

Journal of Integer Sequences, Vol. 25 (2022), Article 22.9.6

Fixes of Permutations Acting on Monotone Boolean Functions

Andrzej Szepietowski Institute of Informatics Faculty of Mathematics,Physics and Informatics University of Gdańsk 80-308 Gdańsk Poland matszp@inf.ug.edu.pl

Abstract

We present a few algorithms and methods to count fixes of permutations acting on monotone Boolean functions.

1 Introduction

Let *B* denote the set $\{0, 1\}$ and B^n the set of *n*-element sequences of *B*. A Boolean function with *n* variables is any function from B^n into *B*. There are 2^n elements in B^n and 2^{2^n} Boolean functions with *n* variables. There is the order relation in *B* (namely: $0 \le 0, 0 \le 1$, $1 \le 1$) and the partial order in B^n : for any two elements: $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ in B^n ,

 $x \leq y$ if and only if $x_i \leq y_i$ for all $1 \leq i \leq n$.

The function $h: B^n \to B$ is monotone if

$$x \le y \Rightarrow h(x) \le h(y).$$

Let D_n denote the set of monotone functions with n variables and let d_n denote $|D_n|$. Known values of d_n , for $n = 0, \ldots, 8$ are presented in the table at the end of this paper. The values d_n for $n \leq 4$ were published by Dedekind [6], Church [4, 5] gave the values d_5 and d_7 , Ward [14] the value d_6 , and the last known value d_8 was published by Wiedemann [15]. Dedekind numbers were also considered in [1, 2, 3, 7, 13].

We have the partial order in D_n defined as follows:

 $g \leq h$ if and only if $g(x) \leq h(x)$ for all $x \in B^n$.

We represent the elements of D_n as strings of bits of length 2^n . Two elements of D_0 will be represented as 0 and 1; any element $g \in D_1$ can be represented as a concatenation g(0) * g(1), where $g(0), g(1) \in D_0$ and $g(0) \leq g(1)$. Hence, $D_1 = \{00, 01, 11\}$. Each element $g \in D_2$ is a concatenation (string) of four bits: g(00) * g(10) * g(01) * g(11) which can be represented as a concatenation $g_0 * g_1$, where $g_0, g_1 \in D_1$ and $g_0 \leq g_1$. Hence, $D_2 = \{0000, 0001, 0011, 0101, 0111, 1111\}$. Similarly any element $g \in D_n$ can be represented as a concatenation $g_0 * g_1$, where $g_0, g_1 \in D_{n-1}$ and $g_0 \leq g_1$.

Let S_n denote the set of permutations on $\{1, \ldots, n\}$. Every permutation $\pi \in S_n$ defines the permutation on B^n by $\pi(x) = x \circ \pi$ (we treat each element $x \in B^n$ as a function $x : \{1, \ldots, n\} \to \{0, 1\}$). Note that $x \leq y$ if and only if $\pi(x) \leq \pi(y)$. The permutation π also generates the permutation on D_n . Namely, by $\pi(g) = g \circ \pi$. Note that $\pi(g)$ is monotone if g is monotone. Two functions $f, g \in D_n$ are equivalent if there is a permutation $\pi \in S_n$ such that $f = \pi(g)$. By R_n we denote the set of equivalence classes and by r_n we denote the number of the equivalence classes. Known values of r_n (for $n \leq 8$) are given in the table at the end of this paper. The number of the equivalence classes can be computed by Burnside's lemma; see [10, §38]. Namely,

$$r_n = \frac{1}{n!} \sum_{\pi \in S_n} |\operatorname{Fix}(\pi, D_n)|,$$

where $\operatorname{Fix}(\pi, D_n)$ is the set of fixes of the permutation π acting on D_n . A function $f \in D_n$ is a *fix* of π if $\pi(f) = f$.

In 1985 and 1986 Liu and Hu [8, 9] used Burnside's lemma to compute r_n for all $n \leq 7$. Recently, Pawelski [11] computed r_8 .

In this paper we propose a new framework to study monotone Boolean functions and present a few algorithms and methods to count fixes of permutations acting on D_n . The main contributions of the paper are Theorem 4 and Lemma 6 which give formulas for the set of fixes of the composition $\pi \circ \rho$ of two permutations, provided π and ρ satisfy certain conditions. A special case of Lemma 6 was used by Pawelski [11] to count and generate fixes of several permutations acting on D_n . For completeness, in Sections 6.5 and 6.6, we present a method which was used by Pawelski [11] to compute fixes of the permutation (12)(34)(56)(78) acting on D_8 .

2 Posets

A poset (partially ordered set) (S, \leq) consists of a set S (called the *carrier*) together with a binary relation (partial order) \leq which is reflexive, transitive and antisymmetric. For two

posets (S, \leq) and (T, \leq) by $S \times T$ we denote the cartesian product with the order defined as follows: $(a, b) \leq (c, d)$ iff $a \leq c$ and $b \leq d$. For two disjoint posets (S, \leq) and (T, \leq) by S + T we denote the disjoint union (sum) with the order defined as follows:

 $x \leq y$ iff $(x, y \in S \text{ and } x \leq y)$ or $(x, y \in T \text{ and } x \leq y)$.

Given two posets (S, \leq) and (T, \leq) a function $f : S \to T$ is *monotone*, if $x \leq y$ implies $f(x) \leq f(y)$. By T^S we denote the poset of all monotone functions from S to T with the partial order defined as follows:

$$f \leq g$$
 if and only if $f(x) \leq g(x)$ for all $x \in S$.

In this paper we use the following notation:

- A_n denotes an antichain of order n, i.e. a poset of n elements, where no two distinct elements are related. We only deal with antichains with the carrier being a finite subset of natural numbers.
- B denotes the poset of two bits $\{0, 1\}$ ordered by $0 \le 0, 0 \le 1, 1 \le 1$.
- B^n denotes the poset B^{A_n} of all (monotone) functions from A_n into B. Note that each function from A_n to B is monotone. The poset B^n is isomorphic to
 - the poset of all subsets of $\{1, \ldots, n\}$ ordered by the inclusion,
 - the poset of all *n*-strings of bits, where $(x_1, \ldots, x_n) \leq (y_1, \ldots, y_n)$ iff $x_i \leq y_i$ for all *i*.
- D_n denotes the poset B^{B^n} of all monotone Boolean functions from B^n into B, which are called monotone Boolean functions of n variables.
- P_n denotes the path (or chain) $P_n = \{p_1 < \cdots < p_n\}$. Note that $B^{P_n} = P_{n+1}$.

We will use the following lemma which is a part of the folklore and can be easily proved.

Lemma 1. For three posets R, S, T,

- (1) If S and T are disjoint, then the poset R^{S+T} is isomorphic to $R^S \times R^T$.
- (2) The poset $R^{S \times T}$ is isomorphic to $(R^S)^T$ and to $(R^T)^S$.

As a corollary we have the following lemma. Similar lemmas in other formulations were used by Wiedemann [15], by Fidytek, Mostowski, Somla and Szepietowski [7], and by Campo [2] in order to compute $d_n = |D_n|$.

Lemma 2.

- $(a) \quad A_{k+m} = A_k + A_m$
- $(b) \qquad B^{k+m} = B^k \times B^m$

$$(c) \quad D_{k+m} = (D_k)^{B^m}$$

Proof.

(a) is obvious.

(b)
$$B^{k+m} = B^{A_{k+m}} = B^{A_k+A_m} = B^{A_k} \times B^{A_m} = B^k \times B^m$$
.

(c)
$$D_{k+m} = B^{B^{k+m}} = B^{B^k \times B^m} = (B^{B^k})^{B^m} = (D_k)^{B^m}.$$

_	_		
		L	
		L	
		L	
_	_	L	

3 Arrays

Let M(S) denote the array of the poset S. For $i, j \in S$, we have M(S)[i, j] = 1 if $i \leq j$, and M(S)[i, j] = 0 otherwise. For example, for the poset $D_1 = \{00 < 01 < 11\}$, its array

$$M(D_1) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

The poset D_1 is equal (isomorphic) to the poset of the path $P_3 = \{a < b < c\}$.

The elements of M(S) describe monotone functions from the poset $B = \{0, 1\}$ to S. If M(S)[i, j] = 1 then there exists a monotone function with f(0) = i and f(1) = j. Thus, if we add the elements of M(S) we obtain $|S^B|$ —the number of monotone functions from B to S. For example,

$$Sum(M(D_1)) = 6 = |D_1^B| = |(B^B)^B| = |B^{B \times B}| = |B^{B^2}| = |D_2| = d_2,$$

where $Sum(M(D_1))$ denotes the sum of all elements of the array $M(D_1)$. Similarly, for every $n \ge 2$, we have

$$Sum(M(D_n)) = |D_n^B| = |(B^{B^n})^B| = |B^{B^n \times B}| = |B^{B^{n+1}}| = |D_{n+1}| = d_{n+1}$$

Consider the product $M(S)^2 = M(S) \times M(S)$. Then $M(S)^2[i, j] = |\{k \in S : i \leq k \leq j\}|$ which is the number of elements in the interval $[i, j] \subset S$. Moreover, the elements of $M(S)^2$ are connected to monotone functions from the path $P_3 = \{a < b < c\}$ to S. Indeed, $M(S)^2[i, j]$ is equal to the number of monotone functions with f(a) = i and f(c) = j, or in other words to the number of elements which can be chosen for the value of f(b). Hence, $Sum(M(S)^2) = |S^{P_3}|$. For example,

$$M(D_1)^2 = \left(\begin{array}{rrr} 1 & 2 & 3\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{array}\right)$$

 $M(D_1)^2[1,3] = 3$ is equal to the number of elements in the interval $[00,11] = \{00,01,11\}$. Furthermore, $\operatorname{Sum}(M(D_1)^2) = 10$ is equal to $|D_1^{P_3}|$ —the number of monotone functions from P_3 to D_1 , and to $|(B^B)^{P_3}|$, and to $|B^{B \times P_3}|$. Moreover, the squares of the elements of $M(S)^2$ are connected to monotone functions from the cube $B^2 = \{00,01,10,11\}$ to S. Indeed, $(M(S)^2[i,j])^2 = M(S)^2[i,j] \cdot M(S)^2[i,j]$ is equal to the number of monotone functions with f(00) = i and f(11) = j. Note that we can choose $M(S)^2[i,j]$ elements for the value of f(01) and $M(S)^2[i,j]$ elements for the value of f(10). Since these two values can be chosen independently, we have $(M(S)^2[i,j])^2$ monotone functions with f(00) = i and f(11) = j. Hence, $\operatorname{SumSq}(M(S)^2) = |S^{B^2}|$, where $\operatorname{SumSq}(M(S)^2)$ denotes the sum of squares of all elements of the array $M(S)^2$. For example, $\operatorname{SumSq}(M(D_1)^2) = 20$ is equal to $|D_1^{B^2}| = |(B^B)^{B^2}| = |B^{B \times B^2}| = |B^{B^3}| = d_3$. Similarly, for every $n \geq 2$, we have

SumSq(
$$M(D_n)^2$$
) = $|D_n^{B^2}| = |(B^{B^n})^{B^2}| = |B^{B^n \times B^2}| = |B^{B^{n+2}}| = d_{n+2}$

This fact was used in another formulation by Fidytek, Mostowski, Somla and Szepietowski [7].

Consider the product $M(S)^3 = M(S) \times M(S) \times M(S)$. The elements of $M(S)^3$ are connected to monotone functions from the path $P_4 = (a < b < c < d)$ to S. Indeed, $M(S)^3[i, j]$ is equal to the number of pairs x, y, such that $i \le x \le y \le j$, and to the number of monotone functions in S^{P_4} with f(a) = i and f(d) = j. Hence, $Sum(M(S)^3) = |S^{P_4}|$. For example,

$$M(D_1)^3 = \left(\begin{array}{rrrr} 1 & 3 & 6\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{array}\right)$$

 $\operatorname{Sum}(M(D_1)^3) = 15$ is equal to $|D_1^{P_4}|$ —the number of monotone functions from P_4 to D_1 , and to $|(B^B)^{P_4}|$, and to $|B^{B \times P_4}|$.

4 Symmetries

Let S_n denote the set of permutations on $\{1, \ldots, n\}$. Every permutation $\pi \in S_n$ defines the permutation on B^n by $\pi(x) = x \circ \pi$. Here we treat elements $x \in B^n$ as functions $x : \{1, \ldots, n\} \to \{0, 1\}$. Note that $x \leq y$ if and only if $\pi(x) \leq \pi(y)$.

x	000	100	010	110	001	101	011	111
$\pi_1(x)$	000	010	100	110	001	011	101	111
$\pi_2(x)$	000	001	100	101	010	011	110	111

Example 3. Consider two permutations: $\pi_1 = (12)$ and $\pi_2 = (123)$, both acting on B^3 :

Each permutation π acting on B^n generates a permutation on $D_n = B^{B^n}$. Namely, $\pi(g) = g \circ \pi$. Note that $\pi(g)$ is monotone if g is monotone. Two functions $f, g \in D_n$ are *equivalent* if there is a permutation $\pi \in S_n$ such that $f = \pi(g)$. By R_n we denote the set of equivalence classes. The number of the equivalence classes denoted by r_n can be computed by Burnside's lemma; see [10, §38]. Known values of r_n (for $n \leq 8$) are given in the table at the end of this paper. By the lemma, the number of equivalence classes in D_n is equal to

$$r_n = \frac{1}{n!} \sum_{\pi \in S_n} |\operatorname{Fix}(\pi, D_n)|,$$

where $\operatorname{Fix}(\pi, D_n)$ is the set of fixes of the permutation π acting on D_n . A function $f \in D_n$ is a fix of π if $\pi(f) = f$. Since conjugate group elements have the same number of fixed points, $|\operatorname{Fix}(\pi, D_n)|$ depends only on the cycle type of π . By the cycle type of a permutation π , we mean the data giving the lengths of disjoint cycles whose product is π and the number of cycles of each length. Let k(n) denote the number of cycle types of elements of S_n and assume that $\pi_1, \ldots, \pi_{k(n)}$ is an (arbitrarily chosen) sequence of representatives of all cycle types in S_n . For $1 \leq i \leq k(n)$, let μ_i be the number of elements of S_n of the same cycle type as π_i (see the tables in Section 8). Then

$$r_n = \frac{1}{n!} \sum_{i=1}^{k(n)} \mu_i \cdot |\operatorname{Fix}(\pi_i, D_n)|.$$

In this paper we present a few algorithms and methods to count fixes of permutations acting on D_n .

Consider a permutation $\pi \in S_n$ and suppose that π when acting on B^n is a product of disjoint cycles $\pi = C_1 \circ \cdots \circ C_r$, then a monotone function $f : B^n \to B$ is a fix of π if and only if f is constant on every cycle C_i . Let $\operatorname{Cycl}(\pi, B^n)$ denote the set of cycles $\{C_1, \ldots, C_r\}$, and let \leq be the partial order defined in the following way: $C_i \leq C_j$ if and only if there exist $x \in C_i$ and $y \in C_j$ such that $x \leq y$ (we identify each cycle with the set of its elements). Hence, the poset $\operatorname{Fix}(\pi, D_n)$ is isomorphic to the poset $B^{\operatorname{Cycl}(\pi, B^n)}$ of monotone functions from $\operatorname{Cycl}(\pi, B^n)$ to $B = \{0, 1\}$ and we can represent fixes in $\operatorname{Fix}(\pi, D_n)$ as sequences of bits of length $|\operatorname{Cycl}(\pi, B^n)|$.

For the identity permutation e, each $x \in B^n$ forms a cycle of length 1, hence $\text{Cycl}(e, B^n) = B^n$ and $\text{Fix}(e, D_n) = D_n$. For n = 1, we have $D_1 = R_1$ and $r_1 = d_1 = 3$. For n = 2, we have two permutations: the identity e with $\text{Fix}(e, D_2) = D_2$ and the inversion (12) with three cycles $C_1 = (00), C_2 = (10, 01), \text{ and } C_3 = (11)$ which form the path $P_3 = \{C_1 < C_2 < C_3\}$. There are four monotone functions from the path P_3 to B and four fixes in $\text{Fix}((12), D_2)$. By Burnside's lemma, we have

$$r_2 = \frac{1}{2}(|\operatorname{Fix}(e, D_2)| + |\operatorname{Fix}((12), D_2)|) = \frac{1}{2}(6+4) = 5$$

Indeed, there are five equivalence classes in D_2 ; namely,

$$R_2 = \{\{0000\}, \{0001\}, \{0101, 0011\}, \{0111\}, \{1111\}\}.$$

5 Main results

Theorem 4. Consider a partition of the antichain $A_n = \{1, ..., n\}$ into two disjoint antichains $A_k = \{1, ..., k\}$ and $A_m = \{k + 1, ..., n\}$, where n = k + m; and two permutations: one π acting on A_k and ρ acting on A_m . Suppose that each cycle of π has a length which is coprime with the length of every cycle of ρ then

$$\operatorname{Fix}(\pi \circ \rho, D_n) = \operatorname{Fix}(\pi, D_k)^{\operatorname{Cycl}(\rho, B^m)} = \operatorname{Fix}(\rho, D_m)^{\operatorname{Cycl}(\pi, B^k)}.$$

Proof. The cube B^n is isomorphic to the cartesian product $B^n = B^k \times B^m$. Suppose that we have two cycles: one C_r of π acting on B^k and the other C_s of ρ acting on B^m . The lengths of the two cycles are coprime, so the product $C_r \times C_s$ is a cycle of $\pi \circ \rho$ acting on B^n . Furthermore, each cycle of π has a length which is coprime with the length of every cycle of ρ so

$$\operatorname{Cycl}(\pi \circ \rho, B^n) = \operatorname{Cycl}(\pi, B^k) \times \operatorname{Cycl}(\rho, B^m)$$

and

$$\operatorname{Fix}(\pi \circ \rho, D_n) = B^{\operatorname{Cycl}(\pi \circ \rho, B^n)} = B^{\operatorname{Cycl}(\pi, B^k) \times \operatorname{Cycl}(\rho, B^m)}$$
$$= \operatorname{Fix}(\pi, D_k)^{\operatorname{Cycl}(\rho, B^m)} = \operatorname{Fix}(\rho, D_m)^{\operatorname{Cycl}(\pi, B^k)}.$$

Example 5. Consider the partition $A_5 = A_3 + A_2$, with $A_3 = \{1, 2, 3\}$ and $A_2 = \{4, 5\}$, and two permutations: $\pi = (123)$ and $\rho = (45)$. There are four cycles of (123) acting on B^3 . Namely, $C_1 = (000)$, $C_2 = (100, 001, 010)$, $C_3 = (011, 110, 101)$, and $C_4 = (111)$. They are of length 1 or 3 and they form the chain $P_4 = (C_1 < C_2 < C_3 < C_4)$. There are three cycles of (45) acting on B^2 . Namely, $c_1 = (00)$, $c_2 = (10, 01)$, and $c_3 = (11)$. They are of length 1 or 2 and they form the chain $P_3 = (c_1 < c_2 < c_3)$.

Furthermore, consider the two cycles $C_2 = (100, 001, 010)$ of π acting on $B^{\{1,2,3\}}$ and $c_2 = \{10,01\}$ of ρ acting on $B^{\{4,5\}}$. Their cartesian product

$$C_2 \times c_2 = \{10010, 00101, 01010, 10001, 00110, 01001\}$$

forms one cycle of $\pi \circ \rho$ acting on $B^5 = B^3 \times B^2$. The poset of cycles of $\pi \circ \rho$ acting on B^5 is the cartesian product $P_4 \times P_3$ and

$$|\operatorname{Fix}((123)(45), D_5)| = |B^{P_4 \times P_3}| = |P_5^{P_3}| = |P_4^{P_4}|.$$

In order to compute $Fix((123)(45), D_5)$, let us consider the arrays

$$M(P_4) = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$M(P_4)^3 = \begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $Fix((123)(45), D_5) = |P_4^{P_4}| = Sum(M(P_4)^3) = 35$. We can also use the arrays

$$M(P_5) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$M(P_5)^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

 $|\operatorname{Fix}((123)(45), D_5)| = |P_5^{P_3}| = \operatorname{Sum}(M(P_5)^2) = 35.$

The following lemma is a direct consequence of the theorem. In the special case with m = 1 the lemma was used by Pawelski [11] to count and generate fixes of several permutations acting on D_n .

Lemma 6. Suppose that a permutation π is acting on B^k and n > k. Then when we consider π acting on B^n ,

$$\operatorname{Fix}(\pi, D_n) = (\operatorname{Fix}(\pi, D_k))^{B^m} = D_m^{\operatorname{Cycl}(\pi, B^k)}$$

where m = n - k.

Proof. The permutation π is acting on $\{1, \ldots, k\}$ and on B^k . We can say that π also acts on $\{1, \ldots, n\}$ and on B^n , by identifying π with $\pi \circ e$. Every cycle in $\operatorname{Cycl}(e, B^m)$ has length 1, hence, $\operatorname{Cycl}(e, B^m) = B^m$ and

$$\operatorname{Cycl}(\pi \circ e, B^n) = \operatorname{Cycl}(\pi, B^k) \times \operatorname{Cycl}(e, B^m) = \operatorname{Cycl}(\pi, B^k) \times B^m$$

and

$$\operatorname{Fix}(\pi, D_n) = \operatorname{Fix}(\pi \circ e, D_n) = B^{\operatorname{Cycl}(\pi, B^k) \times B^m} = (\operatorname{Fix}(\pi, D_k))^{B^m} = D_m^{\operatorname{Cycl}(\pi, B^k)}.$$

6 Applications

In this section we present a few examples that illustrate concepts from Section 3 and applications of Theorem 4 and Lemma 6.

Consider the poset $D_2 = B^{B^2} = \{0000, 0001, 0011, 0101, 0111, 1111\}$ and its array

$$M(D_2) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Consider the array

$$M(D_2)^2 = \begin{pmatrix} 1 & 2 & 3 & 3 & 5 & 6 \\ 0 & 1 & 2 & 2 & 4 & 5 \\ \hline 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Now Sum $(M(D_2)^2) = 50$, which is equal to $|D_2^{P_3}| = |(B^{B^2})^{P_3}| = |B^{B^2 \times P_3}| = |\operatorname{Fix}((12), D_4)|$; see Lemma 6 and Section 3. Similarly, SumSq $(M(D_2)^2) = 168$, which is equal to $|D_2^{B^2}| = |(B^{B^2})^{B^2}| = |B^{B^2 \times B^2}| = |B^{B^4}| = |D_4| = d_4$. Furthermore,

$$M(D_2)^3 = \begin{pmatrix} 1 & 3 & 6 & 6 & 14 & 20\\ 0 & 1 & 3 & 3 & 9 & 14\\ \hline 0 & 0 & 1 & 0 & 3 & 6\\ 0 & 0 & 0 & 1 & 3 & 6\\ \hline 0 & 0 & 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Now Sum $(M(D_2)^3) = 105$, which is equal to $|D_2^{P_4}| = |(B^{B^2})^{P_4}| = |B^{B^2 \times P_4}| = |\operatorname{Fix}((123), D_5)|.$

6.1 Permutation (12)

Consider the permutation $\pi = (12)$. When π acts on B^2 , we have three cycles $\text{Cycl}((12), B^2) = P_3$ and $\text{Fix}((12), D_2) = B^{P_3} = P_4$. When (12) acts on B^3 , then $\text{Cycl}((12), B^3) = P_3 \times B$ and $\text{Fix}((12), D_3) = B^{P_3 \times B}$; see Lemma 6. By Section 3, the number of fixes can be computed either by

$$|\operatorname{Fix}((12), D_3)| = |B^{P_3 \times B}| = |(B^{P_3})^B| = |P_4^B| = \operatorname{Sum}(M(P_4)) = 10,$$

or by

$$|\operatorname{Fix}((12), D_3)| = |B^{P_3 \times B}| = |(B^B)^{P_3}| = |D_1^{P_3}| = \operatorname{Sum}(M(D_1)^2) = 10.$$

In a similar way we count fixes when (12) acts on B^4 , then $\text{Cycl}((12), B^4) = P_3 \times B^2$ and $\text{Fix}((12), D_4) = B^{P_3 \times B^2}$. The number of fixes can be computed either by

$$|\operatorname{Fix}((12), D_4)| = |B^{P_3 \times B^2}| = |(B^{P_3})^{B^2}| = |P_4^{B^2}| = \operatorname{SumSq}(M(P_4)^2) = 50$$

or by

$$|\operatorname{Fix}((12), D_4)| = |B^{P_3 \times B^2}| = |(B^{B^2})^{P_3}| = |D_2^{P_3}| = \operatorname{Sum}(M(D_2)^2) = 50$$

6.2 Permutation (123)

Consider the permutation $\pi = (123)$. When π acts on B^3 , we have four cycles $Cycl((123), B^3) = P_4$ and $Fix((123), D_3) = B^{P_4} = P_5$. When (123) acts on B^4 , then $Cycl((123), B^4) = P_4 \times B$ and $Fix((123), D_4) = B^{P_4 \times B}$, see Lemma 6. By Section 3, the number of fixes can be computed either by

$$|\operatorname{Fix}((123), D_4)| = |B^{P_4 \times B}| = |(B^{P_4})^B| = |P_5^B| = \operatorname{Sum}(M(P_5)) = 15,$$

or by

$$|\operatorname{Fix}((123), D_4)| = |B^{P_4 \times B}| = |(B^B)^{P_4}| = |D_1^{P_4}| = \operatorname{Sum}(M(D_1)^3) = 15.$$

In a similar way we can count fixes when (123) acts on B^5 . Then we have $\text{Cycl}((123), B^5) = P_4 \times B^2$ and $\text{Fix}((123), D_5) = B^{P_4 \times B^2}$. The number of fixes can be computed either by

$$|\operatorname{Fix}((123), D_5)| = |B^{P_4 \times B^2}| = |(B^{P_4})^{B^2}| = |P_5^{B^2}| = \operatorname{SumSq}(M(P_5)^2) = 105,$$

or by

$$|\operatorname{Fix}((123), D_5)| = |B^{P_4 \times B^2}| = |(B^{B^2})^{P_4}| = |D_2^{P_4}| = \operatorname{Sum}(M(D_2)^3) = 105.$$

6.3 Permutation (1234)

The permutation (1234) acting on B^4 has six cycles: $C_0 = \{0000\}, C_1 = \{1000, 0001, 0010, 0100\}, C_2 = \{1100, 1001, 0011, 0110\}, C_3 = \{1010, 0101\}, C_4 = \{1110, 1101, 1011, 0111\}, and C_5 = \{1111\}$. They are of length 1, 2, or 4 and ordered by $C_0 < C_1 < C_2, C_3 < C_4 < C_5$. There are 8 fixes of (1234) acting on D_4 with the array

 $Sum(M(Fix((1234), D_4))) = 35 = |Fix((1234), D_5))|$, see Lemma 6 and Section 3. Furthermore,

$$M(\operatorname{Fix}((1234), D_4))^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 4 & 6 & 7 & 8 \\ 0 & 1 & 2 & 3 & 3 & 5 & 6 & 7 \\ 0 & 0 & 1 & 2 & 2 & 4 & 5 & 6 \\ \hline 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\ \hline 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

and $\operatorname{SumSq}(M(\operatorname{Fix}((1234), D_4))^2) = 494 = |\operatorname{Fix}((1234), D_6))|$. Also

$$M(\operatorname{Fix}((1234), D_4))^3 = \begin{pmatrix} 1 & 3 & 6 & 10 & 10 & 20 & 27 & 35 \\ 0 & 1 & 3 & 6 & 6 & 14 & 20 & 27 \\ 0 & 0 & 1 & 3 & 3 & 9 & 14 & 20 \\ \hline 0 & 0 & 0 & 1 & 0 & 3 & 6 & 10 \\ \hline 0 & 0 & 0 & 0 & 1 & 3 & 6 & 10 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ \hline \end{pmatrix}$$

and $\operatorname{Sum}(M(\operatorname{Fix}((1234), D_4))^3) = 294 = |\operatorname{Fix}((1234)(567), D_7))|.$

6.4 Permutation (12345)

The permutation (12345) acting on B^5 has eight cycles:

- $C_0 = \{00000\},\$
- $C_1 = \{10000, 00001, 00010, 00100, 01000\},\$
- $C_2 = \{11000, 10001, 00011, 00110, 01100\},\$
- $C_3 = \{10100, 01001, 10010, 00101, 01010\},\$
- $C_4 = \{11100, 11001, 10011, 00111, 01110\},\$
- $C_5 = \{10110, 01101, 11010, 10101, 01011\},\$
- $C_6 = \{11110, 11101, 11011, 10111, 01111\},\$
- $C_7 = \{11111\}.$

They are of length 1 or 5 and ordered by $C_0 < C_1 < C_2, C_3 < C_4, C_5 < C_6 < C_7$. There are 11 fixes of (12345) acting on D_5 with the array

We have $Sum(M(Fix((12345), D_5))) = 64 = |Fix((12345), D_6))|$ and

By Theorem 4 and Section 3, we have $Sum(M(Fix((12345), D_5))^2) = 264 = |Fix((12345)(67), D_7))|$ and by Lemma 6, we have

$$SumSq(M(Fix((12345), D_5))^2) = 1548 = |Fix((12345), D_7))|.$$

Also

and $\operatorname{Sum}(M(\operatorname{Fix}((12345), D_5))^3) = 870 = |\operatorname{Fix}((12345)(678), D_8))|$; see Theorem 4.

6.5 Permutation (12)(34)

In the following two sections we present a method which was used by Pawelski [11] to compute fixes of the permutation (12)(34)(56)(78) acting on D_8 . Consider the first partition $A_4 = \{1, 2, 3, 4\} = \{1, 2\} + \{3, 4\}$, and two permutations: $\pi = (12)$ and $\rho = (34)$. Furthermore, consider a partition of B^4 into four subcubes:

$$\begin{split} B_{00}^4 &= \{0000, 1000, 0100, 1100\} = B^2 \times \{00\} \\ B_{10}^4 &= \{0010, 1010, 0110, 1110\} = B^2 \times \{10\} \\ B_{01}^4 &= \{0001, 1001, 0101, 1101\} = B^2 \times \{01\} \\ B_{11}^4 &= \{0011, 1011, 0111, 1111\} = B^2 \times \{11\}. \end{split}$$

Each of these subcubes is isomorphic to B^2 . There are three kinds of cycles of $\pi \circ \rho$ acting on B^4 :

- (0000), (1000, 0100), (1100). They are contained in B_{00}^4 and are isomorphic to the cycles of π acting on B^2 .
- (0011), (1011,0111), (1111). They are contained in B_{11}^4 and are isomorphic to the cycles of π acting on B^2 .
- (0010,0001), (1010,0101), (0110,1001), (1110.1101). Each of the cycles contains two elements $\{x, y\}$ such that $x \in B_{10}^4$, $y \in B_{01}^4$, and $y = \pi \circ \rho(x)$. Moreover, each $x \in B_{10}^4$ belongs to one of these cycles.

Suppose that f is a fix of $\pi \circ \rho$ acting on D_4 and consider four restrictions: $f_{00} = f|_{B_{00}^4}$, $f_{10} = f|_{B_{10}^4}$, $f_{01} = f|_{B_{01}^4}$, and $f_{11} = f|_{B_{11}^4}$. They satisfy the following conditions:

- 1. $f_{00}, f_{11} \in \operatorname{Fix}(\pi, D_2)$. Here we identify $B^2 \times \{00\}$ (and $B^2 \times \{11\}$) with B^2 and functions $B^{B^2 \times \{00\}}$ (and $B^{B^2 \times \{11\}}$) with B^{B^2} .
- 2. $f_{10}, f_{01} \in B^{B^2} = D_2$. We identify functions $B^{B^2 \times \{10\}}$ (and $B^{B^2 \times \{01\}}$) with B^{B^2} .
- 3. $f_{10} = \pi(f_{01})$
- 4. $f_{00} \leq f_{10}, f_{10} \leq f_{11}$.

On the other hand, if for a function f, its restrictions $f_{00} = f|_{B_{00}^4}$, $f_{10} = f|_{B_{10}^4}$, $f_{01} = f|_{B_{01}^4}$, $f_{11} = f|_{B_{11}^4}$ satisfy conditions (1-4), then f is a fix of $\pi \circ \rho$ acting on B^4 .

6.6 Permutation (12)(34)(56)(78)

Consider partition $A_{n+2} = \{1, \ldots, n+2\} = \{1, \ldots, n\} + \{n+1, n+2\}$, and two permutations: π acting on $\{1, \ldots, n\}$ and $\rho = (n+1, n+2)$. and suppose that cycles of π are of length 1 or 2. Consider a partition of B^{n+2} into four subcubes:

- $B_{00}^{n+2} = B^n \times \{00\}$
- $B_{10}^{n+2} = B^n \times \{10\}$
- $B_{01}^{n+2} = B^n \times \{01\}$
- $B_{11}^{n+2} = B^n \times \{11\}.$

There are three kinds of cycles of $\pi \circ \rho$ acting on B^{n+2} :

- Those contained in B_{00}^{n+2} ; isomorphic to the cycles of π acting on B^n .
- Those contained in B_{11}^{n+2} ; isomorphic to the cycles of π acting on B^n .
- Each $x \in B_{10}^{n+2}$ belongs to the cycle with $y = \pi \circ \rho(x) \in B_{01}^{n+2}$.

Suppose that f is a fix of $\pi \circ \rho$ acting on D_{n+2} and consider four restrictions:

- $f_{00} = f|_{B_{00}^{n+2}}$,
- $f_{10} = f|_{B_{10}^{n+2}}$,

•
$$f_{01} = f|_{B_{01}^{n+2}},$$

•
$$f_{11} = f|_{B_{11}^{n+2}}$$
.

They satisfy the following conditions:

- 1. $f_{00}, f_{11} \in Fix(\pi, D_n)$
- 2. $f_{10}, f_{01} \in B^{B^n} = D_n$
- 3. $f_{10} = \pi(f_{01})$
- 4. $f_{00} \leq f_{10}, f_{10} \leq f_{11}.$

On the other hand, if for a function f, its restrictions $f_{00} = f|_{B_{00}^{n+2}}$, $f_{10} = f|_{B_{10}^{n+2}}$, $f_{01} = f|_{B_{01}^{n+2}}$, $f_{11} = f|_{B_{11}^{n+2}}$ satisfy conditions (1-4), then f is a fix of $\pi \circ \rho$ acting on D_{n+2} .

Algorithm counting fixes

Input: posets $D_n = \overline{B}^{B^n}$ and $\operatorname{Fix}(\pi, D_n)$. Output: $|\operatorname{Fix}(\pi \circ \rho, D_{n+2})|$.

- Sum := 0
- For each $f_{10} \in D_n$:
 - $f_{01} := π(f_{10});$ - Down := |{g ∈ Fix(π, D_n) : g ≤ f₁₀&f₀₁}| //the number of possibilities for choosing f₀₀
 - − Up := $|\{g \in Fix(\pi, D_n) : g \ge f_{10}|f_{01}\}|$ //the number of possibilities for choosing f_{11}
 - $\operatorname{Sum} := \operatorname{Sum} + \operatorname{Down} \cdot \operatorname{Up}$
- Return $|\operatorname{Fix}(\pi \circ \rho, D_{n+2})| := \operatorname{Sum}.$

Note that for each function $g \in Fix(\pi, D_n)$ we have

 $g \leq f_{10}$ and $g \leq f_{01}$ if and only if $g \leq f_{10} \& f_{01}$

and

 $g \ge f_{10}$ and $g \ge f_{01}$ if and only if $g \ge f_{10}|f_{01}$.

A similar algorithm was used by Pawelski [11] in order to count fixes of the permutation (12)(34)(56)(78) acting on D_8 .

Example 7. Consider the algorithm working on the permutation (12)(34) acting on D_4 . Then $D_2 = \{0000 < 0001 < 0011, 0101 < 0111 < 1111\}$ and $Fix((12), D_2) = \{0000 < 0001 < 0111 < 1111\}$.

- for $f_{10} = 0000$: $f_{01} = 0000$; $f_{10}\&f_{01} = 0000$; Down = 1; $f_{10}|f_{01} = 0000$; Up = 4.
- for $f_{10} = 0001$: $f_{01} = 0001$; $f_{10}\&f_{01} = 0001$; Down = 2; $f_{10}|f_{01} = 0001$; Up = 3.
- for $f_{10} = 0011$: $f_{01} = 0101$; $f_{10}\&f_{01} = 0001$; Down = 2; $f_{10}|f_{01} = 0111$; Up = 2.
- for $f_{10} = 0101$: $f_{01} = 0011$; $f_{10}\&f_{01} = 0001$; Down = 2; $f_{10}|f_{01} = 0111$; Up = 2.
- for $f_{10} = 0111$: $f_{01} = 0111$; $f_{10}\&f_{01} = 0111$; Down = 3; $f_{10}|f_{01} = 0111$; Up = 2.
- for $f_{10} = 1111$: $f_{01} = 1111$; $f_{10}\&f_{01} = 1111$; Down = 4; $f_{10}|f_{01} = 1111$; Up = 1.

The algorithm returns $|Fix((12)(34), D_4)| = 1 \cdot 4 + 2 \cdot 3 + 2 \cdot 2 + 2 \cdot 2 + 3 \cdot 2 + 4 \cdot 1 = 28.$

7 Generating fixes

In this section we present one more method to generate $Fix(\pi, D_n)$ fixes of a permutation π acting on D_n . We start with the poset $Cycl(\pi, B^n)$ with its array $M(Cycl(\pi, B^n))$. For example, consider the permutation (12) acting on B^3 . The poset $Cycl((12), B^3) = \{a < b < c\} \times \{0 < 1\} = \{a0, b0, c0, a1, b1, c1\}$ has the matrix

$$M(\operatorname{Cycl}((12)), B^{3})) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

We identify rows of the array with subsets of $\operatorname{Cycl}(\pi, B^n)$ and with functions from $\operatorname{Cycl}(\pi, B^n)$ to $\{0, 1\}$. It is well known that monotone functions from $\operatorname{Cycl}(\pi, B^n)$ to $\{0, 1\}$ may be identified with upsets. A subset $U \subset \operatorname{Cycl}(\pi, B^n)$ is an *upset* if for every x, y, we have:

if
$$x \in U$$
 and $x \leq y$, then $y \in U$.

Each row in the array $M(\operatorname{Cycl}(\pi, B^n))$ represents the upset $\operatorname{Up}(c) = \{x \in \operatorname{Cycl}(\pi, B^n) : x \ge c\}$. The set of all upsets can be generated in the following way: We start with rows of the array $M(\operatorname{Cycl}(\pi, B^n))$. Then we add the zero vector and the bitwise or (x|y) of every pair x, y already in Fix.

Algorithm generating $Fix(\pi, D_n)$

Input: poset $C = \text{Cycl}(\pi, B^n)$ and its array Output: Fix (π, D_n) .

- Fix := \emptyset
- add zero vector to Fix
- For each $c \in C$:
 - for each $x \in \text{Fix}$ add x | Up(c) to Fix
 - remove repetitions in Fix
- Return $\operatorname{Fix}(\pi, D_n) := \operatorname{Fix}$

For example, the algorithm adds four rows to the array $M(\mathrm{Cycl}((12),B^3))$

1	1	1	1	1	1
0	1	1	0	1	1
0	0	1	0	0	1
0	0	0	1	1	1
0	0	0	0	1	1
0	0	0	0	0	1
$\frac{0}{0}$	0	0	0	0	1
$\begin{array}{c} 0 \\ \hline 0 \\ 0 \\ \end{array}$	0 0 1	0 0 1	0 0 1	0 0 1	1 0 1
$\begin{array}{c} 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 1 0	0 0 1 1	0 0 1 1	0 0 1 1	1 0 1 1

These ten rows form the poset $Fix((12), D_3)$ with the partial order defined by

$$x \leq y$$
 iff $x|y = y$.

8 Tables of fixes

In this section we present tables with numbers of fixes of all permutations acting in D_n for $n = 3, \ldots, 8$. Values for $n \le 6$ are from [8], values for n = 7, 8 are from [9, 11].

		i	π_i	1	u_i		$\operatorname{Fix}(\pi_i, D_3) $
~	2	1	e		1		20
$n \equiv$	0	2	(12)		3		10
		3	(123)		2		5
	i		π_i		μ_i		$ \operatorname{Fix}(\pi_i, D_4) $
	1		e		1		168
m - 4	2		(12)		6		50
n - 4	3		(123)		8		15
	4		(1234)		6		8
	5		(12)(34)		3		28
	i		π_i		μ	i	$ \operatorname{Fix}(\pi_i, D_5) $
	1		e		1	-	7 581
	2		(12)		1	0	887
n - 5	3		(123)		2	0	105
n = 0	4		(1234)		3	0	35
	5	((12)(34)		1	5	309
	6		(12345)		2	4	11
	7	(12)(345)	2	0	35

	i	π_i	μ_i	$ \operatorname{Fix}(\pi_i, D_6) $
	1	е	1	7 828 354
	2	(12)	15	$160 \ 948$
	3	(123)	40	$3\ 490$
	4	(1234)	90	494
~ — 6	5	(12)(34)	45	24 302
n = 0	6	(12345)	144	64
	7	(123456)	120	44
	8	(12)(345)	120	490
	9	(123)(456)	40	562
	10	(12)(3456)	90	324
	11	(12)(34)(56)	15	860

	i	π_i	μ_i	$ \operatorname{Fix}(\pi_i, D_7) $
	1	e	1	2 414 682 040 998
	2	(12)	15	$2\ 208\ 001\ 624$
	3	(123)	40	$2\ 068\ 224$
	4	(1234)	90	$60 \ 312$
	5	(12345)	144	1548
	6	(123456)	120	766
n = 7	7	(1234567)	120	101
	8	(12)(34)	45	$67 \ 922 \ 470$
	9	(12)(345)	45	59542
	10	(12)(3456)	120	26 878
	11	(12)(34567)	120	264
	12	(123)(456)	120	$69\ 264$
	13	(123)(4567)	120	294
	14	(12)(34)(56)	15	$12 \ 015 \ 832 \ 860$
	15	(12)(34)(567)	15	10 192

	i	π_i	μ_i	$ \operatorname{Fix}(\pi_i, D_8) $
	1	е	1	56 130 437 228 687 557 907 788
	2	(12)	28	$101 \ 627 \ 867 \ 809 \ 333 \ 596$
	3	(123)	112	262 808 891 710
	4	(1234)	420	$424 \ 234 \ 996$
	5	(12345)	1344	531 708
	6	(123456)	3366	144 320
	7	(1234567)	5760	3 858
	8	(12345678)	5040	2 364
	9	(12)(34)	210	$182\ 755\ 441\ 509\ 724$
	10	(12)(345)	1120	$401 \ 622 \ 018$
n = 8	11	(12)(3456)	2520	$93 \ 994 \ 196$
	12	(12)(34567)	4032	21 216
	13	(12)(345678)	3360	70 096
	14	(123)(456)	1120	$535 \ 426 \ 780$
	15	(123)(4567)	3360	$25\ 168$
	16	(123)(45678)	2688	870
	17	(1234)(5678)	1260	$3\ 211\ 276$
	18	(12)(34)(56)	420	$7 \ 377 \ 670 \ 895 \ 900$
	19	(12)(34)(567)	1680	$16 \ 380 \ 370$
	20	(12)(34)(5678)	1260	$37 \ 834 \ 164$
	21	(12)(345)(678)	1120	$3\ 607\ 596$
	22	(12)(34)(56)(78)	105	$2 \ 038 \ 188 \ 253 \ 420$

9 Known values of d_n and r_n

n	d_n	r_n
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7 581	210
6	7 828 354	16 353
7	$2\ 414\ 682\ 040\ 998$	490 013 148
8	56 130 437 228 687 557 907 788	1 392 195 548 889 993 358

These are sequences <u>A000372</u> and <u>A003182</u> in the On-Line Encyclopedia of Integer Sequences [12].

References

- V. Bakoev, One more way for counting monotone Boolean functions, in *Thirteenth Inter*national Workshop on Algebraic and Combinatorial Coding Theory, Pomorie, Bulgaria (2012), pp. 47–52.
- [2] F. a Campo, Relations between powers of Dedekind numbers and exponential sums related to them, J. Integer Sequences 21 (2018) Article 18.4.4.
- [3] P. De Causmaecker and S. De Wannemacker, On the number of antichains of sets in a finite universe, Arxiv preprint 1407.4288v2 [math.CO], available at https://arxiv. org/abs/1407.4288, 2014.
- [4] R. Church, Numerical analysis of certain free distributive structures, Duke Math. J. 6 (1940) 732–734.
- [5] R. Church, Enumeration by rank of the elements of the free distributive lattice with 7 generators, Notices Amer. Math. Soc. 12 (1965) 724.
- [6] R. Dedekind, Uber Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler, Festschrift Hoch. Braunschweig u. ges. Werke II (1897) 103–148.
- [7] R. Fidytek, A. W. Mostowski, R. Somla, and A. Szepietowski, Algorithms counting monotone Boolean functions, *Inform. Process. Lett.* **79** (2001), 203–209.
- [8] C. C. Liu and S. B. Hu, A mechanical algorithm of equivalent classification for free distributive lattices, *Chinese J. Comput.* **3** (2) (1985), 128–135. In Chinese.
- [9] C. C. Liu and S. B. Hu, A note on the problem of computing the number of equivalence classes of free distributive lattices, J. Wuhan Univ. Natur. Sci. Ed. (1986), no. 1, 13–17. In Chinese.
- [10] G. E. Martin, Counting: The Art of Enumerative Combinatorics, Springer, 2001.
- B. Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, J. Integer Sequences 25 (2022), Article 22.7.7.
- [12] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2022. Available at https://oeis.org.
- [13] T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, Discrete Appl. Math., 167 (2014), 15–24.
- [14] M. Ward, Note on the order of the free distributive lattice, Bull. Amer. Math. Soc. 52 (1946) 423.
- [15] D. Wiedemann, A computation of the eighth Dedekind number, Order 8 (1991), 5–6.

2020 Mathematics Subject Classification: Primary 06E30. Keywords: monotone Boolean function, Dedekind number, equivalence class, fix.

(Concerned with sequence $\underline{A000372}$ and $\underline{A003182}$.)

Received May 8 2022; revised versions received September 19 2022; October 26 2022. Published in *Journal of Integer Sequences*, November 20 2022.

Return to Journal of Integer Sequences home page.