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1 Introduction

When originally described by Russian engineer Leonid Assur in 1914, Assur groups were
defined as kinematic chains that have zero degrees of mobility, and from which simpler
structures of the same mobility cannot be obtained. The terminology used in most of the
literature on this topic comes from engineering. For example, an Assur group is not a group
in the mathematical sense. In 2010, Servatius et al. gave the concept Assur group a formal
mathematical model in terms of graph theory [20]. The resulting Assur graphs are the
topic of this article. The term Assur group is however commonly used in the engineering
literature, as will be reflected below, when we briefly survey the applications of Assur graphs
in engineering.

A planar linkage, or kinematic chain (with revolute joints only), may be described as a
collection of rigid convex polygonal links that are joined at revolute joints. In the theory of
mathematical rigidity, planar linkages correspond to so-called planar body-pin frameworks;
the rigid polygonal links are modeled by rigid bodies, and the joints are called pins, see also
the discussion in Section 3. Within that context, the word pin denotes a zero-dimensional
hinge between a pair of planar bodies.

In this article we will however use the term pinned to denote a joint that has its position
fixed in the plane, and we will then say that the joint or vertex is grounded or pinned. We
will also talk about links instead of bodies.

An Assur group is then a collection of rigid polygonal links, joined at their vertices. Some
of the vertices of an Assur group are pinned/grounded, such that the linkage contains no
rigid sublinkage and such that it is not only rigid, but due to the pinned/grounded joints,
allows no motion at all. As Hahn et al. mention [7], Assur groups are useful when describing
different types of mechanisms and robotic structures, for example parallel robots such as
Stewart Platforms.

Assur groups are closely related to Baranov trusses. A Baranov truss is a planar linkage
that is rigid but contains no rigid sublinkage. A Baranov truss admits rigid motions, but an
Assur group does not. By removing any link of a Baranov truss and grounding its joints,
an Assur group is obtained. This property has also been used to define Baranov trusses.
Rojas and Thomas [19] defined them for example as “non-overconstrained linkage(s) with
zero-mobility from which an Assur group can be obtained by removing any of its links. . . ”.
In their article they relate Baranov trusses with given numbers of links to the number of
Assur groups these Baranov trusses can generate upon removal of a link.

Orki et al. [17] discuss the use of Assur tensegrity structures to model the mechanics
of a crawling caterpillar. In this instance, an Assur group is considered to be a structure
that maintains its stability through “tensional integrity” through the use of cables (tension)
and struts (compression). The internal musculature of the caterpillar is modelled by these
tensegrity structures such that the non-moving part of the caterpillar’s body is considered a
stable object, and the moving parts are compressing and expanding to move the caterpillar
forwards.

Shai et al. use a similar concept involving tensegrity structures modelled using Assur
groups [21]. In their article, an adjustable robot is constructed such that, internally, it has
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zero degrees of freedom, but it is still mobile and can bear external loads. This provides a
motivation to be able to measure the degree of freedom experienced by such frameworks.

Jacobs et al. [14] describe an algorithm involving placing pebbles at joints within a
framework to describe its inner degrees of freedom. This algorithm can be applied to planar
frameworks to determine their rigidity and, while not the focus of this article, is a useful
tool in Assur group verification and analysis.

Both the engineering community and the mathematical community could benefit from
having examples of Assur graphs readily available. In this article we generate an inventory of
small Assur graphs, following an algorithm described by Servatius et al. [20]. In the process
we also generate an inventory of small rigidity circuits.

Huang and Ding provided a database of Baranov trusses with up to 13 links [9] and
used it to build a database of Assur groups with up to 12 links [10], using the fact that the
removal of any link and grounding its joints gives an Assur group. As will be made clear in
Section 3, Assur graphs provide a graph theoretical model for Assur groups, but there may
be many Assur graphs modelling the same Assur group. This explains why our inventory
of Assur graphs is different from the one presented by Huang and Ding, and the number of
graphs also differ. More precisely, they count the number of Assur groups for each number of
links, but Assur graphs do not have links. Instead, we count the number of Assur graphs for
each number of vertices (more precisely, the sum of the number of pinned and the number
of unpinned vertices).

We hope that our results will stimulate research in graph rigidity and that this article
with its inventory will also make the theory of Assur graphs more accessible to readers who
are not experts in rigidity theory.

The article starts with this introduction in which we have briefly surveyed the applications
in engineering of graph rigidity with a particular focus on Assur graphs. In Section 2 we
introduce notation and concepts that we will need, also giving the state of the art from a
mathematical point of view. In Section 3 we establish a relationship between Baranov trusses
and (2, 3)-tight graphs, as well as between Assur groups and Assur graphs. After that, in
Section 4, we generate and count the number of rigidity circuits on up to 10 vertices, and
we also generate and count the number of Assur graphs on up to 11 vertices. We then end
the article with a short discussion.

2 Preliminaries

2.1 Graphs and frameworks

Graphs are the natural choice for mathematical modelling of networks and relationships. An
(undirected) graph is a set of vertices together with a set of edges joining some of the pairs
of the vertices. When used as models, the vertices typically model the elements of some set,
and the edges model the connections or the relationships between these elements.

Graphs are often represented using their adjacency matrix, which is a matrix defined by
the relationship between the vertices. In this matrix the rows and columns are both indexed
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by the vertices of the graph, so it is always a square matrix. The entry (u, v) in this matrix
is 1 if there is an edge between vertex u and vertex v, otherwise it is zero. The incidence
matrix of a graph describes the relationship between the vertices and the edges of the graph.
The entry (v, e) in this matrix is 1 if the vertex v is on the edge e. In the signed incidence
matrix, first a preferred orientation is chosen for each edge. Then the entry (v, e) is 1 if v is
the beginning of e, −1 if v is the end of e and 0 otherwise. The adjacency and the incidence
matrices are not uniquely defined, but depend on the indexing of the vertices and the edges.

For example, the adjacency matrix, the incidence matrix, and the signed incidence matrix
of the graph G = (V,E) defined by the vertex set

V = {v1, v2, v3, v4}

and the edge set
E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}

are (indexing in order of appearance and orienting the edges as listed):








0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

















1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

















1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1









Adjacency matrix Incidence matrix Signed incidence matrix

Graphs can be represented in Euclidean space of dimension d by assigning a point configu-
ration (a set of point coordinates) to the set of vertices and then linking the vertices that
are connected by an edge via straight line segments. Such realizations of graphs are called
frameworks. Typically, it is allowed for two vertices that do not share an edge to be assigned
the same location. It is also allowed for two edges to cross. Figure 1a and Figure 1b show
two embeddings of the graph G in the Euclidean plane as frameworks. Frameworks are
used to model, for example, bar and joint structures, strut and cable structures, and sensor
networks.

2.2 Rigidity of graphs

From an engineering point of view, a framework of a graph is rigid if the bar and joint
structure it models maintains its shape and composition even under applied force; it will not
bend, flex, or change shape when pressure is applied to any of its joints/vertices.

For example, a bar and joint structure modelled by the framework in Figure 1b can be
obtained from the one modelled by the framework in Figure 1a by applying pressure to the
top vertices, while preserving the length of the bars. Note that the distances between all
vertices that are joined by edges are maintained, but the distances between the other vertices
have changed. These frameworks are therefore by definition not rigid.

Figure 1c shows a framework that can be obtained from the framework in Figure 1a
by adding the two diagonal edges. It is not possible to change the shape of this framework
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Figure 1: In (a) and (b): two frameworks of the same non-rigid graph. In (c): a framework
of a rigid graph on the same vertex set.

without changing the lengths of the edges, so it will stay the same, should pressure be applied.
We see that the framework, and perhaps also the graph, should satisfy some criteria of
rigidity. Indeed, as we will see, this graph is rigid. More precisely, it is globally, continuously,
and infinitesimally rigid, but not minimally rigid.

Call the continuous rigid motions of Euclidean space the trivial motions. The continuous
trivial motions of the plane are then the translations, the rotations, and the compositions
of these motions. Note that the trivial motions do not change the distances between the
vertices of the framework of a graph. This is indeed one reason for why we call them trivial
motions within this context.

Consider now continuous motions of the Euclidean space that are not rigid/trivial; the
motions that move each vertex of a framework independently. A framework of a graph is
globally rigid if all frameworks with the same set of edge lengths have the same distances
also between non-adjacent vertices. A framework can be globally flexible without there being
a continuous motion of the framework taking it to another framework with the same set of
edge lengths.

A framework of a graph is (continuously) rigid if every continuous non-trivial motion of
the vertices that preserves the lengths of all edges also preserves the distances between all
the vertices. Describe such a continuous motion of the vertices by a continuous function
P (t) = (P1(t), . . . , Pn(t)) that returns a point configuration for the vertex set for each input
time t. Denote the square of the length of the edge (vi, vj) by K(i,j)(t) = ‖Pi(t)− Pj(t)‖2.
Then K(i,j)(t) is constant, because the edge lengths are preserved by P (t). Therefore the
derivative of K(i,j)(t) is 2(Pi(t)− Pj(t)) · (P ′

i (t)− P ′

j(t)) = 0. The set of equations obtained
in this way from the set of edges of the graph, is, as we will see now, used to linearize the
problem of finding the continuous motions of the graph.

An infinitesimal motion of the framework of a graph (V,E) with point configuration
P = (P1, . . . , Pn) is an assignment of vectors M = (−→m1, . . . ,

−→mn) to the points given by P
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to the vertices in V , satisfying (Pi − Pj) · (−→m i − −→mj) = (Pi − Pj) · −→mi + (Pj − Pi) · −→mj = 0
for every edge (vi, vj) ∈ E. For planar frameworks, this defines a system of linear equations
with 2n unknowns, the two coordinates (ai, bi) of the vector −→mi at each point Pi. The
coefficients of the equation defined by the edge (vi, vj) are Pi−Pj at the position (ai, bi) and
Pj − Pi at (aj, bj), and otherwise 0. The matrix containing the coefficients of this system
is called the rigidity matrix of the framework. The subspace of solutions always contains
the set of vectors corresponding to the derivatives of the continuous rigid planar motions
of the framework (the translations, the rotations, and the compositions of these). This is a
subspace of dimension three.

If there are no other solutions, then we say that the framework is infinitesimally rigid. A
graph is infinitesimally rigid if a framework of the graph with a generic point configuration
is infinitesimally rigid, where generic means that the dimension of the space of infinitesimal
flexes at this point configuration is minimal, that is, the rank of the rigidity matrix is
maximal. (Many authors take generic to mean that the coordinates of the point configuration
are algebraically independent, since this implies that the rank of the rigidity matrix will be
maximal. However, we think that since this is not a necessary condition, see for example
Figure 4, it is better to choose the definition of generic in a way that actually captures the
desired property. Some authors also call such frameworks regular.) Note therefore that when
we talk about infinitesimally rigid graphs, we are not discussing the rigidity of all frameworks
of the graph, but only of the generic ones. The frameworks that are not generic are called
singular.

Global rigidity clearly implies (continuous) rigidity because there cannot be any con-
tinuous non-trivial motion without the distances between a pair of vertices changing. All
infinitesimally rigid graphs are continuously rigid, by a result due to Asimow and Roth [1].
However not all rigid frameworks are infinitesimally rigid. For example, the complete graph
on three vertices is globally rigid, hence (continuously) rigid in all frameworks. But if the
vertices of the framework are on a single line, then there is an admissible infinitesimal motion
of the vertex in the middle.

2.3 The rigidity matroid

A matroid is a combinatorial structure that generalizes the notion of linear independence
from linear algebra. A matroid is a set U together with a set I of subsets of U , satisfying

1. The empty set is in I;

2. Every subset of a set of I is also in I;

3. If A and B are sets in I, and A has more elements than B, then there is an element
x ∈ A \B such that the set B ∪ {x} is in I.

The set U is called the base set and the set I is the collection of independent sets.
Any matrix defines a matroid. Let U be the set of row vectors of a matrix and let I be

the collection of linearly independent subsets of U . Then (U, I) is a matroid.
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Any graph defines a matroid. Let U be the set of edges of the graph and let I be the
collection of subsets of U that do not contain a cycle. Then (U, I) is a matroid. We will call
this matroid the cycle matroid of the graph.

There are other ways to define matroids from graphs. In this article we are interested
in the rigidity matroid of dimension two of a graph. The rigidity matroid of dimension d of
a graph is defined by taking the base set U to be the set of edges and I the collection of
subsets of edges corresponding to linearly independent sets of rows of the rigidity matrix.
Note that the rigidity matrix of a graph in dimension one is essentially the signed incidence
matrix after multiplying the row indexed by the edge e with the (possibly unknown) length
of the edge e. The rigidity matroid of dimension one is therefore essentially the same as the
cycle matroid of the graph. So, the rigidity matroid generalizes the concept of cycle matroid.

The rigidity matrix in dimension d has d times the number of columns of the incidence
matrix. For example, Figure 1c shows a framework of the complete graph G on four vertices.
By assigning the point configuration P0 = ((x1, y1), (x2, y2), (x3, y3), (x4, y4)) to the vertex
set V = {v1, v2, v3, v4}, we can consider all two-dimensional frameworks of G. The rigidity
matrix of G in two dimensions, indexing the vertices and edges as they appear in the defini-
tion above, is

M2(G) =

















x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1
x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

















.

The rigidity matroid of dimension two of G is the matroid defined on the edge set with the
collection of independent sets being the sets of edges that correspond to the independent
rows of the matrix M2(G). The maximal independent sets (the bases of the matroid) are
all the subsets of five edges. It is a fundamental property of matroids that all maximal
independent sets have the same cardinality. This cardinality is the rank of the matroid. For
example, the rigidity matroid of our graph G has rank five.

The rigidity matroid of a graph H on |V | vertices is the induced submatroid of the
rigidity matroid of the complete graph on |V | vertices, obtained by removing the edges that
are not in H together with all independent sets containing these edges. In terms of the
rigidity matrix, this corresponds to considering only the rows corresponding to the edges in
H = (V,E).

In two dimensions, the maximal rank of the rigidity matroid of a graph on |V | vertices is
2|V |−3, because the number of columns is 2|V | and the kernel corresponds to the infinitesimal
motions of the trivial (rigid) motions, which is a subspace of dimension three. A graph that
has a rigidity matroid of rank 2|V | − 3 is rigid, because all the infinitesimal motions are
trivial.

It is known how to characterize the independent sets of the rigidity matroid of dimension
one and two in generic point configurations in terms of the combinatorial properties of the
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|V | 2 3 4 5 6 7 8 9 10 11 12
# 1 1 1 3 13 70 608 7222 110132 39273 44176717

Figure 2: The number of (2, 3)-tight graphs on |V | vertices [3] is sequence A227117 in the
OEIS [22].

graph only. Such a characterization is not known in higher dimensions. In particular, this
is an open problem for the important case of dimension three [12].

2.4 Tight graphs

A graph is (2, 3)-sparse if and only if every induced subgraph on k ≥ 2 vertices has at most
2k− 3 edges, and (2, 3)-tight if the graph itself also has exactly 2|V | − 3 edges [5]. It can be
seen that this happens exactly when the graph is a maximal independent set (a basis) in the
rigidity matroid on |V | vertices [5]. A (2, 3)-tight graph or a Laman graph is a minimally
rigid graph, in the sense that if any edge is removed, then the graph will no longer be rigid.

It was proved by Henneberg that all (2, 3)-tight graphs can be constructed from the graph
on two vertices with one edge in between them, using only two operations [8] (sometimes
called the Henneberg operations):

1. Vertex-addition. Given a graph G = (V,E), add a new vertex v and two new edges
(v, u), (v, w), where u, w ∈ V .

2. Edge-split. Given a graph G = (V,E), remove one edge (u, v) ∈ E and instead add
one new vertex w and three edges (u, w), (v, w) and (x, w), where x ∈ V is a vertex
different from u and v.

The (2, 3)-tight graphs were first introduced by Hilda Pollaczek-Geiringer in 1929 [18],
but her results were apparently unknown to the community when Laman introduced them
again in 1970 [15]. In most of the literature they are known as Laman graphs. The number
of (2, 3)-tight graphs is sequence A227117 in the OEIS [22]. Until recently the sequence
ended with |V | = 8, however the last value was incorrect. The sequence was corrected and
extended by Capco et al. [3] up to |V | = 12. We have verified their enumeration up to
|V | = 10.

2.5 Rigidity circuits

A circuit in a matroid is a subset C of the base set U such that

• C is not an independent set,

• the removal of any element from C gives an independent set.
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(I) Non-rigid and independent (II) Rigid and independent

(III) Rigid and dependent (IV) Rigid and dependent

Figure 3: Examples of rigidity and independence for graphs

Applying this definition to the rigidity matroid, a rigidity circuit is a subset of the edge
set of a graph H that is not independent, but the removal of any edge gives an independent
set. Note that if an edge is added to a maximal independent set, then the result is not
necessarily a rigidity circuit, but it always contains exactly one rigidity circuit. Depending
on where the edge is added this rigidity circuit is the entire graph or a smaller graph.

For example, consider the four graphs in Figure 3.
Graph I is not rigid in the plane, because the position of vertex D and E can vary without

varying the position of the other three vertices, nor varying the length of the edges. Graph
I is also independent in the plane, because the rank of its rigidity matrix equals the number
of edges. With the purpose of making this example explicit, we present the rigidity matrix
of this particular framework, with vertices equally distributed on the unit circle, in Figure 4.
The rank of this matrix is six, which is maximal, even though the coordinates of the point
configuration are algebraically dependent.

Graph II is obtained from graph I by adding the edge (B,E). Graph II is rigid and
independent in the plane, therefore graph II is minimally rigid in the plane: a (2, 3)-tight
graph.

Graph III is obtained from graph II by adding the edge (A,D). Graph III is rigid and
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Figure 4: The rigidity matrix of the framework in Figure 3 (I).
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dependent in the plane. By removing any edge from graph III we obtain an independent
graph, so graph III is a rigidity circuit; it is minimally dependent in the plane.

Graph IV is obtained from graph II by adding the edge (C,E). Graph IV is also rigid
and dependent in the plane, but it is not minimally dependent. Removing the edge (C,D)
or (D,E) leaves a graph that is still dependent. Graph IV is therefore not a rigidity circuit,
but it contains a unique rigidity circuit: the induced subgraph on the vertices A, B, C and
E. This is the complete graph on four vertices, which we denote by K4.

Circuits of the planar rigidity matroid are rigid, but this is not necessarily true in higher
dimensions. Berg and Jordán [2] proved that all planar rigidity circuits can be generated
from K4 using only two operations:

1. Edge-split. See Section 2.4.

2. Two-sum. Given two graphs G = (V,E) and G′ = (V ′, E ′), choose two adjacent
vertices in each graph, u, v ∈ V and u′, v′ ∈ V ′ such that (u, v) ∈ E and (u′, v′) ∈ E ′.
Identify u = u′ and v = v′ and remove the (now multiple) edge (u, v) = (u′, v′).

2.6 Assur graphs

A pinned framework is a framework in which some of the vertices are pinned, in the sense
that their position is locked. An unpinned framework is a graph G = (V,E) of vertices
and edges together with a point configuration that makes a point correspond to each vertex.
A pinned framework is a pinned graph G = (I, P, E) of inner vertices, pinned vertices and
edges, together with a point configuration that makes a point correspond to each inner vertex
and to each pinned vertex. For example, a pinned framework makes a natural mathematical
model of the Meccano structure of bars and joints in Figure 5, given that the positions of
the three loose ends are fixed/pinned in the plane.

The concepts of rigidity defined above can be extended to pinned graphs and pinned
frameworks. A pinned graph G = (I, P, E) is called pinned isostatic if E = 2|I| and the
graph G̃ = G ∪ K is infinitesimally rigid as an unpinned graph, where K is the complete
graph on the pinned vertex set P . A pinned framework in Rd is a function assigning a point
in Rd to each vertex in P ∪ I. A pinned framework of the pinned graph G is rigid if the
rigidity matrix of G̃ with the columns corresponding to the vertices in P removed has rank
2|I|, it is independent if the rows corresponding to E are independent, and isostatic if it is
rigid and independent.

Assur graphs are minimally rigid pinned graphs that do not contain smaller minimally
rigid pinned graphs. Compare this with the notion of a (2, 3)-tight graph; a graph that
is minimally rigid in the plane, and may contain minimally rigid proper subgraphs. Assur
graphs were characterized by Servatius et al. [20] as follows:

Theorem 1. Let G = (I, P, E) be a pinned isostatic graph. Then G is an Assur graph if
any of the following equivalent conditions are satisfied:

1. All proper subsets of vertices I ′ ∪ P ′ ⊆ I ∪ P with |I ′| > 0 induce a pinned subgraph
G′ = (I ′, P ′, E ′) with |E ′| ≤ 2|I ′| − 1.

11



Figure 5: A Meccano realization of an Assur graph on seven vertices.

2. If the set of pinned vertices P is contracted to a single vertex p∗, then the resulting
induced unpinned graph is a rigidity circuit.

3. Either the graph has a single inner vertex of degree 2, or each time we delete a vertex,
the resulting pinned graph has a motion of all inner vertices (in generic position).

4. Deletion of any edge from G results in a pinned graph that has a motion of all inner
vertices (in generic position).

It was proven by Servatius et al. [20] that all Assur graphs can be constructed from the
unique Assur graph on three vertices and the unique Assur graph on five vertices, using only
three operations:

1. Edge-split. See Section 2.4.

2. Two-sum. See Section 2.5.

3. Pin-rearrangement. Two pinned graphs G and H can be obtained from each other
using pin-rearrangement if G can be obtained from H by first identifying all pinned
vertices, obtaining a rigidity circuit R, and then choosing one vertex of R and splitting
it into at least two pinned vertices.

The two smallest Assur graphs cannot be obtained from other Assur graphs using the
three operations above. Frameworks of these two Assur graphs are given in Figure 6.
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Figure 6: The unique Assur graph on three vertices and the unique Assur graph on five
vertices

3 Baranov trusses, (2,3)-tight graphs (Laman graphs),

Assur groups and Assur graphs and how they relate

Because this is an article with a combinatorial flavor, we will here define planar linkages in
terms of their structural scheme. For a more thorough background on these concepts from
the viewpoint of mechanical kinematics, see for example [16].

For us then, a planar linkage is a collection of rigid and convex polygonal shapes in
the Euclidean plane, some connected pairwise on the vertices. We allow digons, that is,
polygons with two vertices, but we do not regard a single vertex to be a polygonal shape.
In the mathematical rigidity literature, such planar linkages are known as planar body-pin
frameworks. The rigid and convex polygonal shapes correspond to rigid bodies and the
vertices are called pins. The bodies can take any shape, but most important results assume
that the pins are in generic position. Exactly two bodies meet at each pin, so the proofs
of results about body-pin frameworks often rely on modeling it (dually) as a graph with
a vertex for each body and an edge for each pin. In this article we will however use the
terms link and vertex, to avoid confusion between the unrelated terms “pin of a body-pin
framework” and the “pinned vertices” used in the definition of Assur graph.

It is possible to restrict the definition to linkages with non-overlapping links (except at
the vertices, of course), but we will not do this here. The linkage is called closed when at
least two links meet in every vertex, otherwise open. Assur groups are examples of open
linkages, while Baranov trusses are examples of closed linkages.

We say that a linkage is rigid if a change in the distance between any pair of vertices
would imply a change in the distance between some pair of vertices that are in the same
link. Within this context, we define a planar Baranov truss to be a minimally rigid planar
linkage, that is, a linkage that is rigid, but contains no proper rigid sublinkage. The number
of links n and the number of joints j in a Baranov truss is related by what is known as
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Grübler’s equation: 2j = 3(n− 1). Grübler’s equation has the following consequence, which
we did not find described anywhere in the literature.

Lemma 2. A Baranov truss contains at least three links with exactly two joints.

Proof. If s links have exactly two joints, then counting the number of joints per link twice
gives 2j ≥ 3(n− s)+ 2s = 3n− s. Together with Grübler’s equation, this implies that s ≥ 3
in a Baranov truss.

Define a maximal proper (2, 3)-tight subgraph H of a graph G to be a subgraph of G
such that it is (2, 3)-tight, and not properly contained within any other (2, 3)-tight subgraph,
except possibly for G.

Theorem 3. Baranov trusses and (2, 3)-tight graphs are related in the following manner.

1. Any Baranov truss can be constructed from a (2, 3)-tight graph by finding all maximal
proper (2, 3)-tight subgraphs and replacing them with links. The number of vertices of
the link created from a (2, 3)-tight subgraph H is the number of maximal proper (2, 3)-
tight subgraphs that share a vertex with H (hence not necessarily the number of vertices
of H).

2. Any (2, 3)-tight graph can be constructed from a Baranov truss, by replacing any link
on n joints with a (2, 3)-tight graph on at least n vertices, assigning the n joints to n

randomly chosen vertices of the (2, 3)-tight graph.

Proof. The proof is divided in two parts, corresponding to the two parts of the statement of
the theorem.

1. Given a Baranov truss B on ℓ links, replace every link on n vertices with a (2, 3)-tight
graph on n vertices; a graph G = (V,E) is obtained. Its edge set E can be partitioned
into E =

⊔

Ei (this means that Ei ∩Ej = ∅ for i 6= j, i, j ∈ {1, . . . , ℓ}) such that each
part Ei consists of the edge set of one of the (2, 3)-tight graphs that have replaced the
links.

Let F be a non-empty subset of E, covering a vertex set W ⊆ V , such that F contains
edges from s different edge sets Ei1 , . . . , Eis, with the associated partition of F into
F = Fi1 ⊔ · · · ⊔ Fis , each edge set Fi covering the vertex set Wi. For every i, |Fi| ≤
2|Wi| − 3, because Fi ⊆ Ei and Ei is the edge set of a (2, 3)-tight graph, so if s = 1,
we are done.

Now assume that s > 1 and that s < ℓ, so that there are at least one Ei from which F

contains no edge. If the graph (W,F ) was rigid, then B must contain a rigid proper
sublinkage (consisting of the links defining Ei1 , . . . , Ein), but it does not, so (W,F )
must be flexible. Assume now that F is not an independent set of edges. Then F

contains a subset R of edges covering a set of vertices U that defines a rigidity circuit
(a minimally dependent set of edges), and so the graph (U,R) is rigid in the plane. But
since R is dependent it cannot be contained within any of the Ei, so the same argument

14



we just used to prove that (W,F ) is flexible in the case of s > 1 applies also to R.
Therefore (U,R) must be flexible, a contradiction. So (W,F ) must be independent and
flexible, therefore |F | < 2|W | − 3.

Consider now the case that s = ℓ. From Lemma 2 we know that there are at least
three links with exactly two joints, so we may assume that s > 2 and that Es consists
of a single edge. This implies that Fs = Es and that (W,F ) = (V,E) = G. Consider
the edge set F̄ = F \ Fs, covering the vertex set W̄ . Then F̄ is an edge set with
edges in ℓ − 1 different edge sets E1, . . . , Eℓ−1. The previous arguments then show
that |F̄ | < 2|W̄ | − 3. We have that |Fs ∩ F̄ | = 0 and Ws ⊆ W̄ = W = V , so
|E| = |F | = |F̄∪Fs| = |F̄ |+|F̄s| = |F̄ |+1 < 2|W̄ |−2 = 2|V |−2, that is, |E| ≤ 2|V |−3.
Finally, because B is rigid, (V,E) must be rigid, so that |E| = 2|V | − 3.

We conclude that G = (V,E) is rigid and independent in the plane, so G is a (2, 3)-tight
graph. The Baranov truss B may be constructed from G in the following way. Find all
edge sets F ( E that are maximal with respect to the property that |F | = 2|W | − 3,
where W is the set of vertices covered by F . Construct a linkage on the joint set V

and for every such edge set F construct a link as a convex rigid polygonal shape on its
joint/vertex set W .

2. Let G be a (2, 3)-tight graph. Find all maximal proper (2, 3)-tight subgraphs H and
replace them with a link L, such that a vertex v in H is a vertex in L if v is in at
least two maximal proper (2, 3)-tight subgraphs. The result is a linkage that is rigid
but has no rigid sublinkages, hence a Baranov truss, from which G can be constructed
by reversing the construction, making sure to use the correct (2, 3)-subgraph for each
link.

Note that infinitely many (2, 3)-tight graphs can be constructed from any Baranov truss,
however only one Baranov truss can be constructed from each (2, 3)-graph, using the con-
struction described in Theorem 3.

Just as any Baranov truss can be constructed from a (2, 3)-tight graph by finding all
maximal proper induced (2, 3)-tight subgraphs and replacing them with rigid polygonal
“links”, so can any Assur group be constructed from an Assur graph, in exactly the same
way. Also, from any Assur group we may construct an Assur graph, by replacing any rigid
polygonal “link” with n joints by a (2, 3)-tight graph on at least n vertices. Hence we may
state the relation between Assur groups and Assur graphs in the following explicit way.

Theorem 4. Assur groups and Assur graphs are related in the following manner.

1. Any Assur group can be constructed from an Assur graph by finding all maximal proper
(2, 3)-tight subgraphs and replacing them with links. The number of vertices of the link
created from a (2, 3)-tight subgraph H is the number of maximal proper (2, 3)-tight
subgraphs that share a vertex with H (hence not necessarily the number of vertices of
H).
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2. Any Assur graph can be constructed from an Assur group by replacing any link on n

vertices with a (2, 3)-tight graph on at least n vertices.

We see that an Assur group can be represented by infinitely many Assur graphs, by
choosing (2, 3)-tight graphs of different orders. For example, both the Assur graph on three
vertices and the Assur graph on five vertices, correspond to the Assur group on two links.
In the case of the Assur graph on three vertices, the two links correspond to the two edges
of the graph. The Assur graph on five vertices contains a (2, 3)-tight graph on four vertices
(one of which is pinned) which can be replaced by a rigid polygonal link with only two
joints. Therefore the (2, 3)-tight graph on four vertices does not have to be replaced by a
quadrilateral but can be replaced by a digon (a polygon with two vertices).

4 Counting rigidity circuits

Our objective is to construct an inventory of Assur graphs on at most N vertices for some
suitable N . The first step in the method that we chose was to create an inventory of all
rigidity circuits on at most N ′ = N − 1 vertices. We could not find such an inventory in the
literature, nor could we find any enumeration of rigidity circuits. The following then, is the
method we used to generate such an inventory.

The smallest rigidity circuit is K4. As described by Berg and Jordan [2] (and briefly
in Section 2.5), all rigidity circuits can be constructed inductively from K4 using only two
operations: Edge-split and Two-sum. Consider a rigidity circuit G on n > 4 vertices, created
from K4 using these two operations. If the last operation applied was an Edge-split, then G

was created from a rigidity circuit on n−1 vertices, because applying the Edge-split operation
to a graph will always add one vertex to the graph. If the last operation was a Two-sum,
then G = (V,E) was created from two rigidity circuits G1 = (V1, E1) and G2 = (V2, E2),
such that n = |V | = |V1| + |V2| − 2 and |E| = |E1| + |E2| − 2. This is because a Two-sum
identifies two pairs of vertices in the resulting graph, and the two edges the graphs were
joined on are removed.

Consequently, to generate all rigidity circuits on n vertices, we applied the Edge-split
operation to all rigidity circuits on n − 1 vertices, and the Two-sum operation to all pairs
of rigidity circuits of orders n1 and n2 satisfying n1 + n2 − 2 = n. When applying the Edge
split to a given graph, a list of graphs was obtained, because the outcome of the operation
depends on the choice of an edge. When applying the Two-sum to two given graphs, a list
of graphs was obtained, because the outcome depends on the choice of one edge from each
graph, as well as their relative orientation. Some of the graphs obtained in this way are
isomorphic. To avoid counting isomorphic copies of the same graph we applied a test for
isomorphism. Using this method, we created an inventory of all rigidity circuits on up to 10
vertices.

With the purpose of avoiding erroneous calculations, we made two independent imple-
mentations, one in Python using the library NetworkX and another one in SageMath. The
number of rigidity circuits on n vertices is given in Figure 7 and the inventory can be accessed
here (SageMath) and here (Python). This is sequence A350484 in the OEIS [22].
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|V | 4 5 6 7 8 9 10
# 1 1 4 15 109 1075 14506

Figure 7: The number of rigidity circuits on |V | vertices, sequence A350484 in the OEIS [22].

Figure 8: A framework of the unique rigidity circuit on five vertices.

5 Counting Assur graphs

As described by Servatius et al. [20], all Assur graphs except the Assur graph on three
vertices can be constructed from the Assur graph on five vertices, using only three operations.
However, the connection with the rigidity circuits given by the second part of Theorem
1 allows for another method of generating all Assur graphs. This method is also briefly
described in Section 3.3. of the article by Servatius et al. [20].

Theorem 1 implies that every Assur graph can be constructed from a rigidity circuit by
selecting a vertex and splitting it into several pinned vertices. When we split a vertex of
a rigidity circuit in this way, the edges are preserved. In particular, the number of pinned
vertices cannot be larger than the degree of the selected vertex. The number of pinned
vertices can however be smaller, because a pinned vertex can have several edges. For an
illustration, see Figure 9 that shows two Assur graphs obtained from the framework of the
unique rigidity circuit on five vertices shown in Figure 8.

We have generated all Assur graphs on up to 11 vertices from the set of rigidity circuits on
up to 10 vertices, by selecting each admissible vertex and then splitting it into the appropriate
number of pinned vertices. In order to generate all possible Assur graphs with m pinned
vertices from a given rigidity circuit G = (V,E) and a given selected vertex v ∈ V , we created
a list of all partitions with m parts of the edges incident with v. For a given partition, the
corresponding Assur graph was created by letting each part in the partition correspond to a
pinned vertex.

Because an Assur graph must have at least two pinned vertices, the rigidity circuit from
which it is created must have at least one vertex less than the Assur graph. Of course,
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Figure 9: Two frameworks of two combinatorially non-isomorphic Assur graphs obtained
from the rigidity circuit in Figure 8.

|V | 3 4 5 6 7 8 9 10 11
# 1 0 1 6 32 294 3433 50168 860308

Figure 10: The number of Assur graphs on |V | vertices, sequence A350485 in the OEIS [22].

small rigidity circuits cannot in general be used to create large Assur graphs. However, if a
relatively small rigidity circuit has a vertex with large degree, the number of pinned vertices
in the resulting Assur graph can be large. But because the numbers we were dealing with
were relatively small, it made no sense keeping track of these details. Therefore, we simply
used the set of all rigidity circuits on at most n − 1 vertices to create the set of all Assur
graphs on n vertices.

We made two independent implementations of this method, one in Python using Net-
workX and another one in SageMath. The number of Assur graphs on N vertices is given
in Figure 10 and the inventory can be accessed here (SageMath) and here (Python). This is
sequence A350485 in the OEIS [22].

6 Conclusions

We have presented an inventory and the count of the number of rigidity circuits on up to 10
vertices, as well as an inventory and the count of the number of Assur graphs on up to 11
vertices. This is, to our knowledge, the first time these numbers are presented, and therefore
also the first time such an inventory was created.

An inventory of Assur groups was presented by Huang and Ding [10], but we have thor-
oughly explained the relationship between the sets of (2, 3)-tight graphs and Baranov trusses
on the one hand, and the Assur graphs and the Assur groups on the other. Hence it should
be clear that our inventory is different from theirs.

The algorithm that we used is based on observations made by Servatius et al. [20]. It
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was implemented using the NetworkX library in Python and using SageMath, independently.
With an input of a natural number N , our program outputs the set of rigidity circuits on
N − 1 vertices together with the set of Assur graphs on N vertices, up to isomorphism. Of
course, as N grows large, the complexity of the problem quickly grows, and computations
become unfeasible.

We hope that the inventory and count of rigid graphs in this article prove to be a use-
ful data set that can be used in further research. Having a complete set of small Assur
graphs at hand may be useful when exploring the scope for applications of these structure
in engineering, or for investigating previously overlooked mathematical properties of these
graphs.

It would be useful to be able to expand this work to rigidity circuits and Assur graphs in
three dimensions. However, it is still an open mathematical problem to determine exactly
what graphs play the role of the (2, 3)-tight graphs (Laman graphs) in three dimensions (we
know it is not the (3, 6)-tight graphs), and less is known for the Assur graphs.
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