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Abstract

We present a few algorithms and methods to count fixes of permutations acting on
monotone Boolean functions.

1 Introduction

Let B denote the set {0,1} and B" the set of n-element sequences of B. A Boolean function
with n variables is any function from B" into B. There are 2" elements in B" and 2%"
Boolean functions with n variables. There is the order relation in B (namely: 0 <0, 0 <1,
1 < 1) and the partial order in B™: for any two elements: x = (z1,...,2Z,), ¥y = (Y1,---,Yn)
in B,

r<y ifand onlyif z; <y, foralll<i<n.

The function h : B®™ — B is monotone if
z <y = h(x) < h(y).

Let D,, denote the set of monotone functions with n variables and let d,, denote |D,,|. Known
values of d,,, forn = 0, ..., 8 are presented in the table at the end of this paper. The values d,,
for n < 4 were published by Dedekind [6], Church [4, 5] gave the values d5 and dr, Ward [14]
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the value dg, and the last known value dy was published by Wiedemann [15]. Dedekind
numbers were also considered in [1, 2, 3, 7, 13].
We have the partial order in D,, defined as follows:

g <h ifand onlyif g¢g(x) <h(z) forallze B".

We represent the elements of D,, as strings of bits of length 2". Two elements of D, will
be represented as 0 and 1; any element g € D; can be represented as a concatenation
g(0) % g(1), where g(0),9(1) € Dy and g(0) < g(1). Hence, D; = {00,01,11}. Each
element g € Dy is a concatenation (string) of four bits: ¢(00) x g(10) % g(01) * g(11) which
can be represented as a concatenation gy * g1, where ¢o,91 € D; and gy < ¢;. Hence,
Dy = {0000, 0001,0011,0101,0111,1111}. Similarly any element g € D,, can be represented
as a concatenation gg * g1, where go, g1 € D,,_1 and gy < ¢;.

Let S,, denote the set of permutations on {1,...,n}. Every permutation 7w € S,, defines
the permutation on B™ by 7(z) = x o w (we treat each element z € B" as a function
x:{1,...,n} — {0,1}). Note that z < y if and only if 7(z) < 7(y). The permutation 7
also generates the permutation on D,,. Namely, by 7w(g) = gom. Note that m(g) is monotone
if ¢ is monotone. Two functions f,g € D,, are equivalent if there is a permutation © € S,
such that f = 7(g). By R, we denote the set of equivalence classes and by r,, we denote the
number of the equivalence classes. Known values of 7, (for n < 8) are given in the table at
the end of this paper. The number of the equivalence classes can be computed by Burnside’s
lemma,; see [10, §38]. Namely,

1 :
rn=— > | Fix(r, Dyl

’ ﬂ'ESn

where Fix(w, D,,) is the set of fixes of the permutation 7 acting on D,,. A function f € D,
isa firof mif w(f) = f.

In 1985 and 1986 Liu and Hu [8, 9] used Burnside’s lemma to compute r,, for all n < 7.
Recently, Pawelski [11] computed rg.

In this paper we propose a new framework to study monotone Boolean functions and
present a few algorithms and methods to count fixes of permutations acting on D,,. The
main contributions of the paper are Theorem 4 and Lemma 6 which give formulas for the
set of fixes of the composition 7 o p of two permutations, provided 7 and p satisfy certain
conditions. A special case of Lemma 6 was used by Pawelski [11] to count and generate
fixes of several permutations acting on D,,. For completeness, in Sections 6.5 and 6.6, we
present a method which was used by Pawelski [11] to compute fixes of the permutation
(12)(34)(56)(78) acting on Dsg.

2 Posets

A poset (partially ordered set) (S, <) consists of a set S (called the carrier) together with a
binary relation (partial order) < which is reflexive, transitive and antisymmetric. For two

2



posets (S, <) and (7T, <) by S x T we denote the cartesian product with the order defined
as follows: (a,b) < (¢,d) iff @ < ¢ and b < d. For two disjoint posets (5, <) and (7, <) by
S + T we denote the disjoint union (sum) with the order defined as follows:

<y iff (z,yeS and z<y) or (r,yeT and z<y).

Given two posets (S, <) and (T, <) a function f : S — T is monotone, if x < y implies
f(z) < f(y). By T° we denote the poset of all monotone functions from S to T with the
partial order defined as follows:

f<g ifandonlyif f(x)<g(x)foralzeS.
In this paper we use the following notation:

e A, denotes an antichain of order n, i.e. a poset of n elements, where no two distinct
elements are related. We only deal with antichains with the carrier being a finite subset
of natural numbers.

e B denotes the poset of two bits {0,1} ordered by 0 < 0,0<1,1<1.

e B" denotes the poset B4 of all (monotone) functions from A,, into B. Note that each
function from A,, to B is monotone. The poset B™ is isomorphic to

— the poset of all subsets of {1,...,n} ordered by the inclusion,

— the poset of all n-strings of bits, where (x1,...,2,) < (y1,...,y,) iff z; < y; for
all 1.

e D, denotes the poset BZ" of all monotone Boolean functions from B"™ into B, which
are called monotone Boolean functions of n variables.

e P, denotes the path (or chain) P, = {p; < --- < p,}. Note that Bf» = P, ;.
We will use the following lemma which is a part of the folklore and can be easily proved.

Lemma 1. For three posets R, S, T,
(1) If S and T are disjoint, then the poset R5*T is isomorphic to R® x RT.
(2) The poset R¥*T is isomorphic to (R)T and to (RT)S.

As a corollary we have the following lemma. Similar lemmas in other formulations
were used by Wiedemann [15], by Fidytek, Mostowski, Somla and Szepietowski [7], and
by Campo [2] in order to compute d,, = |D,,|.

Lemma 2.
(CL) Ak+m :Ak+Am
(b) Bk+m — Bk % B™



(¢)  Ditm = (Dp)""
Proof.
(a) is obvious.
(b) BEm = BAvim = BArtAn — BAx x BAn = Bk x Bm.

3 Arrays

Let M (S) denote the array of the poset S. For i,j € S, we have M (S5)[¢,j] = 1if i < j, and
M (S)[i, j] = 0 otherwise. For example, for the poset D; = {00 < 01 < 11}, its array

M(Dy) =

O O =
O = =
— =

The poset D; is equal (isomorphic) to the poset of the path P; = {a < b < ¢}.

The elements of M (S) describe monotone functions from the poset B = {0,1} to S. If
M(S)[i, 7] = 1 then there exists a monotone function with f(0) =4 and f(1) = j. Thus, if
we add the elements of M (S) we obtain |S?|—the number of monotone functions from B to
S. For example,

Sum(M(Dy)) = 6 = |DY| = |(B®)?| = |B®®| = |B”'| = |Ds| = db,

where Sum(M (D;)) denotes the sum of all elements of the array M (D). Similarly, for every
n > 2, we have

Sum(M (D,)) = |DY| = [(B®")?| = |BP"F| = |B¥"™"| = |Dpsa| = dusa.

Consider the product M(S)? = M(S) x M(S). Then M(S)?[i,j] =|{ke€ S:i <k <j}|
which is the number of elements in the interval [i, j] C S. Moreover, the elements of M (S)?
are connected to monotone functions from the path Py = {a < b < ¢} to S. Indeed,
M (S)?[i, 7] is equal to the number of monotone functions with f(a) =i and f(c) = j, or in

other words to the number of elements which can be chosen for the value of f(b). Hence,
Sum (M (S)?) = |ST*|. For example,

1
M(D)*=1| 0
0

S = N
=N W



M(D1)?[1,3] = 3 is equal to the number of elements in the interval [00,11] = {00,01,11}.
Furthermore, Sum(M(D;)?) = 10 is equal to |DI*|—the number of monotone functions
from P; to D;, and to |(BP)™|, and to |BP*3|. Moreover, the squares of the elements
of M(S)? are connected to monotone functions from the cube B? = {00,01,10,11} to S.
Indeed, (M (S)?[i, j])? = M(S)?[i, j]- M (S)?[i, j] is equal to the number of monotone functions
with f(00) = ¢ and f(11) = j. Note that we can choose M(S)?[i, ] elements for the
value of f(01) and M(S)?[i, j] elements for the value of f(10). Since these two values can
be chosen independently, we have (M (S)?[i,j])? monotone functions with f(00) = 7 and
f(11) = j. Hence, SumSq(M(S)?) = |SP*|, where SumSq(M(S)?) denotes the sum of
squares of all elements of the array M (S)?. For example, SumSq(M (D;)?) = 20 is equal to
|DP*| = |(BP)P*| = |BP*P*| = |BP’| = ds. Similarly, for every n > 2, we have

SumSq(M(D,.)*) = |D'| = [(B¥)7'| = [B¥7| = [B¥""| = dysa.

This fact was used in another formulation by Fidytek, Mostowski, Somla and Szepietowski [7].

Consider the product M(S)? = M(S) x M(S) x M(S). The elements of M(S)* are
connected to monotone functions from the path P, = (¢« < b < ¢ < d) to S. Indeed,
M (S)3[i, 7] is equal to the number of pairs z,y, such that i < z < y < j, and to the number
of monotone functions in S with f(a) =i and f(d) = j. Hence, Sum(M (S)?) = |S*|. For
example,

1
M(Dy)*=1 0
0

S = W
—= W O

Sum(M(D;)?) = 15 is equal to |DI*|—the number of monotone functions from Py to D,
and to |(BP)|, and to |BB*M4|.

4 Symmetries

Let S,, denote the set of permutations on {1,...,n}. Every permutation = € S,, defines
the permutation on B™ by m(x) = x o w. Here we treat elements x € B" as functions
x:{1,...,n} = {0,1}. Note that 2 <y if and only if 7(x) < 7(y).

Example 3. Consider two permutations: 7; = (12) and 75 = (123), both acting on B3:

2 [ 000100 010 [ 110 [ 001 | 101 | 011 | 111
() | 000 | 010 | 100 | 110 | 001 | 011 | 101 | 111
() | 000 | 001 | 100 | 101 | 010 | 011 | 110 | 111

Each permutation 7 acting on B™ generates a permutation on D, = B?". Namely,
7(g) = g o m. Note that 7(g) is monotone if g is monotone. Two functions f,¢g € D,, are
equivalent if there is a permutation = € S,, such that f = m(g). By R,, we denote the set of

equivalence classes. The number of the equivalence classes denoted by r, can be computed



by Burnside’s lemma; see [10, §38]. Known values of 7, (for n < 8) are given in the table at
the end of this paper. By the lemma, the number of equivalence classes in D, is equal to

1 .
rn=— > |Fix(r, Dyl

" wESy

where Fix(m, D,,) is the set of fixes of the permutation 7 acting on D,,. A function f € D,
is a fir of m if w(f) = f. Since conjugate group elements have the same number of fixed
points, | Fix(w, D,,)| depends only on the cycle type of w. By the cycle type of a permutation
m, we mean the data giving the lengths of disjoint cycles whose product is 7 and the number
of cycles of each length. Let k(n) denote the number of cycle types of elements of S,, and
assume that my, ..., T, is an (arbitrarily chosen) sequence of representatives of all cycle
types in S,,. For 1 <i < k(n), let p; be the number of elements of S,, of the same cycle type
as m; (see the tables in Section 8). Then

1 k(n)
rn=— > i | Fix(m;, Dy)l.
=1

In this paper we present a few algorithms and methods to count fixes of permutations acting
on D,

Consider a permutation m € S,, and suppose that m when acting on B" is a product of
disjoint cycles m = Cj o --- o C,, then a monotone function f : B™ — B is a fix of 7 if and
only if f is constant on every cycle C;. Let Cycl(m, B") denote the set of cycles {C},...,C,},
and let < be the partial order defined in the following way: C; < C} if and only if there exist
z € C; and y € C; such that < y (we identify each cycle with the set of its elements).
Hence, the poset Fix(w, D,) is isomorphic to the poset BY(™B") of monotone functions
from Cycl(m, B”) to B = {0,1} and we can represent fixes in Fix(m, D,,) as sequences of bits
of length | Cycl(m, B™)|.

For the identity permutation e, each x € B™ forms a cycle of length 1, hence Cycl(e, B") =
B" and Fix(e, D,,) = D,,. For n =1, we have D; = Ry and r; = d; = 3. For n = 2, we have
two permutations: the identity e with Fix(e, Dy) = Dy and the inversion (12) with three
cycles C1 = (00), Cy = (10,01), and C3 = (11) which form the path P; = {C; < Cy < Cs}.
There are four monotone functions from the path P; to B and four fixes in Fix((12), D5).
By Burnside’s lemma, we have

ry = %(| Fix(e, D)| + | Fix((12), D,)|) = %(6 +4) =5

Indeed, there are five equivalence classes in Ds; namely,

Ry = {{0000}, {0001}, {0101,0011}, {0111}, {1111}}.



5 Main results

Theorem 4. Consider a partition of the antichain A, = {1,...,n} into two disjoint an-
tichains A, = {1,...,k} and A,, = {k+1,...n}, where n = k 4+ m; and two permutations:
one m acting on Ay and p acting on A,,. Suppose that each cycle of m has a length which is
coprime with the length of every cycle of p then

Fix(m o p, D,,) = Fix(m, Dk)Cycl(mBm) = Fix(p, Dm)Cycl(ﬂ,Bk).

Proof. The cube B™ is isomorphic to the cartesian product B” = B*¥ x B™. Suppose that
we have two cycles: one C, of 7 acting on B* and the other C, of p acting on B™. The
lengths of the two cycles are coprime, so the product C,. x C is a cycle of mo p acting on B".
Furthermore, each cycle of 7 has a length which is coprime with the length of every cycle of
p SO

Cycl(r o p, B") = Cycl(n, B¥) x Cycl(p, B™)

and
Fix(mop, D,) = BCyel(mop,B™) _ pCycl(n,B*)xCycl(p,B™)
= Fix(, Dk)Cycl(p,B'”) = Fix(p, Dm)Cycl(w,Bk’)'
O

Example 5. Consider the partition A5 = Az + Ay, with A3 = {1,2,3} and Ay = {4,5}, and
two permutations: 7 = (123) and p = (45). There are four cycles of (123) acting on B®.
Namely, C; = (000), Cy = (100,001, 010), Cs = (011,110, 101), and Cy = (111). They are
of length 1 or 3 and they form the chain P, = (C} < Cy < C3 < Cy). There are three cycles
of (45) acting on B2 Namely, ¢; = (00), co = (10,01), and ¢3 = (11). They are of length 1
or 2 and they form the chain P; = (¢; < ¢2 < ¢3).

Furthermore, consider the two cycles Cy = (100,001,010} of 7 acting on B{»?3} and
c = {10,01} of p acting on B1*}. Their cartesian product

Cy X ¢ = {10010, 00101, 01010, 10001, 00110,01001}

forms one cycle of 7o p acting on B> = B? x B2. The poset of cycles of 7 o p acting on B®
is the cartesian product P, x P; and

| Fix((123)(45), Ds)| = |B™*"%| = |P5*| = [Py,

In order to compute Fix((123)(45), Ds), let us consider the arrays

M(F,) =

OO O =
S O = =
O~ = =
==



—_
)

M(Py)* =

oo o
O O = W
O~ WD
= W

Fix((123)(45), Ds) = | P/*| = Sum(M (P;)?) = 35. We can also use the arrays

11111
01111
MP)=|00111
00011
00001
12345
01234
MPs*=]00123
0001 3
00001
| Fix((123)(45), Ds)| = | P3| = Sum(M (P5)*) =

The following lemma is a direct consequence of the theorem. In the special case with m =
1 the lemma was used by Pawelski [11] to count and generate fixes of several permutations
acting on D,,.

Lemma 6. Suppose that a permutation 7 is acting on B* andn > k. Then when we consider
m acting on B",

Fix(r, D,) = (Fix(m, Dy))?" = DSyel(mB")
where m =n — k.
Proof. The permutation 7 is acting on {1,...,k} and on B*. We can say that 7 also acts
on {1,...,n} and on B", by identifying 7 with 7w o e. Every cycle in Cycl(e, B™) has length
1, hence, Cycl(e, B™) = B™ and
Cycl(r o e, B") = Cycl(r, B¥) x Cycl(e, B™) = Cycl(r, B¥) x B™

and

Fix(r, D,) = Fix(r o e, D,,) = BYI ™" — (Fix(r, D;,)) 5" = DLyel™5,



6 Applications

In this section we present a few examples that illustrate concepts from Section 3 and appli-
cations of Theorem 4 and Lemma 6.
Consider the poset Dy = BB = {0000, 0001,0011,0101,0111,1111} and its array

1 111 1|1 1

0 1|1 1|1 1

0 0|1 01 1

MD2) =15 olo 1]1 1
0 0/0 01 1

0 0[O0 0|0 1

Consider the array

1 213 3|5 6

0 112 24 5

> | 00]1 02 3
MD2)"= g o]0 1]2 3
0 0[0 01 2

0 0[O0 0|0 1

Now Sum(M(D,)?) = 50, which is equal to |[D2*| = [(BP*)Ps| = |BB** P3| = | Fix((12), D,)|;
see Lemma 6 and Section 3. Similarly, Suqu(M(DQ)Q) = 168, which is equal to |DQBQ| _
|(BBQ)BQ| = |BF*F| = \BB4\ = |Dy4| = d4. Furthermore,

1 36 6|14 20
0 1/3 3|9 14
0 0/1 0/3 6

3 _
M(D2)_000136
0 0/0 0]1 3
0 0/0 0|0 1

Now Sum (M (D,)?) = 105, which is equal to | D*| = [(BP*)?| = |BF**Ps| = | Fix((123), Ds)|.

6.1 Permutation (12)

Consider the permutation 7 = (12). When 7 acts on B?, we have three cycles Cycl((12), B?) =
Py and Fix((12), Do) = B™ = P;. When (12) acts on B?, then Cycl((12), B3) = P; x B and
Fix((12), D3) = B"*8; see Lemma 6. By Section 3, the number of fixes can be computed
either by

| Fix((12), Ds)| = [B™*P| = [(B™)"| = |P{’| = Sum(M (Py)) = 10,

or by
| Fix((12), Dy)| = [B™*P| = |(B¥)™| = |D{*| = Sum(M (Dy)?) = 10.
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In a similar way we count fixes when (12) acts on B*, then Cycl((12), B*) = P; x B? and
Fix((12), D4) = B™*5". The number of fixes can be computed either by

| Fix((12), Dy)| = |B™*P*| = |(B™)?"| = |PF"| = SumSq(M(P,)?) = 50,
or by

| Fix((12), Dy)| = |B™*P*| = |(BP*)*| = | DE*| = Sum(M(D5)?) = 50.
6.2 Permutation (123)

Consider the permutation 7 = (123). When 7 acts on B?, we have four cycles Cycl((123), B?) =
Py and Fix((123), D3) = B = P5. When (123) acts on B?, then Cycl((123), B*) = P, x B
and Fix((123), D;) = B"*B see Lemma 6. By Section 3, the number of fixes can be
computed either by

| Fix((123), Dy)| = |B™*P| = [(B™)"] = |Py’| = Sum(M (P5)) = 15,

or by
| Fix((123), Dy)| = [B™*F| = |(B)™| = |D"| = Sum(M(Dy)*) = 15.

In a similar way we can count fixes when (123) acts on B®. Then we have Cycl((123), B®) =
P, x B2 and Fix((123), Ds) = B™*5*. The number of fixes can be computed either by

| Fix((123), Ds)| = [B™"| = |(B™)”'| = |PY"| = SumSq(M(P5)?) = 105,
or by

| Fix((123), Ds)| = [B"*7'| = [(B¥')™| = |D3"| = Sum(M(D;)?) = 105.

6.3 Permutation (1234)

The permutation (1234) acting on B* has six cycles: Cy = {0000}, C; = {1000, 0001, 0010, 0100},
Cy = {1100, 1001, 0011, 0110}, Cy = {1010,0101}, Cy = {1110, 1101, 1011,0111}, and Cy =
{1111}. They are of length 1, 2, or 4 and ordered by Cy < Cy < Cy,C5 < Cy < C5. There
are 8 fixes of (1234) acting on D, with the array

M(Fix((1234), D,)) =

O O Rl Pk ==
O = == == = =
U G VR U S [ GRS SR [ WG S S—y

S O OO i =
S OO Ol = =

O O OO OO O =
OO OO OO = =
O OO O = =

—_
(e



Sum (M (Fix((1234), Dy))) = 35 = | Fix((1234), D5))|, see Lemma 6 and Section 3. Further-
more,

1 2 3[4 4/6 7 8
01 2(3 3|5 67
00 1[2 2[4 5 6
. » | 000|102 3 4
M (Fix((1234), Dy))" = 00 0l0 1|2 3 4
00 0[O0 0|1 2 3
00000012
00000001
and SumSq(M (Fix((1234), Dy))?) = 494 = | Fix((1234), Ds))|. Also
1 3 6[10 10|20 27 35
0 13/6 6|14 20 27
0013 3|9 14 20
0001 03 6 10
. 3 _
M (Fix((1234), Dy))” = 000l0 113 6 10
000/0 01 3 6
000[{0 0[]0 1 3
0000 0l0 0 1

and Sum(M (Fix((1234), Dy))?) = 294 = | Fix((1234)(567), D).

6.4 Permutation (12345)
The permutation (12345) acting on B® has eight cycles:

o Cy = {00000},

¢, = {10000, 00001, 00010, 00100, 01000},

Cy = {11000, 10001, 00011, 00110, 01100},

C3 = {10100, 01001, 10010, 00101, 01010},

C, = {11100, 11001, 10011, 00111,01110},

Cs = {10110, 01101, 11010, 10101, 01011},

Ce = {11110,11101, 11011, 10111,01111},

Cp = {11111},
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They are of length 1 or 5 and ordered by Cy < C; < Cy, U5 < Cy, C5 < Cg < C7. There are

11 fixes of (12345) acting on D5 with the array

1 1 1|1 111 1|1 1 1
011j1 1141 1|1 1 1
001j1 1141 1|1 1 1

000j1 011 1|1 1 1

0 00j0 111 1|1 1 1

0 00j0O0Of1f1T 1|1 1 1

000/00[0[1T 0] 1 1
000/00[0[0 1|1 11
000/00[0[0O0[1T 11
000/00[0[0O0]0 11
00 0/00[0[0O0][0O0 1
64 = | Fix((12345), D))| and

M (Fix((12345), Ds)) =

We have Sum(M (Fix((12345), Ds)))

— O
=S oo Hma —
S o w|jo owjmma—~ o
Do ~-hin wFHN A~ oo
o wm oo o oo
oM maHo|lo oo
o FHN Nl oo o o
T mNo ~|lolooloo o
MmN ololocoloo o
NN o ololooloo o
N~ Ooloo|lolooclooc o
— o oloo|lolooclooc o

Il

[}

—~

—~

s

=

10

<f

e

a

—

S~—

S~—

»

o r—

4

S~—

264 = | Fix((12345)(67), D7))|

By Theorem 4 and Section 3, we have Sum (M (Fix((12345), D5))?)

and by Lemma 6, we have

— 1548 = | Fix((12345), D7))|.

SumSq(M (Fix((12345), Ds5))?)

Also

<+ Mmoo o
O FlN NN = (e
m Mt ol
D F O Q|| LMo
M O <
IEIRTJomm—-oo
I~ O <t
S J|loomo ~looc o
I~ O <t
S J|loom—olooc o
o <
ST omm—-locolooc o
Somo-ooolooc o
S omHoloocolooc o
©om o olooc oo o
Mmoo ool oo o
— ool oo oo o

Il

)

—~

—~

s

P

1O

<t

e

&

i

~—

S~—

"

or—

&

=1
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and Sum(M (Fix((12345), D5))?) = 870 = | Fix((12345)(678), Dg))|; see Theorem 4.

6.5 Permutation (12)(34)

In the following two sections we present a method which was used by Pawelski [11] to compute
fixes of the permutation (12)(34)(56)(78) acting on Dg. Consider the first partition A, =
{1,2,3,4} = {1,2} + {3,4}, and two permutations: 7 = (12) and p = (34). Furthermore,
consider a partition of B* into four subcubes:

By, = {0000, 1000, 0100, 1100} = B? x {00}
By}, = {0010,1010,0110, 1110} = B* x {10}
Bg, = {0001,1001, 0101, 1101} = B* x {01}
B}, = {0011,1011,0111,1111} = B* x {11}.
Each of these subcubes is isomorphic to B2. There are three kinds of cycles of 7 o p acting
on B*:
e (0000), (1000,0100), (1100). They are contained in Bg, and are isomorphic to the

cycles of 7 acting on B2.

e (0011), (1011,0111), (1111). They are contained in Bj; and are isomorphic to the
cycles of 7 acting on B2.

e (0010,0001), (1010,0101), (0110,1001), (1110.1101). Each of the cycles contains two
elements {z,y} such that x € B{,, vy € By;, and y = 7 o p(x). Moreover, each = € B,
belongs to one of these cycles.

Suppose that f is a fix of m o p acting on D, and consider four restrictions: foo = f] Bi,»
fio = [l for = flps,, and fi1 = f|ps . They satisty the following conditions:

10 01

1. foo, f11 € Fix(m, Dy). Here we identify B*x {00} (and B?x{11}) with B? and functions
BB {00} (and B {11} with B’

2. fio, for € BP* = D,. We identify functions B?**{19 (and BZ**{01}) with BP’.
3. fio=7(for)

4. foo < fio, f1o < fir

On the other hand, if for a function f, its restrictions fog = f’Bé()? fio = f|Ban for = f\Bgl,
fi1 = flpa, satisfy conditions (1-4), then f is a fix of 7 o p acting on B,
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6.6 Permutation (12)(34)(56)(78)

Consider partition A, ={1,...,n+2} ={1,...,n}+{n+1,n+2}, and two permutations:
7 acting on {1,...,n} and p = (n 4+ 1,7 + 2). and suppose that cycles of 7 are of length 1
or 2. Consider a partition of B"*? into four subcubes:

e BI? = B" x {00}

e B2 = B" x {10}

e Bl = B" x {01}

o B2 = DB" x {11}.

There are three kinds of cycles of 7 o p acting on B"*2:

e Those contained in Bg,™?; isomorphic to the cycles of 7 acting on B™.

e Those contained in B{;'?; isomorphic to the cycles of 7 acting on B".

e Bach z € B4 belongs to the cycle with y = 7 o p(z) € By,
Suppose that f is a fix of m o p acting on D,,.» and consider four restrictions:

* foo = f|BgO+27

* fio= f|B;LO+2,

* for = f‘ng%

* fu= f|B;L1+2-

They satisfy the following conditions:

1. foo, f11 € Fix(m, D,,)

2. fio, fo € BP" =D,

3. fio =7(fo1)

4. foo < fi0, f10 < f11.

On the other hand, if for a function f, its restrictions foo = f|Bgo+z, fi0 = f|B?0+z, for = le{}l*?v
fii = f|B?j2 satisfy conditions (1-4), then f is a fix of m o p acting on D,, 4.

Algorithm counting fixes

Input: posets D,, = BB" and Fix(r, D,,).
Output: |Fix(7 o p, Dy y9)].

14



e Sum: =0
e For each fig € D,:

— Jor :== 7(f10);
— Down := |{g € Fix(m,D,,) : g < fio& for}| //the number of possibilities for
choosing fyo

— Up = [{g € Fix(m,D,) : g > fiolfor}| //the number of possibilities for
choosing fi1

— Sum := Sum + Down - Up
e Return |Fix(m o p, D,y 49)| := Sum.

Note that for each function g € Fix(m, D,,) we have
g < fio and g < fo1 if and only if g < fio& for
and

g > fio and g > fo1 if and only if g > fiol for-
A similar algorithm was used by Pawelski [11] in order to count fixes of the permutation

(12)(34)(56)(78) acting on Dsg.

Example 7. Consider the algorithm working on the permutation (12)(34) acting on Dj.
Then D, = {0000 < 0001 < 0011,0101 < 0111 < 1111} and Fix((12), D) = {0000 <
0001 < 0111 < 1111}.

e for fio = 0000: fo; = 0000; fi0& fo1 = 0000; Down = 1; fio|fo1 = 0000; Up = 4.

for flg = 0001: f()1 = 0001, f10&f01 = 00017 Down = 2; f10|f01 = 00017 Up = 3.

for fw = 0011: f01 = 0101, flO&fOI = 00017 Down = 2, f10|f01 = 0]_117 Up = 2.

fOI' fl(] = 0101: f01 = 0011, fl()&f()l = 00017 Down = 2, f10|f01 = 01117 Up = 2.

for flO = 0111: fDl = 0111, flo&fol = 01117 Down = 3, f10|f01 = 01117 Up = 2.
e for flO =1111: f01 = 1]_1]_, flO&fOI = 1]_]_17 Down = 4, f10|f01 = 1]_]_17 Up = 1.

The algorithm returns | Fix((12)(34),Dy)|=1-4+2-342-2+2-243-2+4-1=28.
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7 Generating fixes

In this section we present one more method to generate Fix(w, D,,) fixes of a permutation
7 acting on D,,. We start with the poset Cycl(mw, B") with its array M (Cycl(m, B™)). For
example, consider the permutation (12) acting on B?. The poset Cycl((12), B*) ={a <b <
c} x {0 < 1} = {a0,b0, 0, al,bl, cl} has the matrix

111111
011011
001001
000011
000001

We identify rows of the array with subsets of Cycl(7r, B") and with functions from Cycl(w, B™)
to {0,1}. It is well known that monotone functions from Cycl(w, B") to {0,1} may be
identified with upsets. A subset U C Cycl(w, B") is an upset if for every z,y, we have:

if €U and <y, then yeU.

Each row in the array M (Cycl(w, B")) represents the upset Up(c) = {z € Cycl(m,B") : © >
c}. The set of all upsets can be generated in the following way: We start with rows of the
array M (Cycl(m, B™)). Then we add the zero vector and the bitwise or (x|y) of every pair
x,y already in Fix.

Algorithm generating Fix(w, D,,)
Input: poset C' = Cycl(w, B") and its array
Output: Fix(m, D,,).

e Fix:=10
e add zero vector to Fix

For each ¢ € C:

— for each x € Fix add x| Up(c) to Fix

— remove repetitions in Fix

Return Fix(7, D,,) := Fix
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For example, the algorithm adds four rows to the array M (Cycl((12), B%))

111111
011011
001001
000111
000O0T1T1
000O0O0T1
00 0O0O0O
011111
001111
001011

These ten rows form the poset Fix((12), D3) with the partial order defined by

x<yiff x|y =y.

8 Tables of fixes

In this section we present tables with numbers of fixes of all permutations acting in D,, for

n=3,...,8. Values for n < 6 are from [8], values for n = 7,8 are from [9, 11].
i | m | | |Fix(m, Ds)|
n—3 1 e 1 20
2| (12) | 3 10
3| (123) | 2 5
1 i wi | | Fix(m;, Dy)|
1 e 1 168
2 a2 |6 50
n=4131 (123) |3 15
4] (1234) | 6 8
51 (12)(34) | 3 28
7 T %% ‘ FiX(’ﬂ'i, D5)‘
1 e 1 7 581
2| (12) |10 887
s3] (23 20 105
41 (1234) |30 35
51 (12)(34) | 15 309
6| (12345) | 24 11
71 (12)(345) | 20 35
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i u wi | | Fix(m;, Dg)|
1 e 1 7 828 354
2 (12) 15 | 160 948
3 (123) 10 3 490
4 (1234) 90 494
el 5| 26y |5 24302
6 (12345) 144 64
7| (123456) | 120 44
8 | (12)(345) | 120 490
0 | (123)(456) | 40 562
10 | (12)(3456) | 90 324
11 | (12)(34)(56) | 15 860
1 i L | Fix(m;, D7)
1 e 1 | 2414 682 040 998
2 (12) 15 | 2208001 624
3 (123) 40 2 068 224
4 (1234) 90 60 312
5 (12345) | 144 1 548
6 | (123456) | 120 766
| T (1234567) | 120 101
8| (12)(34) | 45 67 922 470
9 (12)(345) 45 59 542
10| (12)(3456) | 120 26 878
11| (12)(34567) | 120 264
12| (123)(456) | 120 69 264
13 | (123)(4567) | 120 204
14 | (12)(34)(56) | 15 | 12015 832 860
15 | (12)(34)(567) | 15 10 192
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1 U i | FiX(Tfi, Dg)l

1 e 1| 56 130 437 228 687 557 907 788

2 (12) 28 101 627 867 809 333 596

3 (123) 112 262 808 891 710

4 (1234) 420 424 234 996

5 (12345) 1344 531 708

6 (123456) 3366 144 320

7 (1234567) 5760 3 858

8 (12345678) 5040 2 364

9 (12)(34) 210 182 755 441 509 724

10 (12)(345) 1120 401 622 018
n=8|11| (12)(3456) | 2520 93 994 196

12 | (12)(34567) | 4032 21 216

13 | (12)(345678) | 3360 70 096

14 | (123)(456) | 1120 535 426 780

15 | (123)(4567) | 3360 25 168

16 | (123)(45678) | 2688 870

17 | (1234)(5678) | 1260 3211 276

18 | (12)(34)(56) | 420 7 377 670 895 900

19 | (12)(34)(567) | 1680 16 380 370

20 | (12)(34)(5678) | 1260 37 834 164

21 | (12)(345)(678) | 1120 3 607 596

22 | (12)(34)(56)(78) | 105 2 038 188 253 420

9 Known values of d,, and r,

n d, n

0 2 2

1 3 3

2 6 5)

3 20 10

4 168 30

5 7 581 210

6 7 828 354 16 353

7 2 414 682 040 998 490 013 148

8 | 56 130 437 228 687 557 907 788 | 1 392 195 548 889 993 358

These are sequences A000372 and A003182 in the On-Line Encyclopedia of Integer Se-
quences [12].
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