of bits, where (x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi for
all i.

• Dn denotes the poset BBn

of all monotone Boolean functions from Bn into B, which
are called monotone Boolean functions of n variables.

• Pn denotes the path (or chain) Pn = {p1 < · · · < pn}. Note that BPn = Pn+1.

We will use the following lemma which is a part of the folklore and can be easily proved.

Lemma 1. For three posets R, S, T ,
(1) If S and T are disjoint, then the poset RS+T is isomorphic to RS ×RT .
(2) The poset RS×T is isomorphic to (RS)T and to (RT )S.

As a corollary we have the following lemma. Similar lemmas in other formulations
were used by Wiedemann [15], by Fidytek, Mostowski, Somla and Szepietowski [7], and
by Campo [2] in order to compute dn = |Dn|.

Lemma 2.

(a) Ak+m = Ak + Am

(b) Bk+m = Bk ×Bm
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(c) Dk+m = (Dk)
Bm

Proof.

(a) is obvious.

(b) Bk+m = BAk+m = BAk+Am = BAk ×BAm = Bk ×Bm.

(c) Dk+m = BBk+m

= BBk×Bm

= (BBk

)B
m

= (Dk)
Bm

.

3 Arrays

Let M(S) denote the array of the poset S. For i, j ∈ S, we have M(S)[i, j] = 1 if i ≤ j, and
M(S)[i, j] = 0 otherwise. For example, for the poset D1 = {00 < 01 < 11}, its array

M(D1) =





1 1 1
0 1 1
0 0 1





The poset D1 is equal (isomorphic) to the poset of the path P3 = {a < b < c}.
The elements of M(S) describe monotone functions from the poset B = {0, 1} to S. If

M(S)[i, j] = 1 then there exists a monotone function with f(0) = i and f(1) = j. Thus, if
we add the elements of M(S) we obtain |SB|—the number of monotone functions from B to
S. For example,

Sum(M(D1)) = 6 = |DB
1 | = |(BB)B| = |BB×B| = |BB2

| = |D2| = d2,

where Sum(M(D1)) denotes the sum of all elements of the array M(D1). Similarly, for every
n ≥ 2, we have

Sum(M(Dn)) = |DB
n | = |(BBn

)B| = |BBn×B| = |BBn+1

| = |Dn+1| = dn+1.

Consider the product M(S)2 = M(S)×M(S). Then M(S)2[i, j] = |{k ∈ S : i ≤ k ≤ j}|
which is the number of elements in the interval [i, j] ⊂ S. Moreover, the elements of M(S)2

are connected to monotone functions from the path P3 = {a < b < c} to S. Indeed,
M(S)2[i, j] is equal to the number of monotone functions with f(a) = i and f(c) = j, or in
other words to the number of elements which can be chosen for the value of f(b). Hence,
Sum(M(S)2) = |SP3|. For example,

M(D1)
2 =





1 2 3
0 1 2
0 0 1
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M(D1)
2[1, 3] = 3 is equal to the number of elements in the interval [00, 11] = {00, 01, 11}.

Furthermore, Sum(M(D1)
2) = 10 is equal to |DP3

1 |—the number of monotone functions
from P3 to D1, and to |(BB)P3|, and to |BB×P3|. Moreover, the squares of the elements
of M(S)2 are connected to monotone functions from the cube B2 = {00, 01, 10, 11} to S.
Indeed, (M(S)2[i, j])2 = M(S)2[i, j]·M(S)2[i, j] is equal to the number of monotone functions
with f(00) = i and f(11) = j. Note that we can choose M(S)2[i, j] elements for the
value of f(01) and M(S)2[i, j] elements for the value of f(10). Since these two values can
be chosen independently, we have (M(S)2[i, j])2 monotone functions with f(00) = i and
f(11) = j. Hence, SumSq(M(S)2) = |SB2

|, where SumSq(M(S)2) denotes the sum of
squares of all elements of the array M(S)2. For example, SumSq(M(D1)

2) = 20 is equal to
|DB2

1 | = |(BB)B
2

| = |BB×B2

| = |BB3

| = d3. Similarly, for every n ≥ 2, we have

SumSq(M(Dn)
2) = |DB2

n | = |(BBn

)B
2

| = |BBn×B2

| = |BBn+2

| = dn+2.

This fact was used in another formulation by Fidytek, Mostowski, Somla and Szepietowski [7].
Consider the product M(S)3 = M(S) × M(S) × M(S). The elements of M(S)3 are

connected to monotone functions from the path P4 = (a < b < c < d) to S. Indeed,
M(S)3[i, j] is equal to the number of pairs x, y, such that i ≤ x ≤ y ≤ j, and to the number
of monotone functions in SP4 with f(a) = i and f(d) = j. Hence, Sum(M(S)3) = |SP4|. For
example,

M(D1)
3 =





1 3 6
0 1 3
0 0 1





Sum(M(D1)
3) = 15 is equal to |DP4

1 |—the number of monotone functions from P4 to D1,
and to |(BB)P4|, and to |BB×P4|.

4 Symmetries

Let Sn denote the set of permutations on {1, . . . , n}. Every permutation π ∈ Sn defines
the permutation on Bn by π(x) = x ◦ π. Here we treat elements x ∈ Bn as functions
x : {1, . . . , n} → {0, 1}. Note that x ≤ y if and only if π(x) ≤ π(y).

Example 3. Consider two permutations: π1 = (12) and π2 = (123), both acting on B3:

x 000 100 010 110 001 101 011 111
π1(x) 000 010 100 110 001 011 101 111
π2(x) 000 001 100 101 010 011 110 111

Each permutation π acting on Bn generates a permutation on Dn = BBn

. Namely,
π(g) = g ◦ π. Note that π(g) is monotone if g is monotone. Two functions f, g ∈ Dn are
equivalent if there is a permutation π ∈ Sn such that f = π(g). By Rn we denote the set of
equivalence classes. The number of the equivalence classes denoted by rn can be computed
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by Burnside’s lemma; see [10, §38]. Known values of rn (for n ≤ 8) are given in the table at
the end of this paper. By the lemma, the number of equivalence classes in Dn is equal to

rn =
1

n!

∑

π∈Sn

|Fix(π,Dn)|,

where Fix(π,Dn) is the set of fixes of the permutation π acting on Dn. A function f ∈ Dn

is a fix of π if π(f) = f . Since conjugate group elements have the same number of fixed
points, |Fix(π,Dn)| depends only on the cycle type of π. By the cycle type of a permutation
π, we mean the data giving the lengths of disjoint cycles whose product is π and the number
of cycles of each length. Let k(n) denote the number of cycle types of elements of Sn and
assume that π1, . . . , πk(n) is an (arbitrarily chosen) sequence of representatives of all cycle
types in Sn. For 1 ≤ i ≤ k(n), let µi be the number of elements of Sn of the same cycle type
as πi (see the tables in Section 8). Then

rn =
1

n!

k(n)
∑

i=1

µi · |Fix(πi, Dn)|.

In this paper we present a few algorithms and methods to count fixes of permutations acting
on Dn.

Consider a permutation π ∈ Sn and suppose that π when acting on Bn is a product of
disjoint cycles π = C1 ◦ · · · ◦ Cr, then a monotone function f : Bn → B is a fix of π if and
only if f is constant on every cycle Ci. Let Cycl(π,B

n) denote the set of cycles {C1, . . . , Cr},
and let ≤ be the partial order defined in the following way: Ci ≤ Cj if and only if there exist
x ∈ Ci and y ∈ Cj such that x ≤ y (we identify each cycle with the set of its elements).
Hence, the poset Fix(π,Dn) is isomorphic to the poset BCycl(π,Bn) of monotone functions
from Cycl(π,Bn) to B = {0, 1} and we can represent fixes in Fix(π,Dn) as sequences of bits
of length |Cycl(π,Bn)|.

For the identity permutation e, each x ∈ Bn forms a cycle of length 1, hence Cycl(e, Bn) =
Bn and Fix(e,Dn) = Dn. For n = 1, we have D1 = R1 and r1 = d1 = 3. For n = 2, we have
two permutations: the identity e with Fix(e,D2) = D2 and the inversion (12) with three
cycles C1 = (00), C2 = (10, 01), and C3 = (11) which form the path P3 = {C1 < C2 < C3}.
There are four monotone functions from the path P3 to B and four fixes in Fix((12), D2).
By Burnside’s lemma, we have

r2 =
1

2
(|Fix(e,D2)|+ |Fix((12), D2)|) =

1

2
(6 + 4) = 5.

Indeed, there are five equivalence classes in D2; namely,

R2 = {{0000}, {0001}, {0101, 0011}, {0111}, {1111}}.
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5 Main results

Theorem 4. Consider a partition of the antichain An = {1, . . . , n} into two disjoint an-
tichains Ak = {1, . . . , k} and Am = {k + 1, . . . n}, where n = k +m; and two permutations:
one π acting on Ak and ρ acting on Am. Suppose that each cycle of π has a length which is
coprime with the length of every cycle of ρ then

Fix(π ◦ ρ,Dn) = Fix(π,Dk)
Cycl(ρ,Bm) = Fix(ρ,Dm)

Cycl(π,Bk).

Proof. The cube Bn is isomorphic to the cartesian product Bn = Bk × Bm. Suppose that
we have two cycles: one Cr of π acting on Bk and the other Cs of ρ acting on Bm. The
lengths of the two cycles are coprime, so the product Cr×Cs is a cycle of π ◦ρ acting on Bn.
Furthermore, each cycle of π has a length which is coprime with the length of every cycle of
ρ so

Cycl(π ◦ ρ,Bn) = Cycl(π,Bk)× Cycl(ρ,Bm)

and

Fix(π ◦ ρ,Dn) = BCycl(π◦ρ,Bn) = BCycl(π,Bk)×Cycl(ρ,Bm)

= Fix(π,Dk)
Cycl(ρ,Bm) = Fix(ρ,Dm)

Cycl(π,Bk).

Example 5. Consider the partition A5 = A3+A2, with A3 = {1, 2, 3} and A2 = {4, 5}, and
two permutations: π = (123) and ρ = (45). There are four cycles of (123) acting on B3.
Namely, C1 = (000), C2 = (100, 001, 010), C3 = (011, 110, 101), and C4 = (111). They are
of length 1 or 3 and they form the chain P4 = (C1 < C2 < C3 < C4). There are three cycles
of (45) acting on B2. Namely, c1 = (00), c2 = (10, 01), and c3 = (11). They are of length 1
or 2 and they form the chain P3 = (c1 < c2 < c3).

Furthermore, consider the two cycles C2 = (100, 001, 010} of π acting on B{1,2,3} and
c2 = {10, 01} of ρ acting on B{4,5}. Their cartesian product

C2 × c2 = {10010, 00101, 01010, 10001, 00110, 01001}

forms one cycle of π ◦ ρ acting on B5 = B3 × B2. The poset of cycles of π ◦ ρ acting on B5

is the cartesian product P4 × P3 and

|Fix((123)(45), D5)| = |BP4×P3| = |P P3

5 | = |P P4

4 |.

In order to compute Fix((123)(45), D5), let us consider the arrays

M(P4) =









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
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M(P4)
3 =









1 3 6 10
0 1 3 6
0 0 1 3
0 0 0 1









Fix((123)(45), D5) = |P P4

4 | = Sum(M(P4)
3) = 35. We can also use the arrays

M(P5) =













1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1













M(P5)
2 =













1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 3
0 0 0 0 1













|Fix((123)(45), D5)| = |P P3

5 | = Sum(M(P5)
2) = 35.

The following lemma is a direct consequence of the theorem. In the special case with m =
1 the lemma was used by Pawelski [11] to count and generate fixes of several permutations
acting on Dn.

Lemma 6. Suppose that a permutation π is acting on Bk and n > k. Then when we consider
π acting on Bn,

Fix(π,Dn) = (Fix(π,Dk))
Bm

= DCycl(π,Bk)
m

where m = n− k.

Proof. The permutation π is acting on {1, . . . , k} and on Bk. We can say that π also acts
on {1, . . . , n} and on Bn, by identifying π with π ◦ e. Every cycle in Cycl(e, Bm) has length
1, hence, Cycl(e, Bm) = Bm and

Cycl(π ◦ e, Bn) = Cycl(π,Bk)× Cycl(e, Bm) = Cycl(π,Bk)×Bm

and

Fix(π,Dn) = Fix(π ◦ e,Dn) = BCycl(π,Bk)×Bm

= (Fix(π,Dk))
Bm

= DCycl(π,Bk)
m .
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6 Applications

In this section we present a few examples that illustrate concepts from Section 3 and appli-
cations of Theorem 4 and Lemma 6.

Consider the poset D2 = BB2

= {0000, 0001, 0011, 0101, 0111, 1111} and its array

M(D2) =

















1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

















Consider the array

M(D2)
2 =

















1 2 3 3 5 6
0 1 2 2 4 5
0 0 1 0 2 3
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 0 1

















.

Now Sum(M(D2)
2) = 50, which is equal to |DP3

2 | = |(BB2

)P3| = |BB2×P3| = |Fix((12), D4)|;
see Lemma 6 and Section 3. Similarly, SumSq(M(D2)

2) = 168, which is equal to |DB2

2 | =
|(BB2

)B
2

| = |BB2×B2

| = |BB4

| = |D4| = d4. Furthermore,

M(D2)
3 =

















1 3 6 6 14 20
0 1 3 3 9 14
0 0 1 0 3 6
0 0 0 1 3 6
0 0 0 0 1 3
0 0 0 0 0 1

















.

Now Sum(M(D2)
3) = 105, which is equal to |DP4

2 | = |(BB2

)P4| = |BB2×P4| = |Fix((123), D5)|.

6.1 Permutation (12)

Consider the permutation π = (12). When π acts onB2, we have three cycles Cycl((12), B2) =
P3 and Fix((12), D2) = BP3 = P4. When (12) acts on B3, then Cycl((12), B3) = P3 ×B and
Fix((12), D3) = BP3×B; see Lemma 6. By Section 3, the number of fixes can be computed
either by

|Fix((12), D3)| = |BP3×B| = |(BP3)B| = |PB
4 | = Sum(M(P4)) = 10,

or by
|Fix((12), D3)| = |BP3×B| = |(BB)P3| = |DP3

1 | = Sum(M(D1)
2) = 10.
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In a similar way we count fixes when (12) acts on B4, then Cycl((12), B4) = P3 × B2 and
Fix((12), D4) = BP3×B2

. The number of fixes can be computed either by

|Fix((12), D4)| = |BP3×B2

| = |(BP3)B
2

| = |PB2

4 | = SumSq(M(P4)
2) = 50,

or by
|Fix((12), D4)| = |BP3×B2

| = |(BB2

)P3| = |DP3

2 | = Sum(M(D2)
2) = 50.

6.2 Permutation (123)

Consider the permutation π = (123). When π acts onB3, we have four cycles Cycl((123), B3) =
P4 and Fix((123), D3) = BP4 = P5. When (123) acts on B4, then Cycl((123), B4) = P4 × B

and Fix((123), D4) = BP4×B, see Lemma 6. By Section 3, the number of fixes can be
computed either by

|Fix((123), D4)| = |BP4×B| = |(BP4)B| = |PB
5 | = Sum(M(P5)) = 15,

or by
|Fix((123), D4)| = |BP4×B| = |(BB)P4| = |DP4

1 | = Sum(M(D1)
3) = 15.

In a similar way we can count fixes when (123) acts on B5. Then we have Cycl((123), B5) =
P4 × B2 and Fix((123), D5) = BP4×B2

. The number of fixes can be computed either by

|Fix((123), D5)| = |BP4×B2

| = |(BP4)B
2

| = |PB2

5 | = SumSq(M(P5)
2) = 105,

or by

|Fix((123), D5)| = |BP4×B2

| = |(BB2

)P4| = |DP4

2 | = Sum(M(D2)
3) = 105.

6.3 Permutation (1234)

The permutation (1234) acting onB4 has six cycles: C0 = {0000}, C1 = {1000, 0001, 0010, 0100},
C2 = {1100, 1001, 0011, 0110}, C3 = {1010, 0101}, C4 = {1110, 1101, 1011, 0111}, and C5 =
{1111}. They are of length 1, 2, or 4 and ordered by C0 < C1 < C2, C3 < C4 < C5. There
are 8 fixes of (1234) acting on D4 with the array

M(Fix((1234), D4)) =

























1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
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Sum(M(Fix((1234), D4))) = 35 = |Fix((1234), D5))|, see Lemma 6 and Section 3. Further-
more,

M(Fix((1234), D4))
2 =

























1 2 3 4 4 6 7 8
0 1 2 3 3 5 6 7
0 0 1 2 2 4 5 6
0 0 0 1 0 2 3 4
0 0 0 0 1 2 3 4
0 0 0 0 0 1 2 3
0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 1

























and SumSq(M(Fix((1234), D4))
2) = 494 = |Fix((1234), D6))|. Also

M(Fix((1234), D4))
3 =

























1 3 6 10 10 20 27 35
0 1 3 6 6 14 20 27
0 0 1 3 3 9 14 20
0 0 0 1 0 3 6 10
0 0 0 0 1 3 6 10
0 0 0 0 0 1 3 6
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 1

























and Sum(M(Fix((1234), D4))
3) = 294 = |Fix((1234)(567), D7))|.

6.4 Permutation (12345)

The permutation (12345) acting on B5 has eight cycles:

• C0 = {00000},

• C1 = {10000, 00001, 00010, 00100, 01000},

• C2 = {11000, 10001, 00011, 00110, 01100},

• C3 = {10100, 01001, 10010, 00101, 01010},

• C4 = {11100, 11001, 10011, 00111, 01110},

• C5 = {10110, 01101, 11010, 10101, 01011},

• C6 = {11110, 11101, 11011, 10111, 01111},

• C7 = {11111}.
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They are of length 1 or 5 and ordered by C0 < C1 < C2, C3 < C4, C5 < C6 < C7. There are
11 fixes of (12345) acting on D5 with the array

M(Fix((12345), D5)) =





































1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1





































.

We have Sum(M(Fix((12345), D5))) = 64 = |Fix((12345), D6))| and

M(Fix((12345), D5))
2 =





































1 2 3 4 4 6 7 7 9 10 11
0 1 2 3 3 5 6 6 8 9 10
0 0 1 2 2 4 5 5 7 8 9
0 0 0 1 0 2 3 3 5 6 7
0 0 0 0 1 2 3 3 5 6 7
0 0 0 0 0 1 2 2 4 5 6
0 0 0 0 0 0 1 0 2 3 4
0 0 0 0 0 0 0 1 2 3 4
0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 1





































.

By Theorem 4 and Section 3, we have Sum(M(Fix((12345), D5))
2) = 264 = |Fix((12345)(67), D7))|

and by Lemma 6, we have

SumSq(M(Fix((12345), D5))
2) = 1548 = |Fix((12345), D7))|.

Also

M(Fix((12345), D5))
3 =





































1 3 6 10 10 20 27 27 43 53 64
0 1 3 6 6 14 20 20 34 43 53
0 0 1 3 3 9 14 14 26 34 43
0 0 0 1 0 3 6 6 14 20 27
0 0 0 0 1 3 6 6 14 20 27
0 0 0 0 0 1 3 3 9 14 20
0 0 0 0 0 0 1 0 3 6 10
0 0 0 0 0 0 0 1 3 6 10
0 0 0 0 0 0 0 0 1 3 6
0 0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 1
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and Sum(M(Fix((12345), D5))
3) = 870 = |Fix((12345)(678), D8))|; see Theorem 4.

6.5 Permutation (12)(34)

In the following two sections we present a method which was used by Pawelski [11] to compute
fixes of the permutation (12)(34)(56)(78) acting on D8. Consider the first partition A4 =
{1, 2, 3, 4} = {1, 2} + {3, 4}, and two permutations: π = (12) and ρ = (34). Furthermore,
consider a partition of B4 into four subcubes:

B4
00 = {0000, 1000, 0100, 1100} = B2 × {00}

B4
10 = {0010, 1010, 0110, 1110} = B2 × {10}

B4
01 = {0001, 1001, 0101, 1101} = B2 × {01}

B4
11 = {0011, 1011, 0111, 1111} = B2 × {11}.

Each of these subcubes is isomorphic to B2. There are three kinds of cycles of π ◦ ρ acting
on B4:

• (0000), (1000, 0100), (1100). They are contained in B4
00 and are isomorphic to the

cycles of π acting on B2.

• (0011), (1011, 0111), (1111). They are contained in B4
11 and are isomorphic to the

cycles of π acting on B2.

• (0010, 0001), (1010, 0101), (0110, 1001), (1110.1101). Each of the cycles contains two
elements {x, y} such that x ∈ B4

10, y ∈ B4
01, and y = π ◦ ρ(x). Moreover, each x ∈ B4

10

belongs to one of these cycles.

Suppose that f is a fix of π ◦ ρ acting on D4 and consider four restrictions: f00 = f |B4
00
,

f10 = f |B4
10
, f01 = f |B4

01
, and f11 = f |B4

11
. They satisfy the following conditions:

1. f00, f11 ∈ Fix(π,D2). Here we identify B2×{00} (and B2×{11}) with B2 and functions
BB2×{00} (and BB2×{11}) with BB2

.

2. f10, f01 ∈ BB2

= D2. We identify functions BB2×{10} (and BB2×{01}) with BB2

.

3. f10 = π(f01)

4. f00 ≤ f10, f10 ≤ f11.

On the other hand, if for a function f , its restrictions f00 = f |B4
00
, f10 = f |B4

10
, f01 = f |B4

01
,

f11 = f |B4
11

satisfy conditions (1–4), then f is a fix of π ◦ ρ acting on B4.
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6.6 Permutation (12)(34)(56)(78)

Consider partition An+2 = {1, . . . , n+2} = {1, . . . , n}+{n+1, n+2}, and two permutations:
π acting on {1, . . . , n} and ρ = (n + 1, n + 2). and suppose that cycles of π are of length 1
or 2. Consider a partition of Bn+2 into four subcubes:

• Bn+2
00 = Bn × {00}

• Bn+2
10 = Bn × {10}

• Bn+2
01 = Bn × {01}

• Bn+2
11 = Bn × {11}.

There are three kinds of cycles of π ◦ ρ acting on Bn+2:

• Those contained in Bn+2
00 ; isomorphic to the cycles of π acting on Bn.

• Those contained in Bn+2
11 ; isomorphic to the cycles of π acting on Bn.

• Each x ∈ Bn+2
10 belongs to the cycle with y = π ◦ ρ(x) ∈ Bn+2

01 .

Suppose that f is a fix of π ◦ ρ acting on Dn+2 and consider four restrictions:

• f00 = f |Bn+2

00
,

• f10 = f |Bn+2

10
,

• f01 = f |Bn+2

01
,

• f11 = f |Bn+2

11
.

They satisfy the following conditions:

1. f00, f11 ∈ Fix(π,Dn)

2. f10, f01 ∈ BBn

= Dn

3. f10 = π(f01)

4. f00 ≤ f10, f10 ≤ f11.

On the other hand, if for a function f , its restrictions f00 = f |Bn+2

00
, f10 = f |Bn+2

10
, f01 = f |Bn+2

01
,

f11 = f |Bn+2

11
satisfy conditions (1–4), then f is a fix of π ◦ ρ acting on Dn+2.

Algorithm counting fixes
Input: posets Dn = BBn

and Fix(π,Dn).
Output: |Fix(π ◦ ρ,Dn+2)|.
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• Sum := 0

• For each f10 ∈ Dn:

– f01 := π(f10);

– Down := |{g ∈ Fix(π,Dn) : g ≤ f10&f01}| //the number of possibilities for
choosing f00

– Up := |{g ∈ Fix(π,Dn) : g ≥ f10|f01}| //the number of possibilities for
choosing f11

– Sum := Sum+Down ·Up

• Return |Fix(π ◦ ρ,Dn+2)| := Sum.

Note that for each function g ∈ Fix(π,Dn) we have

g ≤ f10 and g ≤ f01 if and only if g ≤ f10&f01

and

g ≥ f10 and g ≥ f01 if and only if g ≥ f10|f01.
A similar algorithm was used by Pawelski [11] in order to count fixes of the permutation

(12)(34)(56)(78) acting on D8.

Example 7. Consider the algorithm working on the permutation (12)(34) acting on D4.
Then D2 = {0000 < 0001 < 0011, 0101 < 0111 < 1111} and Fix((12), D2) = {0000 <

0001 < 0111 < 1111}.

• for f10 = 0000: f01 = 0000; f10&f01 = 0000; Down = 1; f10|f01 = 0000; Up = 4.

• for f10 = 0001: f01 = 0001; f10&f01 = 0001; Down = 2; f10|f01 = 0001; Up = 3.

• for f10 = 0011: f01 = 0101; f10&f01 = 0001; Down = 2; f10|f01 = 0111; Up = 2.

• for f10 = 0101: f01 = 0011; f10&f01 = 0001; Down = 2; f10|f01 = 0111; Up = 2.

• for f10 = 0111: f01 = 0111; f10&f01 = 0111; Down = 3; f10|f01 = 0111; Up = 2.

• for f10 = 1111: f01 = 1111; f10&f01 = 1111; Down = 4; f10|f01 = 1111; Up = 1.

The algorithm returns |Fix((12)(34), D4)| = 1 · 4 + 2 · 3 + 2 · 2 + 2 · 2 + 3 · 2 + 4 · 1 = 28.
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7 Generating fixes

In this section we present one more method to generate Fix(π,Dn) fixes of a permutation
π acting on Dn. We start with the poset Cycl(π,Bn) with its array M(Cycl(π,Bn)). For
example, consider the permutation (12) acting on B3. The poset Cycl((12), B3) = {a < b <

c} × {0 < 1} = {a0, b0, c0, a1, b1, c1} has the matrix

M(Cycl((12)), B3)) =

















1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

















We identify rows of the array with subsets of Cycl(π,Bn) and with functions from Cycl(π,Bn)
to {0, 1}. It is well known that monotone functions from Cycl(π,Bn) to {0, 1} may be
identified with upsets. A subset U ⊂ Cycl(π,Bn) is an upset if for every x, y, we have:

if x ∈ U and x ≤ y, then y ∈ U.

Each row in the array M(Cycl(π,Bn)) represents the upset Up(c) = {x ∈ Cycl(π,Bn) : x ≥
c}. The set of all upsets can be generated in the following way: We start with rows of the
array M(Cycl(π,Bn)). Then we add the zero vector and the bitwise or (x|y) of every pair
x, y already in Fix.

Algorithm generating Fix(π,Dn)
Input: poset C = Cycl(π,Bn) and its array
Output: Fix(π,Dn).

• Fix := ∅

• add zero vector to Fix

• For each c ∈ C:

– for each x ∈ Fix add x|Up(c) to Fix

– remove repetitions in Fix

• Return Fix(π,Dn) := Fix
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For example, the algorithm adds four rows to the array M(Cycl((12), B3))

1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

0 0 0 0 0 0
0 1 1 1 1 1
0 0 1 1 1 1
0 0 1 0 1 1

These ten rows form the poset Fix((12), D3) with the partial order defined by

x ≤ y iff x|y = y.

8 Tables of fixes

In this section we present tables with numbers of fixes of all permutations acting in Dn for
n = 3, . . . , 8. Values for n ≤ 6 are from [8], values for n = 7, 8 are from [9, 11].

n = 3

i πi µi |Fix(πi, D3)|
1 e 1 20
2 (12) 3 10
3 (123) 2 5

n = 4

i πi µi |Fix(πi, D4)|
1 e 1 168
2 (12) 6 50
3 (123) 8 15
4 (1234) 6 8
5 (12)(34) 3 28

n = 5

i πi µi |Fix(πi, D5)|
1 e 1 7 581
2 (12) 10 887
3 (123) 20 105
4 (1234) 30 35
5 (12)(34) 15 309
6 (12345) 24 11
7 (12)(345) 20 35
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n = 6

i πi µi |Fix(πi, D6)|
1 e 1 7 828 354
2 (12) 15 160 948
3 (123) 40 3 490
4 (1234) 90 494
5 (12)(34) 45 24 302
6 (12345) 144 64
7 (123456) 120 44
8 (12)(345) 120 490
9 (123)(456) 40 562
10 (12)(3456) 90 324
11 (12)(34)(56) 15 860

n = 7

i πi µi |Fix(πi, D7)|
1 e 1 2 414 682 040 998
2 (12) 15 2 208 001 624
3 (123) 40 2 068 224
4 (1234) 90 60 312
5 (12345) 144 1 548
6 (123456) 120 766
7 (1234567) 120 101
8 (12)(34) 45 67 922 470
9 (12)(345) 45 59 542
10 (12)(3456) 120 26 878
11 (12)(34567) 120 264
12 (123)(456) 120 69 264
13 (123)(4567) 120 294
14 (12)(34)(56) 15 12 015 832 860
15 (12)(34)(567) 15 10 192
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n = 8

i πi µi |Fix(πi, D8)|
1 e 1 56 130 437 228 687 557 907 788
2 (12) 28 101 627 867 809 333 596
3 (123) 112 262 808 891 710
4 (1234) 420 424 234 996
5 (12345) 1344 531 708
6 (123456) 3366 144 320
7 (1234567) 5760 3 858
8 (12345678) 5040 2 364
9 (12)(34) 210 182 755 441 509 724
10 (12)(345) 1120 401 622 018
11 (12)(3456) 2520 93 994 196
12 (12)(34567) 4032 21 216
13 (12)(345678) 3360 70 096
14 (123)(456) 1120 535 426 780
15 (123)(4567) 3360 25 168
16 (123)(45678) 2688 870
17 (1234)(5678) 1260 3 211 276
18 (12)(34)(56) 420 7 377 670 895 900
19 (12)(34)(567) 1680 16 380 370
20 (12)(34)(5678) 1260 37 834 164
21 (12)(345)(678) 1120 3 607 596
22 (12)(34)(56)(78) 105 2 038 188 253 420

9 Known values of dn and rn

n dn rn
0 2 2
1 3 3
2 6 5
3 20 10
4 168 30
5 7 581 210
6 7 828 354 16 353
7 2 414 682 040 998 490 013 148
8 56 130 437 228 687 557 907 788 1 392 195 548 889 993 358

These are sequences A000372 and A003182 in the On-Line Encyclopedia of Integer Se-
quences [12].
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