Fixes of Permutations Acting on Monotone Boolean Functions

Andrzej Szepietowski
Institute of Informatics
Faculty of Mathematics,Physics and Informatics
University of Gdańsk
80-308 Gdańsk
Poland
matszp@inf.ug.edu.pl

Abstract

We present a few algorithms and methods to count fixes of permutations acting on monotone Boolean functions.

1 Introduction

Let B denote the set $\{0,1\}$ and B^{n} the set of n-element sequences of B. A Boolean function with n variables is any function from B^{n} into B. There are 2^{n} elements in B^{n} and $2^{2^{n}}$ Boolean functions with n variables. There is the order relation in B (namely: $0 \leq 0,0 \leq 1$, $1 \leq 1)$ and the partial order in B^{n} : for any two elements: $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ in B^{n},

$$
x \leq y \quad \text { if and only if } \quad x_{i} \leq y_{i} \quad \text { for all } 1 \leq i \leq n
$$

The function $h: B^{n} \rightarrow B$ is monotone if

$$
x \leq y \Rightarrow h(x) \leq h(y) .
$$

Let D_{n} denote the set of monotone functions with n variables and let d_{n} denote $\left|D_{n}\right|$. Known values of d_{n}, for $n=0, \ldots, 8$ are presented in the table at the end of this paper. The values d_{n} for $n \leq 4$ were published by Dedekind [6], Church [4, 5] gave the values d_{5} and d_{7}, Ward [14]
the value d_{6}, and the last known value d_{8} was published by Wiedemann [15]. Dedekind numbers were also considered in $[1,2,3,7,13]$.

We have the partial order in D_{n} defined as follows:

$$
g \leq h \quad \text { if and only if } g(x) \leq h(x) \text { for all } x \in B^{n}
$$

We represent the elements of D_{n} as strings of bits of length 2^{n}. Two elements of D_{0} will be represented as 0 and 1 ; any element $g \in D_{1}$ can be represented as a concatenation $g(0) * g(1)$, where $g(0), g(1) \in D_{0}$ and $g(0) \leq g(1)$. Hence, $D_{1}=\{00,01,11\}$. Each element $g \in D_{2}$ is a concatenation (string) of four bits: $g(00) * g(10) * g(01) * g(11)$ which can be represented as a concatenation $g_{0} * g_{1}$, where $g_{0}, g_{1} \in D_{1}$ and $g_{0} \leq g_{1}$. Hence, $D_{2}=\{0000,0001,0011,0101,0111,1111\}$. Similarly any element $g \in D_{n}$ can be represented as a concatenation $g_{0} * g_{1}$, where $g_{0}, g_{1} \in D_{n-1}$ and $g_{0} \leq g_{1}$.

Let S_{n} denote the set of permutations on $\{1, \ldots, n\}$. Every permutation $\pi \in S_{n}$ defines the permutation on B^{n} by $\pi(x)=x \circ \pi$ (we treat each element $x \in B^{n}$ as a function $x:\{1, \ldots, n\} \rightarrow\{0,1\})$. Note that $x \leq y$ if and only if $\pi(x) \leq \pi(y)$. The permutation π also generates the permutation on D_{n}. Namely, by $\pi(g)=g \circ \pi$. Note that $\pi(g)$ is monotone if g is monotone. Two functions $f, g \in D_{n}$ are equivalent if there is a permutation $\pi \in S_{n}$ such that $f=\pi(g)$. By R_{n} we denote the set of equivalence classes and by r_{n} we denote the number of the equivalence classes. Known values of r_{n} (for $n \leq 8$) are given in the table at the end of this paper. The number of the equivalence classes can be computed by Burnside's lemma; see [10, §38]. Namely,

$$
r_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}}\left|\operatorname{Fix}\left(\pi, D_{n}\right)\right|
$$

where $\operatorname{Fix}\left(\pi, D_{n}\right)$ is the set of fixes of the permutation π acting on D_{n}. A function $f \in D_{n}$ is a $f i x$ of π if $\pi(f)=f$.

In 1985 and 1986 Liu and $\mathrm{Hu}[8,9]$ used Burnside's lemma to compute r_{n} for all $n \leq 7$. Recently, Pawelski [11] computed r_{8}.

In this paper we propose a new framework to study monotone Boolean functions and present a few algorithms and methods to count fixes of permutations acting on D_{n}. The main contributions of the paper are Theorem 4 and Lemma 6 which give formulas for the set of fixes of the composition $\pi \circ \rho$ of two permutations, provided π and ρ satisfy certain conditions. A special case of Lemma 6 was used by Pawelski [11] to count and generate fixes of several permutations acting on D_{n}. For completeness, in Sections 6.5 and 6.6, we present a method which was used by Pawelski [11] to compute fixes of the permutation $(12)(34)(56)(78)$ acting on D_{8}.

2 Posets

A poset (partially ordered set) (S, \leq) consists of a set S (called the carrier) together with a binary relation (partial order) \leq which is reflexive, transitive and antisymmetric. For two
posets (S, \leq) and (T, \leq) by $S \times T$ we denote the cartesian product with the order defined as follows: $(a, b) \leq(c, d)$ iff $a \leq c$ and $b \leq d$. For two disjoint posets (S, \leq) and (T, \leq) by $S+T$ we denote the disjoint union (sum) with the order defined as follows:

$$
x \leq y \quad \text { iff } \quad(x, y \in S \quad \text { and } \quad x \leq y) \quad \text { or } \quad(x, y \in T \quad \text { and } \quad x \leq y)
$$

Given two posets (S, \leq) and (T, \leq) a function $f: S \rightarrow T$ is monotone, if $x \leq y$ implies $f(x) \leq f(y)$. By T^{S} we denote the poset of all monotone functions from S to T with the partial order defined as follows:

$$
f \leq g \quad \text { if and only if } \quad f(x) \leq g(x) \text { for all } x \in S
$$

In this paper we use the following notation:

- A_{n} denotes an antichain of order n, i.e. a poset of n elements, where no two distinct elements are related. We only deal with antichains with the carrier being a finite subset of natural numbers.
- B denotes the poset of two bits $\{0,1\}$ ordered by $0 \leq 0,0 \leq 1,1 \leq 1$.
- B^{n} denotes the poset $B^{A_{n}}$ of all (monotone) functions from A_{n} into B. Note that each function from A_{n} to B is monotone. The poset B^{n} is isomorphic to
- the poset of all subsets of $\{1, \ldots, n\}$ ordered by the inclusion,
- the poset of all n-strings of bits, where $\left(x_{1}, \ldots, x_{n}\right) \leq\left(y_{1}, \ldots, y_{n}\right)$ iff $x_{i} \leq y_{i}$ for all i.
- D_{n} denotes the poset $B^{B^{n}}$ of all monotone Boolean functions from B^{n} into B, which are called monotone Boolean functions of n variables.
- P_{n} denotes the path (or chain) $P_{n}=\left\{p_{1}<\cdots<p_{n}\right\}$. Note that $B^{P_{n}}=P_{n+1}$.

We will use the following lemma which is a part of the folklore and can be easily proved.
Lemma 1. For three posets R, S, T,
(1) If S and T are disjoint, then the poset R^{S+T} is isomorphic to $R^{S} \times R^{T}$.
(2) The poset $R^{S \times T}$ is isomorphic to $\left(R^{S}\right)^{T}$ and to $\left(R^{T}\right)^{S}$.

As a corollary we have the following lemma. Similar lemmas in other formulations were used by Wiedemann [15], by Fidytek, Mostowski, Somla and Szepietowski [7], and by Campo [2] in order to compute $d_{n}=\left|D_{n}\right|$.

Lemma 2.

(a) $A_{k+m}=A_{k}+A_{m}$
(b) $B^{k+m}=B^{k} \times B^{m}$
(c) $D_{k+m}=\left(D_{k}\right)^{B^{m}}$

Proof.
(a) is obvious.
(b) $B^{k+m}=B^{A_{k+m}}=B^{A_{k}+A_{m}}=B^{A_{k}} \times B^{A_{m}}=B^{k} \times B^{m}$.
(c) $D_{k+m}=B^{B^{k+m}}=B^{B^{k} \times B^{m}}=\left(B^{B^{k}}\right)^{B^{m}}=\left(D_{k}\right)^{B^{m}}$.

3 Arrays

Let $M(S)$ denote the array of the poset S. For $i, j \in S$, we have $M(S)[i, j]=1$ if $i \leq j$, and $M(S)[i, j]=0$ otherwise. For example, for the poset $D_{1}=\{00<01<11\}$, its array

$$
M\left(D_{1}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

The poset D_{1} is equal (isomorphic) to the poset of the path $P_{3}=\{a<b<c\}$.
The elements of $M(S)$ describe monotone functions from the poset $B=\{0,1\}$ to S. If $M(S)[i, j]=1$ then there exists a monotone function with $f(0)=i$ and $f(1)=j$. Thus, if we add the elements of $M(S)$ we obtain $\left|S^{B}\right|$-the number of monotone functions from B to S. For example,

$$
\operatorname{Sum}\left(M\left(D_{1}\right)\right)=6=\left|D_{1}^{B}\right|=\left|\left(B^{B}\right)^{B}\right|=\left|B^{B \times B}\right|=\left|B^{B^{2}}\right|=\left|D_{2}\right|=d_{2},
$$

where $\operatorname{Sum}\left(M\left(D_{1}\right)\right)$ denotes the sum of all elements of the array $M\left(D_{1}\right)$. Similarly, for every $n \geq 2$, we have

$$
\operatorname{Sum}\left(M\left(D_{n}\right)\right)=\left|D_{n}^{B}\right|=\left|\left(B^{B^{n}}\right)^{B}\right|=\left|B^{B^{n} \times B}\right|=\left|B^{B^{n+1}}\right|=\left|D_{n+1}\right|=d_{n+1}
$$

Consider the product $M(S)^{2}=M(S) \times M(S)$. Then $M(S)^{2}[i, j]=|\{k \in S: i \leq k \leq j\}|$ which is the number of elements in the interval $[i, j] \subset S$. Moreover, the elements of $M(S)^{2}$ are connected to monotone functions from the path $P_{3}=\{a<b<c\}$ to S. Indeed, $M(S)^{2}[i, j]$ is equal to the number of monotone functions with $f(a)=i$ and $f(c)=j$, or in other words to the number of elements which can be chosen for the value of $f(b)$. Hence, $\operatorname{Sum}\left(M(S)^{2}\right)=\left|S^{P_{3}}\right|$. For example,

$$
M\left(D_{1}\right)^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

$M\left(D_{1}\right)^{2}[1,3]=3$ is equal to the number of elements in the interval $[00,11]=\{00,01,11\}$. Furthermore, $\operatorname{Sum}\left(M\left(D_{1}\right)^{2}\right)=10$ is equal to $\left|D_{1}^{P_{3}}\right|$-the number of monotone functions from P_{3} to D_{1}, and to $\left|\left(B^{B}\right)^{P_{3}}\right|$, and to $\left|B^{B \times P_{3}}\right|$. Moreover, the squares of the elements of $M(S)^{2}$ are connected to monotone functions from the cube $B^{2}=\{00,01,10,11\}$ to S. Indeed, $\left(M(S)^{2}[i, j]\right)^{2}=M(S)^{2}[i, j] \cdot M(S)^{2}[i, j]$ is equal to the number of monotone functions with $f(00)=i$ and $f(11)=j$. Note that we can choose $M(S)^{2}[i, j]$ elements for the value of $f(01)$ and $M(S)^{2}[i, j]$ elements for the value of $f(10)$. Since these two values can be chosen independently, we have $\left(M(S)^{2}[i, j]\right)^{2}$ monotone functions with $f(00)=i$ and $f(11)=j$. Hence, $\operatorname{SumSq}\left(M(S)^{2}\right)=\left|S^{B^{2}}\right|$, where $\operatorname{SumSq}\left(M(S)^{2}\right)$ denotes the sum of squares of all elements of the array $M(S)^{2}$. For example, $\operatorname{SumSq}\left(M\left(D_{1}\right)^{2}\right)=20$ is equal to $\left|D_{1}^{B^{2}}\right|=\left|\left(B^{B}\right)^{B^{2}}\right|=\left|B^{B \times B^{2}}\right|=\left|B^{B^{3}}\right|=d_{3}$. Similarly, for every $n \geq 2$, we have

$$
\operatorname{SumSq}\left(M\left(D_{n}\right)^{2}\right)=\left|D_{n}^{B^{2}}\right|=\left|\left(B^{B^{n}}\right)^{B^{2}}\right|=\left|B^{B^{n} \times B^{2}}\right|=\left|B^{B^{n+2}}\right|=d_{n+2} .
$$

This fact was used in another formulation by Fidytek, Mostowski, Somla and Szepietowski [7].
Consider the product $M(S)^{3}=M(S) \times M(S) \times M(S)$. The elements of $M(S)^{3}$ are connected to monotone functions from the path $P_{4}=(a<b<c<d)$ to S. Indeed, $M(S)^{3}[i, j]$ is equal to the number of pairs x, y, such that $i \leq x \leq y \leq j$, and to the number of monotone functions in $S^{P_{4}}$ with $f(a)=i$ and $f(d)=j$. Hence, $\operatorname{Sum}\left(M(S)^{3}\right)=\left|S^{P_{4}}\right|$. For example,

$$
M\left(D_{1}\right)^{3}=\left(\begin{array}{lll}
1 & 3 & 6 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

$\operatorname{Sum}\left(M\left(D_{1}\right)^{3}\right)=15$ is equal to $\left|D_{1}^{P_{4}}\right|$-the number of monotone functions from P_{4} to D_{1}, and to $\left|\left(B^{B}\right)^{P_{4}}\right|$, and to $\left|B^{B \times P_{4}}\right|$.

4 Symmetries

Let S_{n} denote the set of permutations on $\{1, \ldots, n\}$. Every permutation $\pi \in S_{n}$ defines the permutation on B^{n} by $\pi(x)=x \circ \pi$. Here we treat elements $x \in B^{n}$ as functions $x:\{1, \ldots, n\} \rightarrow\{0,1\}$. Note that $x \leq y$ if and only if $\pi(x) \leq \pi(y)$.

Example 3. Consider two permutations: $\pi_{1}=(12)$ and $\pi_{2}=(123)$, both acting on B^{3} :

x	000	100	010	110	001	101	011	111
$\pi_{1}(x)$	000	010	100	110	001	011	101	111
$\pi_{2}(x)$	000	001	100	101	010	011	110	111

Each permutation π acting on B^{n} generates a permutation on $D_{n}=B^{B^{n}}$. Namely, $\pi(g)=g \circ \pi$. Note that $\pi(g)$ is monotone if g is monotone. Two functions $f, g \in D_{n}$ are equivalent if there is a permutation $\pi \in S_{n}$ such that $f=\pi(g)$. By R_{n} we denote the set of equivalence classes. The number of the equivalence classes denoted by r_{n} can be computed
by Burnside's lemma; see [10, $\S 38]$. Known values of r_{n} (for $n \leq 8$) are given in the table at the end of this paper. By the lemma, the number of equivalence classes in D_{n} is equal to

$$
r_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}}\left|\operatorname{Fix}\left(\pi, D_{n}\right)\right|
$$

where $\operatorname{Fix}\left(\pi, D_{n}\right)$ is the set of fixes of the permutation π acting on D_{n}. A function $f \in D_{n}$ is a fix of π if $\pi(f)=f$. Since conjugate group elements have the same number of fixed points, $\left|\operatorname{Fix}\left(\pi, D_{n}\right)\right|$ depends only on the cycle type of π. By the cycle type of a permutation π, we mean the data giving the lengths of disjoint cycles whose product is π and the number of cycles of each length. Let $k(n)$ denote the number of cycle types of elements of S_{n} and assume that $\pi_{1}, \ldots, \pi_{k(n)}$ is an (arbitrarily chosen) sequence of representatives of all cycle types in S_{n}. For $1 \leq i \leq k(n)$, let μ_{i} be the number of elements of S_{n} of the same cycle type as π_{i} (see the tables in Section 8). Then

$$
r_{n}=\frac{1}{n!} \sum_{i=1}^{k(n)} \mu_{i} \cdot\left|\operatorname{Fix}\left(\pi_{i}, D_{n}\right)\right| .
$$

In this paper we present a few algorithms and methods to count fixes of permutations acting on D_{n}.

Consider a permutation $\pi \in S_{n}$ and suppose that π when acting on B^{n} is a product of disjoint cycles $\pi=C_{1} \circ \cdots \circ C_{r}$, then a monotone function $f: B^{n} \rightarrow B$ is a fix of π if and only if f is constant on every cycle C_{i}. Let $\operatorname{Cycl}\left(\pi, B^{n}\right)$ denote the set of cycles $\left\{C_{1}, \ldots, C_{r}\right\}$, and let \leq be the partial order defined in the following way: $C_{i} \leq C_{j}$ if and only if there exist $x \in C_{i}$ and $y \in C_{j}$ such that $x \leq y$ (we identify each cycle with the set of its elements). Hence, the poset $\operatorname{Fix}\left(\pi, D_{n}\right)$ is isomorphic to the poset $B^{\operatorname{Cycl}\left(\pi, B^{n}\right)}$ of monotone functions from $\operatorname{Cycl}\left(\pi, B^{n}\right)$ to $B=\{0,1\}$ and we can represent fixes in $\operatorname{Fix}\left(\pi, D_{n}\right)$ as sequences of bits of length $\left|\operatorname{Cycl}\left(\pi, B^{n}\right)\right|$.

For the identity permutation e, each $x \in B^{n}$ forms a cycle of length 1 , hence $\operatorname{Cycl}\left(e, B^{n}\right)=$ B^{n} and $\operatorname{Fix}\left(e, D_{n}\right)=D_{n}$. For $n=1$, we have $D_{1}=R_{1}$ and $r_{1}=d_{1}=3$. For $n=2$, we have two permutations: the identity e with $\operatorname{Fix}\left(e, D_{2}\right)=D_{2}$ and the inversion (12) with three cycles $C_{1}=(00), C_{2}=(10,01)$, and $C_{3}=(11)$ which form the path $P_{3}=\left\{C_{1}<C_{2}<C_{3}\right\}$. There are four monotone functions from the path P_{3} to B and four fixes in $\operatorname{Fix}\left((12), D_{2}\right)$. By Burnside's lemma, we have

$$
r_{2}=\frac{1}{2}\left(\left|\operatorname{Fix}\left(e, D_{2}\right)\right|+\left|\operatorname{Fix}\left((12), D_{2}\right)\right|\right)=\frac{1}{2}(6+4)=5 .
$$

Indeed, there are five equivalence classes in D_{2}; namely,

$$
R_{2}=\{\{0000\},\{0001\},\{0101,0011\},\{0111\},\{1111\}\}
$$

5 Main results

Theorem 4. Consider a partition of the antichain $A_{n}=\{1, \ldots, n\}$ into two disjoint antichains $A_{k}=\{1, \ldots, k\}$ and $A_{m}=\{k+1, \ldots n\}$, where $n=k+m$; and two permutations: one π acting on A_{k} and ρ acting on A_{m}. Suppose that each cycle of π has a length which is coprime with the length of every cycle of ρ then

$$
\operatorname{Fix}\left(\pi \circ \rho, D_{n}\right)=\operatorname{Fix}\left(\pi, D_{k}\right)^{\operatorname{Cycl}\left(\rho, B^{m}\right)}=\operatorname{Fix}\left(\rho, D_{m}\right)^{\operatorname{Cycl}\left(\pi, B^{k}\right)} .
$$

Proof. The cube B^{n} is isomorphic to the cartesian product $B^{n}=B^{k} \times B^{m}$. Suppose that we have two cycles: one C_{r} of π acting on B^{k} and the other C_{s} of ρ acting on B^{m}. The lengths of the two cycles are coprime, so the product $C_{r} \times C_{s}$ is a cycle of $\pi \circ \rho$ acting on B^{n}. Furthermore, each cycle of π has a length which is coprime with the length of every cycle of ρ so

$$
\operatorname{Cycl}\left(\pi \circ \rho, B^{n}\right)=\operatorname{Cycl}\left(\pi, B^{k}\right) \times \operatorname{Cycl}\left(\rho, B^{m}\right)
$$

and

$$
\begin{aligned}
\operatorname{Fix}\left(\pi \circ \rho, D_{n}\right) & =B^{\operatorname{Cycl}\left(\pi \circ \rho, B^{n}\right)}=B^{\operatorname{Cycl}\left(\pi, B^{k}\right) \times \operatorname{Cycl}\left(\rho, B^{m}\right)} \\
& =\operatorname{Fix}\left(\pi, D_{k}\right)^{\operatorname{Cycl}\left(\rho, B^{m}\right)}=\operatorname{Fix}\left(\rho, D_{m}\right)^{\operatorname{Cycl}\left(\pi, B^{k}\right)}
\end{aligned}
$$

Example 5. Consider the partition $A_{5}=A_{3}+A_{2}$, with $A_{3}=\{1,2,3\}$ and $A_{2}=\{4,5\}$, and two permutations: $\pi=(123)$ and $\rho=(45)$. There are four cycles of (123) acting on B^{3}. Namely, $C_{1}=(000), C_{2}=(100,001,010), C_{3}=(011,110,101)$, and $C_{4}=(111)$. They are of length 1 or 3 and they form the chain $P_{4}=\left(C_{1}<C_{2}<C_{3}<C_{4}\right)$. There are three cycles of (45) acting on B^{2}. Namely, $c_{1}=(00), c_{2}=(10,01)$, and $c_{3}=(11)$. They are of length 1 or 2 and they form the chain $P_{3}=\left(c_{1}<c_{2}<c_{3}\right)$.

Furthermore, consider the two cycles $C_{2}=(100,001,010\}$ of π acting on $B^{\{1,2,3\}}$ and $c_{2}=\{10,01\}$ of ρ acting on $B^{\{4,5\}}$. Their cartesian product

$$
C_{2} \times c_{2}=\{10010,00101,01010,10001,00110,01001\}
$$

forms one cycle of $\pi \circ \rho$ acting on $B^{5}=B^{3} \times B^{2}$. The poset of cycles of $\pi \circ \rho$ acting on B^{5} is the cartesian product $P_{4} \times P_{3}$ and

$$
\left|\operatorname{Fix}\left((123)(45), D_{5}\right)\right|=\left|B^{P_{4} \times P_{3}}\right|=\left|P_{5}^{P_{3}}\right|=\left|P_{4}^{P_{4}}\right| .
$$

In order to compute $\operatorname{Fix}\left((123)(45), D_{5}\right)$, let us consider the arrays

$$
M\left(P_{4}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
M\left(P_{4}\right)^{3}=\left(\begin{array}{cccc}
1 & 3 & 6 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\operatorname{Fix}\left((123)(45), D_{5}\right)=\left|P_{4}^{P_{4}}\right|=\operatorname{Sum}\left(M\left(P_{4}\right)^{3}\right)=35$. We can also use the arrays

$$
\begin{aligned}
& M\left(P_{5}\right)=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& M\left(P_{5}\right)^{2}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$\left|\operatorname{Fix}\left((123)(45), D_{5}\right)\right|=\left|P_{5}^{P_{3}}\right|=\operatorname{Sum}\left(M\left(P_{5}\right)^{2}\right)=35$.
The following lemma is a direct consequence of the theorem. In the special case with $m=$ 1 the lemma was used by Pawelski [11] to count and generate fixes of several permutations acting on D_{n}.

Lemma 6. Suppose that a permutation π is acting on B^{k} and $n>k$. Then when we consider π acting on B^{n},

$$
\operatorname{Fix}\left(\pi, D_{n}\right)=\left(\operatorname{Fix}\left(\pi, D_{k}\right)\right)^{B^{m}}=D_{m}^{\operatorname{Cycl}\left(\pi, B^{k}\right)}
$$

where $m=n-k$.
Proof. The permutation π is acting on $\{1, \ldots, k\}$ and on B^{k}. We can say that π also acts on $\{1, \ldots, n\}$ and on B^{n}, by identifying π with $\pi \circ e$. Every cycle in $\operatorname{Cycl}\left(e, B^{m}\right)$ has length 1 , hence, $\operatorname{Cycl}\left(e, B^{m}\right)=B^{m}$ and

$$
\operatorname{Cycl}\left(\pi \circ e, B^{n}\right)=\operatorname{Cycl}\left(\pi, B^{k}\right) \times \operatorname{Cycl}\left(e, B^{m}\right)=\operatorname{Cycl}\left(\pi, B^{k}\right) \times B^{m}
$$

and

$$
\operatorname{Fix}\left(\pi, D_{n}\right)=\operatorname{Fix}\left(\pi \circ e, D_{n}\right)=B^{\operatorname{Cycl}\left(\pi, B^{k}\right) \times B^{m}}=\left(\operatorname{Fix}\left(\pi, D_{k}\right)\right)^{B^{m}}=D_{m}^{\operatorname{Cycl}\left(\pi, B^{k}\right)}
$$

6 Applications

In this section we present a few examples that illustrate concepts from Section 3 and applications of Theorem 4 and Lemma 6.

Consider the poset $D_{2}=B^{B^{2}}=\{0000,0001,0011,0101,0111,1111\}$ and its array

$$
M\left(D_{2}\right)=\left(\begin{array}{ll|ll|ll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Consider the array

$$
M\left(D_{2}\right)^{2}=\left(\begin{array}{cc|cc|cc}
1 & 2 & 3 & 3 & 5 & 6 \\
0 & 1 & 2 & 2 & 4 & 5 \\
\hline 0 & 0 & 1 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\operatorname{Now} \operatorname{Sum}\left(M\left(D_{2}\right)^{2}\right)=50$, which is equal to $\left|D_{2}^{P_{3}}\right|=\left|\left(B^{B^{2}}\right)^{P_{3}}\right|=\left|B^{B^{2} \times P_{3}}\right|=\left|\operatorname{Fix}\left((12), D_{4}\right)\right| ;$ see Lemma 6 and Section 3. Similarly, $\operatorname{SumSq}\left(M\left(D_{2}\right)^{2}\right)=168$, which is equal to $\left|D_{2}^{B^{2}}\right|=$ $\left|\left(B^{B^{2}}\right)^{B^{2}}\right|=\left|B^{B^{2} \times B^{2}}\right|=\left|B^{B^{4}}\right|=\left|D_{4}\right|=d_{4}$. Furthermore,

$$
M\left(D_{2}\right)^{3}=\left(\begin{array}{cc|cc|cc}
1 & 3 & 6 & 6 & 14 & 20 \\
0 & 1 & 3 & 3 & 9 & 14 \\
\hline 0 & 0 & 1 & 0 & 3 & 6 \\
0 & 0 & 0 & 1 & 3 & 6 \\
\hline 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\operatorname{Now} \operatorname{Sum}\left(M\left(D_{2}\right)^{3}\right)=105$, which is equal to $\left|D_{2}^{P_{4}}\right|=\left|\left(B^{B^{2}}\right)^{P_{4}}\right|=\left|B^{B^{2} \times P_{4}}\right|=\left|\operatorname{Fix}\left((123), D_{5}\right)\right|$.

6.1 Permutation (12)

Consider the permutation $\pi=(12)$. When π acts on B^{2}, we have three cycles $\operatorname{Cycl}\left((12), B^{2}\right)=$ P_{3} and $\operatorname{Fix}\left((12), D_{2}\right)=B^{P_{3}}=P_{4}$. When (12) acts on B^{3}, then $\operatorname{Cycl}\left((12), B^{3}\right)=P_{3} \times B$ and $\operatorname{Fix}\left((12), D_{3}\right)=B^{P_{3} \times B}$; see Lemma 6. By Section 3, the number of fixes can be computed either by

$$
\left|\operatorname{Fix}\left((12), D_{3}\right)\right|=\left|B^{P_{3} \times B}\right|=\left|\left(B^{P_{3}}\right)^{B}\right|=\left|P_{4}^{B}\right|=\operatorname{Sum}\left(M\left(P_{4}\right)\right)=10
$$

or by

$$
\left|\operatorname{Fix}\left((12), D_{3}\right)\right|=\left|B^{P_{3} \times B}\right|=\left|\left(B^{B}\right)^{P_{3}}\right|=\left|D_{1}^{P_{3}}\right|=\operatorname{Sum}\left(M\left(D_{1}\right)^{2}\right)=10 .
$$

In a similar way we count fixes when (12) acts on B^{4}, then $\operatorname{Cycl}\left((12), B^{4}\right)=P_{3} \times B^{2}$ and $\operatorname{Fix}\left((12), D_{4}\right)=B^{P_{3} \times B^{2}}$. The number of fixes can be computed either by

$$
\left|\operatorname{Fix}\left((12), D_{4}\right)\right|=\left|B^{P_{3} \times B^{2}}\right|=\left|\left(B^{P_{3}}\right)^{B^{2}}\right|=\left|P_{4}^{B^{2}}\right|=\operatorname{SumSq}\left(M\left(P_{4}\right)^{2}\right)=50,
$$

or by

$$
\left|\operatorname{Fix}\left((12), D_{4}\right)\right|=\left|B^{P_{3} \times B^{2}}\right|=\left|\left(B^{B^{2}}\right)^{P_{3}}\right|=\left|D_{2}^{P_{3}}\right|=\operatorname{Sum}\left(M\left(D_{2}\right)^{2}\right)=50
$$

6.2 Permutation (123)

Consider the permutation $\pi=(123)$. When π acts on B^{3}, we have four cycles $\operatorname{Cycl}\left((123), B^{3}\right)=$ P_{4} and $\operatorname{Fix}\left((123), D_{3}\right)=B^{P_{4}}=P_{5}$. When (123) acts on B^{4}, then $\operatorname{Cycl}\left((123), B^{4}\right)=P_{4} \times B$ and $\operatorname{Fix}\left((123), D_{4}\right)=B^{P_{4} \times B}$, see Lemma 6. By Section 3, the number of fixes can be computed either by

$$
\left|\operatorname{Fix}\left((123), D_{4}\right)\right|=\left|B^{P_{4} \times B}\right|=\left|\left(B^{P_{4}}\right)^{B}\right|=\left|P_{5}^{B}\right|=\operatorname{Sum}\left(M\left(P_{5}\right)\right)=15,
$$

or by

$$
\left|\operatorname{Fix}\left((123), D_{4}\right)\right|=\left|B^{P_{4} \times B}\right|=\left|\left(B^{B}\right)^{P_{4}}\right|=\left|D_{1}^{P_{4}}\right|=\operatorname{Sum}\left(M\left(D_{1}\right)^{3}\right)=15 .
$$

In a similar way we can count fixes when (123) acts on B^{5}. Then we have $\operatorname{Cycl}\left((123), B^{5}\right)=$ $P_{4} \times B^{2}$ and $\operatorname{Fix}\left((123), D_{5}\right)=B^{P_{4} \times B^{2}}$. The number of fixes can be computed either by

$$
\left|\operatorname{Fix}\left((123), D_{5}\right)\right|=\left|B^{P_{4} \times B^{2}}\right|=\left|\left(B^{P_{4}}\right)^{B^{2}}\right|=\left|P_{5}^{B^{2}}\right|=\operatorname{SumSq}\left(M\left(P_{5}\right)^{2}\right)=105,
$$

or by
$\left|\operatorname{Fix}\left((123), D_{5}\right)\right|=\left|B^{P_{4} \times B^{2}}\right|=\left|\left(B^{B^{2}}\right)^{P_{4}}\right|=\left|D_{2}^{P_{4}}\right|=\operatorname{Sum}\left(M\left(D_{2}\right)^{3}\right)=105$.

6.3 Permutation (1234)

The permutation (1234) acting on B^{4} has six cycles: $C_{0}=\{0000\}, C_{1}=\{1000,0001,0010,0100\}$, $C_{2}=\{1100,1001,0011,0110\}, C_{3}=\{1010,0101\}, C_{4}=\{1110,1101,1011,0111\}$, and $C_{5}=$ $\{1111\}$. They are of length 1,2 , or 4 and ordered by $C_{0}<C_{1}<C_{2}, C_{3}<C_{4}<C_{5}$. There are 8 fixes of (1234) acting on D_{4} with the array

$$
M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)=\left(\begin{array}{ccc|cc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\left.\operatorname{Sum}\left(M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)\right)=35=\mid \operatorname{Fix}\left((1234), D_{5}\right)\right) \mid$, see Lemma 6 and Section 3. Furthermore,

$$
M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)^{2}=\left(\begin{array}{ccc|cc|ccc}
1 & 2 & 3 & 4 & 4 & 6 & 7 & 8 \\
0 & 1 & 2 & 3 & 3 & 5 & 6 & 7 \\
0 & 0 & 1 & 2 & 2 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and $\left.\operatorname{SumSq}\left(M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)^{2}\right)=494=\mid \operatorname{Fix}\left((1234), D_{6}\right)\right) \mid$. Also

$$
M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)^{3}=\left(\begin{array}{ccc|cc|ccc}
1 & 3 & 6 & 10 & 10 & 20 & 27 & 35 \\
0 & 1 & 3 & 6 & 6 & 14 & 20 & 27 \\
0 & 0 & 1 & 3 & 3 & 9 & 14 & 20 \\
\hline 0 & 0 & 0 & 1 & 0 & 3 & 6 & 10 \\
0 & 0 & 0 & 0 & 1 & 3 & 6 & 10 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and $\left.\operatorname{Sum}\left(M\left(\operatorname{Fix}\left((1234), D_{4}\right)\right)^{3}\right)=294=\mid \operatorname{Fix}\left((1234)(567), D_{7}\right)\right) \mid$.

6.4 Permutation (12345)

The permutation (12345) acting on B^{5} has eight cycles:

- $C_{0}=\{00000\}$,
- $C_{1}=\{10000,00001,00010,00100,01000\}$,
- $C_{2}=\{11000,10001,00011,00110,01100\}$,
- $C_{3}=\{10100,01001,10010,00101,01010\}$,
- $C_{4}=\{11100,11001,10011,00111,01110\}$,
- $C_{5}=\{10110,01101,11010,10101,01011\}$,
- $C_{6}=\{11110,11101,11011,10111,01111\}$,
- $C_{7}=\{11111\}$.

They are of length 1 or 5 and ordered by $C_{0}<C_{1}<C_{2}, C_{3}<C_{4}, C_{5}<C_{6}<C_{7}$. There are 11 fixes of (12345) acting on D_{5} with the array

$$
M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)=\left(\begin{array}{ccc|cc|c|cc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

We have $\left.\operatorname{Sum}\left(M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)\right)=64=\mid \operatorname{Fix}\left((12345), D_{6}\right)\right) \mid$ and

$$
M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)^{2}=\left(\begin{array}{ccc|cc|c|cc|ccc}
1 & 2 & 3 & 4 & 4 & 6 & 7 & 7 & 9 & 10 & 11 \\
0 & 1 & 2 & 3 & 3 & 5 & 6 & 6 & 8 & 9 & 10 \\
0 & 0 & 1 & 2 & 2 & 4 & 5 & 5 & 7 & 8 & 9 \\
\hline 0 & 0 & 0 & 1 & 0 & 2 & 3 & 3 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 3 & 5 & 6 & 7 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

By Theorem 4 and Section 3, we have $\left.\operatorname{Sum}\left(M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)^{2}\right)=264=\mid \operatorname{Fix}\left((12345)(67), D_{7}\right)\right) \mid$ and by Lemma 6, we have

$$
\left.\operatorname{SumSq}\left(M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)^{2}\right)=1548=\mid \operatorname{Fix}\left((12345), D_{7}\right)\right) \mid .
$$

Also

$$
M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)^{3}=\left(\begin{array}{ccc|cc|c|cc|ccc}
1 & 3 & 6 & 10 & 10 & 20 & 27 & 27 & 43 & 53 & 64 \\
0 & 1 & 3 & 6 & 6 & 14 & 20 & 20 & 34 & 43 & 53 \\
0 & 0 & 1 & 3 & 3 & 9 & 14 & 14 & 26 & 34 & 43 \\
\hline 0 & 0 & 0 & 1 & 0 & 3 & 6 & 6 & 14 & 20 & 27 \\
0 & 0 & 0 & 0 & 1 & 3 & 6 & 6 & 14 & 20 & 27 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 3 & 3 & 9 & 14 & 20 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 3 & 6 & 10 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 6 & 10 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and $\left.\operatorname{Sum}\left(M\left(\operatorname{Fix}\left((12345), D_{5}\right)\right)^{3}\right)=870=\mid \operatorname{Fix}\left((12345)(678), D_{8}\right)\right) \mid ;$ see Theorem 4.

6.5 Permutation (12)(34)

In the following two sections we present a method which was used by Pawelski [11] to compute fixes of the permutation $(12)(34)(56)(78)$ acting on D_{8}. Consider the first partition $A_{4}=$ $\{1,2,3,4\}=\{1,2\}+\{3,4\}$, and two permutations: $\pi=(12)$ and $\rho=(34)$. Furthermore, consider a partition of B^{4} into four subcubes:

$$
\begin{aligned}
& B_{00}^{4}=\{0000,1000,0100,1100\}=B^{2} \times\{00\} \\
& B_{10}^{4}=\{0010,1010,0110,1110\}=B^{2} \times\{10\} \\
& B_{01}^{4}=\{0001,1001,0101,1101\}=B^{2} \times\{01\} \\
& B_{11}^{4}=\{0011,1011,0111,1111\}=B^{2} \times\{11\}
\end{aligned}
$$

Each of these subcubes is isomorphic to B^{2}. There are three kinds of cycles of $\pi \circ \rho$ acting on B^{4} :

- (0000), $(1000,0100),(1100)$. They are contained in B_{00}^{4} and are isomorphic to the cycles of π acting on B^{2}.
- (0011), $(1011,0111),(1111)$. They are contained in B_{11}^{4} and are isomorphic to the cycles of π acting on B^{2}.
- $(0010,0001),(1010,0101),(0110,1001),(1110.1101)$. Each of the cycles contains two elements $\{x, y\}$ such that $x \in B_{10}^{4}, y \in B_{01}^{4}$, and $y=\pi \circ \rho(x)$. Moreover, each $x \in B_{10}^{4}$ belongs to one of these cycles.

Suppose that f is a fix of $\pi \circ \rho$ acting on D_{4} and consider four restrictions: $f_{00}=\left.f\right|_{B_{00}^{4}}$, $f_{10}=\left.f\right|_{B_{10}^{4}}, f_{01}=\left.f\right|_{B_{01}^{4}}$, and $f_{11}=\left.f\right|_{B_{11}^{4}}$. They satisfy the following conditions:

1. $f_{00}, f_{11} \in \operatorname{Fix}\left(\pi, D_{2}\right)$. Here we identify $B^{2} \times\{00\}$ (and $B^{2} \times\{11\}$) with B^{2} and functions $B^{B^{2} \times\{00\}}$ (and $B^{B^{2} \times\{11\}}$) with $B^{B^{2}}$.
2. $f_{10}, f_{01} \in B^{B^{2}}=D_{2}$. We identify functions $B^{B^{2} \times\{10\}}$ (and $B^{B^{2} \times\{01\}}$) with $B^{B^{2}}$.
3. $f_{10}=\pi\left(f_{01}\right)$
4. $f_{00} \leq f_{10}, f_{10} \leq f_{11}$.

On the other hand, if for a function f, its restrictions $f_{00}=\left.f\right|_{B_{00}^{4}}, f_{10}=\left.f\right|_{B_{10}^{4}}, f_{01}=\left.f\right|_{B_{01}^{4}}$, $f_{11}=\left.f\right|_{B_{11}^{4}}$ satisfy conditions (1-4), then f is a fix of $\pi \circ \rho$ acting on B^{4}.

6.6 Permutation (12)(34)(56)(78)

Consider partition $A_{n+2}=\{1, \ldots, n+2\}=\{1, \ldots, n\}+\{n+1, n+2\}$, and two permutations: π acting on $\{1, \ldots, n\}$ and $\rho=(n+1, n+2)$. and suppose that cycles of π are of length 1 or 2 . Consider a partition of B^{n+2} into four subcubes:

- $B_{00}^{n+2}=B^{n} \times\{00\}$
- $B_{10}^{n+2}=B^{n} \times\{10\}$
- $B_{01}^{n+2}=B^{n} \times\{01\}$
- $B_{11}^{n+2}=B^{n} \times\{11\}$.

There are three kinds of cycles of $\pi \circ \rho$ acting on B^{n+2} :

- Those contained in B_{00}^{n+2}; isomorphic to the cycles of π acting on B^{n}.
- Those contained in B_{11}^{n+2}; isomorphic to the cycles of π acting on B^{n}.
- Each $x \in B_{10}^{n+2}$ belongs to the cycle with $y=\pi \circ \rho(x) \in B_{01}^{n+2}$.

Suppose that f is a fix of $\pi \circ \rho$ acting on D_{n+2} and consider four restrictions:

- $f_{00}=\left.f\right|_{B_{00}^{n+2}}$,
- $f_{10}=\left.f\right|_{B_{10}^{n+2}}$,
- $f_{01}=\left.f\right|_{B_{01}^{n+2}}$,
- $f_{11}=\left.f\right|_{B_{11}^{n+2}}$.

They satisfy the following conditions:

1. $f_{00}, f_{11} \in \operatorname{Fix}\left(\pi, D_{n}\right)$
2. $f_{10}, f_{01} \in B^{B^{n}}=D_{n}$
3. $f_{10}=\pi\left(f_{01}\right)$
4. $f_{00} \leq f_{10}, f_{10} \leq f_{11}$.

On the other hand, if for a function f, its restrictions $f_{00}=\left.f\right|_{B_{00}^{n+2}}, f_{10}=\left.f\right|_{B_{10}^{n+2}}, f_{01}=\left.f\right|_{B_{01}^{n+2}}$, $f_{11}=\left.f\right|_{B_{11}^{n+2}}$ satisfy conditions (1-4), then f is a fix of $\pi \circ \rho$ acting on D_{n+2}.

Algorithm counting fixes

Input: posets $D_{n}=B^{B^{n}}$ and $\operatorname{Fix}\left(\pi, D_{n}\right)$.
Output: $\left|\operatorname{Fix}\left(\pi \circ \rho, D_{n+2}\right)\right|$.

- Sum $:=0$
- For each $f_{10} \in D_{n}$:
$-f_{01}:=\pi\left(f_{10}\right) ;$
- Down $:=\left|\left\{g \in \operatorname{Fix}\left(\pi, D_{n}\right): g \leq f_{10} \& f_{01}\right\}\right| \quad$ //the number of possibilities for choosing f_{00}
- Up $:=\left|\left\{g \in \operatorname{Fix}\left(\pi, D_{n}\right): g \geq f_{10} \mid f_{01}\right\}\right| \quad$ //the number of possibilities for choosing f_{11}
- Sum :=Sum + Down \cdot Up
- Return $\left|\operatorname{Fix}\left(\pi \circ \rho, D_{n+2}\right)\right|:=$ Sum.

Note that for each function $g \in \operatorname{Fix}\left(\pi, D_{n}\right)$ we have
$g \leq f_{10}$ and $g \leq f_{01}$ if and only if $g \leq f_{10} \& f_{01}$
and
$g \geq f_{10}$ and $g \geq f_{01}$ if and only if $g \geq f_{10} \mid f_{01}$.
A similar algorithm was used by Pawelski [11] in order to count fixes of the permutation $(12)(34)(56)(78)$ acting on D_{8}.

Example 7. Consider the algorithm working on the permutation (12)(34) acting on D_{4}. Then $D_{2}=\{0000<0001<0011,0101<0111<1111\}$ and $\operatorname{Fix}\left((12), D_{2}\right)=\{0000<$ $0001<0111<1111\}$.

- for $f_{10}=0000: f_{01}=0000 ; f_{10} \& f_{01}=0000 ;$ Down $=1 ; f_{10} \mid f_{01}=0000 ; \mathrm{Up}=4$.
- for $f_{10}=0001: f_{01}=0001 ; f_{10} \& f_{01}=0001 ;$ Down $=2 ; f_{10} \mid f_{01}=0001 ; \mathrm{Up}=3$.
- for $f_{10}=0011: f_{01}=0101 ; f_{10} \& f_{01}=0001 ;$ Down $=2 ; f_{10} \mid f_{01}=0111 ; \mathrm{Up}=2$.
- for $f_{10}=0101: f_{01}=0011 ; f_{10} \& f_{01}=0001 ;$ Down $=2 ; f_{10} \mid f_{01}=0111 ; \mathrm{Up}=2$.
- for $f_{10}=0111: f_{01}=0111 ; f_{10} \& f_{01}=0111 ;$ Down $=3 ; f_{10} \mid f_{01}=0111 ; \mathrm{Up}=2$.
- for $f_{10}=1111: f_{01}=1111 ; f_{10} \& f_{01}=1111 ;$ Down $=4 ; f_{10} \mid f_{01}=1111 ; \mathrm{Up}=1$.

The algorithm returns $\left|\operatorname{Fix}\left((12)(34), D_{4}\right)\right|=1 \cdot 4+2 \cdot 3+2 \cdot 2+2 \cdot 2+3 \cdot 2+4 \cdot 1=28$.

7 Generating fixes

In this section we present one more method to generate $\operatorname{Fix}\left(\pi, D_{n}\right)$ fixes of a permutation π acting on D_{n}. We start with the poset $\operatorname{Cycl}\left(\pi, B^{n}\right)$ with its array $M\left(\operatorname{Cycl}\left(\pi, B^{n}\right)\right)$. For example, consider the permutation (12) acting on B^{3}. The poset $\operatorname{Cycl}\left((12), B^{3}\right)=\{a<b<$ c $\} \times\{0<1\}=\{a 0, b 0, c 0, a 1, b 1, c 1\}$ has the matrix

$$
\left.M\left(\operatorname{Cycl}((12)), B^{3}\right)\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

We identify rows of the array with subsets of $\operatorname{Cycl}\left(\pi, B^{n}\right)$ and with functions from $\operatorname{Cycl}\left(\pi, B^{n}\right)$ to $\{0,1\}$. It is well known that monotone functions from $\operatorname{Cycl}\left(\pi, B^{n}\right)$ to $\{0,1\}$ may be identified with upsets. A subset $U \subset \operatorname{Cycl}\left(\pi, B^{n}\right)$ is an upset if for every x, y, we have:

$$
\text { if } x \in U \quad \text { and } \quad x \leq y, \quad \text { then } \quad y \in U
$$

Each row in the array $M\left(\operatorname{Cycl}\left(\pi, B^{n}\right)\right)$ represents the upset $\operatorname{Up}(c)=\left\{x \in \operatorname{Cycl}\left(\pi, B^{n}\right): x \geq\right.$ $c\}$. The set of all upsets can be generated in the following way: We start with rows of the array $M\left(\operatorname{Cycl}\left(\pi, B^{n}\right)\right)$. Then we add the zero vector and the bitwise or $(x \mid y)$ of every pair x, y already in Fix.

Algorithm generating $\operatorname{Fix}\left(\pi, D_{n}\right)$

Input: poset $C=\operatorname{Cycl}\left(\pi, B^{n}\right)$ and its array
Output: $\operatorname{Fix}\left(\pi, D_{n}\right)$.

- Fix $:=\emptyset$
- add zero vector to Fix
- For each $c \in C$:
- for each $x \in$ Fix add $x \mid \operatorname{Up}(c)$ to Fix
- remove repetitions in Fix
- Return $\operatorname{Fix}\left(\pi, D_{n}\right):=\operatorname{Fix}$

For example, the algorithm adds four rows to the array $M\left(\operatorname{Cycl}\left((12), B^{3}\right)\right)$

1	1	1	1	1	1
0	1	1	0	1	1
0	0	1	0	0	1
0	0	0	1	1	1
0	0	0	0	1	1
0	0	0	0	0	1
0	0	0	0	0	0
0	1	1	1	1	1
0	0	1	1	1	1
0	0	1	0	1	1

These ten rows form the poset $\operatorname{Fix}\left((12), D_{3}\right)$ with the partial order defined by

$$
x \leq y \text { iff } x \mid y=y
$$

8 Tables of fixes

In this section we present tables with numbers of fixes of all permutations acting in D_{n} for $n=3, \ldots, 8$. Values for $n \leq 6$ are from [8], values for $n=7,8$ are from [9, 11].

$n=3$| i | π_{i} | μ_{i} | $\left\|\operatorname{Fix}\left(\pi_{i}, D_{3}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | e | 1 | 20 |
| 2 | (12) | 3 | 10 |
| 3 | (123) | 2 | 5 |

$n=4$| i | π_{i} | μ_{i} | $\left\|\operatorname{Fix}\left(\pi_{i}, D_{4}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | e | 1 | 168 |
| 2 | (12) | 6 | 50 |
| 3 | (123) | 8 | 15 |
| 4 | (1234) | 6 | 8 |
| 5 | $(12)(34)$ | 3 | 28 |

$n=5$| i | π_{i} | μ_{i} | $\left\|\operatorname{Fix}\left(\pi_{i}, D_{5}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | e | 1 | 7581 |
| 2 | (12) | 10 | 887 |
| 3 | (123) | 20 | 105 |
| 4 | (1234) | 30 | 35 |
| 5 | $(12)(34)$ | 15 | 309 |
| 6 | (12345) | 24 | 11 |
| 7 | $(12)(345)$ | 20 | 35 |

$n=6$| i | π_{i} | μ_{i} | $\left\|\operatorname{Fix}\left(\pi_{i}, D_{6}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | e | 1 | 7828354 |
| 2 | (12) | 15 | 160948 |
| 3 | (123) | 40 | 3490 |
| 4 | (1234) | 90 | 494 |
| 5 | $(12)(34)$ | 45 | 24302 |
| 6 | (12345) | 144 | 64 |
| 7 | (123456) | 120 | 44 |
| 8 | $(12)(345)$ | 120 | 490 |
| 9 | $(123)(456)$ | 40 | 562 |
| 10 | $(12)(3456)$ | 90 | 324 |
| 11 | $(12)(34)(56)$ | 15 | 860 |

$n=7$| i | π_{i} | μ_{i} | $\left\|\operatorname{Fix}\left(\pi_{i}, D_{7}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | e | 1 | 2414682040998 |
| 2 | (12) | 15 | 2208001624 |
| 3 | (123) | 40 | 2068224 |
| 4 | (1234) | 90 | 60312 |
| 5 | (12345) | 144 | 1548 |
| 6 | (123456) | 120 | 766 |
| 7 | (1234567) | 120 | 101 |
| 8 | $(12)(34)$ | 45 | 67922470 |
| 9 | $(12)(345)$ | 45 | 59542 |
| 10 | $(12)(3456)$ | 120 | 26878 |
| 11 | $(12)(34567)$ | 120 | 264 |
| 12 | $(123)(456)$ | 120 | 69264 |
| 13 | $(123)(4567)$ | 120 | 294 |
| 14 | $(12)(34)(56)$ | 15 | 12015832860 |
| 15 | $(12)(34)(567)$ | 15 | 10192 |

i	π_{i}	μ_{i}	$\left\|\operatorname{Fix}\left(\pi_{i}, D_{8}\right)\right\|$
1	e	1	56130437228687557907788
2	(12)	28	101627867809333596
3	(123)	112	262808891710
4	(1234)	420	424234996
5	(12345)	1344	531708
6	(123456)	3366	144320
7	(1234567)	5760	3858
8	(12345678)	5040	2364
9	$(12)(34)$	210	182755441509724
10	$(12)(345)$	1120	401622018
11	$(12)(3456)$	2520	93994196
12	$(12)(34567)$	4032	21216
13	$(12)(345678)$	3360	70096
14	$(123)(456)$	1120	535426780
15	$(123)(4567)$	3360	25168
16	$(123)(45678)$	2688	870
17	$(1234)(5678)$	1260	3211276
18	$(12)(34)(56)$	420	7377670895900
19	$(12)(34)(567)$	1680	16380370
20	$(12)(34)(5678)$	1260	37834164
21	$(12)(345)(678)$	1120	3607596
22	$(12)(34)(56)(78)$	105	2038188253420

9 Known values of d_{n} and r_{n}

n	d_{n}	r_{n}
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7581	210
6	7828354	16353
7	2414682040998	490013148
8	56130437228687557907788	1392195548889993358

These are sequences $\underline{A 000372}$ and $\underline{A 003182}$ in the On-Line Encyclopedia of Integer Sequences [12].

References

[1] V. Bakoev, One more way for counting monotone Boolean functions, in Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, Pomorie, Bulgaria (2012), pp. 47-52.
[2] F. a Campo, Relations between powers of Dedekind numbers and exponential sums related to them, J. Integer Sequences 21 (2018) Article 18.4.4.
[3] P. De Causmaecker and S. De Wannemacker, On the number of antichains of sets in a finite universe, Arxiv preprint 1407.4288v2 [math.CO], available at https://arxiv. org/abs/1407.4288, 2014.
[4] R. Church, Numerical analysis of certain free distributive structures, Duke Math. J. 6 (1940) 732-734.
[5] R. Church, Enumeration by rank of the elements of the free distributive lattice with 7 generators, Notices Amer. Math. Soc. 12 (1965) 724.
[6] R. Dedekind, Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler, Festschrift Hoch. Braunschweig u. ges. Werke II (1897) 103-148.
[7] R. Fidytek, A. W. Mostowski, R. Somla, and A. Szepietowski, Algorithms counting monotone Boolean functions, Inform. Process. Lett. 79 (2001), 203-209.
[8] C. C. Liu and S. B. Hu, A mechanical algorithm of equivalent classification for free distributive lattices, Chinese J. Comput. 3 (2) (1985), 128-135. In Chinese.
[9] C. C. Liu and S. B. Hu, A note on the problem of computing the number of equivalence classes of free distributive lattices, J. Wuhan Univ. Natur. Sci. Ed. (1986), no. 1, 13-17. In Chinese.
[10] G. E. Martin, Counting: The Art of Enumerative Combinatorics, Springer, 2001.
[11] B. Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, J. Integer Sequences 25 (2022), Article 22.7.7.
[12] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2022. Available at https://oeis.org.
[13] T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, Discrete Appl. Math., 167 (2014), 15-24.
[14] M. Ward, Note on the order of the free distributive lattice, Bull. Amer. Math. Soc. 52 (1946) 423.
[15] D. Wiedemann, A computation of the eighth Dedekind number, Order 8 (1991), 5-6.

2020 Mathematics Subject Classification: Primary 06E30.
Keywords: monotone Boolean function, Dedekind number, equivalence class, fix.
(Concerned with sequence A000372 and A003182.)

Received May 8 2022; revised versions received September 19 2022; October 26 2022. Published in Journal of Integer Sequences, November 202022.

Return to Journal of Integer Sequences home page.

