Journal of Integer Sequences, Vol. 25 (2022),
Article 22.2.5

On The Distribution of Consecutive Generalized r-Free Integers in Piatetski-Shapiro Sequences

Angkana Sripayap and Teerapat Srichan ${ }^{1}$
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900
Thailand
fscianr@ku.ac.th
fscitrp@ku.ac.th
Pinthira Tangsupphathawat
Department of Mathematics
Faculty of Science and Technology
Phranakhon Rajabhat University
Bangkok 10220
Thailand
t.pinthira@hotmail.com

Abstract

We use Rieger's technique to generalize a previous result on the distribution of consecutive r-free integers in Piatetski-Shapiro sequences.

1 Introduction

Let r be a fixed integer ≥ 2. A positive integer n is called r-free whenever it is not divisible by the r-th power of a prime. By convention, 2-free and 3 -free integers are called square-free and cube-free, respectively. The Piatetski-Shapiro sequence of parameter c is defined by

$$
\mathbb{N}^{c}=\left\{\left\lfloor n^{c}\right\rfloor\right\}_{n \in \mathbb{N}} \quad(c>1, c \notin \mathbb{N})
$$

[^0]where $\lfloor z\rfloor$ is the integer part of $z \in \mathbb{R}$. The Piatetski-Shapiro sequence was introduced by Piatetski-Shapiro [9] to study prime numbers in a sequence of the form $\lfloor f(n)\rfloor$, where $f(n)$ is a polynomial. The study of the distribution of square-free and cube-free integers in Piatetski-Shapiro sequences has a long and rich history; see [2, 3, 4, 10, 12, 16]. The distribution of consecutive square-free and cube-free integers in Piatetski-Shapiro sequences is also a topic of interest. In 2018 Dimitrov [5] proved that for every fixed $1<c<7 / 6$, there exist infinitely many consecutive square-free integers of the form $\left\lfloor n^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor+1$ by showing that
\[

$$
\begin{equation*}
\sum_{x / 2<n \leq x} 1=\frac{1}{2} \prod_{p}\left(1-\frac{2}{p^{2}}\right) x+O\left(x^{\frac{6 c+1}{8}+\varepsilon}\right), \quad \text { for } 1<c<\frac{7}{6} . \tag{1}
\end{equation*}
$$

\]

Very recently, Tangsupphathawat, Srichan, and Laohakosol [15] used Rieger's technique in [10] to improve the range of c and the error term in Dimitrov's work in (1). They showed that for $1<c<3 / 2$, and sufficiently small $\varepsilon>0$,

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ c\rfloor+1 \text { are square-free }}} 1=\prod_{p}\left(1-\frac{2}{p^{2}}\right) x+O\left(x^{\frac{2 c+1}{4}+\varepsilon}\right) \quad(x \rightarrow \infty) . \tag{2}
\end{equation*}
$$

In the case of cube-free numbers, Zhang and Li [16] proved that, for any ε less than 10^{-10}, one has

$$
\sum_{\substack{n \leq x \\\left\lfloor n^{c}\right\rfloor \text { is cube-free }}} 1=\left(\frac{1}{\zeta(3)}+o\left(x^{\varepsilon}\right)\right) x \quad \text { for } 1<c<\frac{11}{6} .
$$

In 2018, Dimitrov [6] used the method of Zhang and Li to prove that

$$
\begin{equation*}
\sum_{\substack{n \leq x \\+1 \text { are cube-free }}} 1=\prod_{p}\left(1-\frac{2}{p^{3}}\right) x+O\left(x^{1-\delta^{2} / 2}\right), \quad \text { for } 1<c<\frac{31}{17}, \tag{3}
\end{equation*}
$$

where $0<\delta<\min \left\{\frac{31-17 c}{9 c-9}, 10^{-10}\right\}$ is a sufficiently small constant.
From these articles, it is interesting to study similar problems of counting integers in Piatetski-Shapiro sequences which belong to larger classes such as the (k, r)-integers, defined below. In 1966, Subbarao and Harris [13] generalized the notion of r-free integers as follows: let k and r be fixed positive integers with $1<r<k$. A positive integer n is called a $(k, r)-$ integer if n is of the form $n=a^{k} b$, where $a, b \in \mathbb{N}$ and b is r-free. They noticed that in the limiting case when $k \rightarrow \infty$, a (k, r)-integer becomes an r-free integer.

Recently, the second author [11] studied the distribution of (k, r)-integer, considered as generalized r-free integers, in Piatetski-Shapiro sequences. He proved that for all pairs of exponents $\left(\kappa_{1}, \lambda_{1}\right)$ and $\left(\kappa_{2}, \lambda_{2}\right)$ satisfying

$$
r \lambda_{1}-\kappa_{1}<1, r \lambda_{2}-\kappa_{2}>1, k \lambda_{1}-\kappa_{1}>1, \frac{r\left(\lambda_{2}-\lambda_{1}\right)-\left(\kappa_{2}-\kappa_{1}\right)}{\lambda_{2}\left(1+\kappa_{1}\right)-\lambda_{1}\left(1+\kappa_{2}\right)}>1
$$

we have

$$
\sum_{\substack{n \leq N \\\left\lfloor n^{c}\right\rfloor \text { is a }(\bar{k}, r) \text {-integer }}} 1=\frac{\zeta(k)}{\zeta(r)} N+O\left(N^{(c / r)+\delta\left(\kappa_{1}, \lambda_{1}, \kappa_{2}, \lambda_{2}\right)} \log N\right),
$$

for $1<c<\frac{r\left(\lambda_{2}-\lambda_{1}\right)-\left(\kappa_{2}-\kappa_{1}\right)}{\lambda_{2}\left(1+\kappa_{1}\right)-\lambda_{1}\left(1+\kappa_{2}\right)}$, where $\delta\left(\kappa_{1}, \lambda_{1}, \kappa_{2}, \lambda_{2}\right)=\frac{\left(\lambda_{2} \kappa_{1}-\lambda_{1} \kappa_{2}\right)+r^{-1}\left(\kappa_{2}-\kappa_{1}\right)}{\lambda_{2}\left(1+\kappa_{1}\right)-\lambda_{1}\left(1+\kappa_{2}\right)}$.
In this work, we use use Rieger's technique [10] to generalize the previous result on the distribution of consecutive r-free integers in Piatetski-Shapiro sequences, by proving the following result:

Theorem 1. Let k, r be integers with $1<r<k$. For a large $N \in \mathbb{N}$, let

$$
T_{c}(N ; k, r):=\sum_{\substack{n \leq N \\\left\lfloor n^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor+1 \text { are }(k, r) \text {-integers }}} 1
$$

denote the number of positive integers $n \leq N$ such that $\left\lfloor n^{c}\right\rfloor$ and $\left\lfloor n^{c}\right\rfloor+1$ are (k, r)-integers. For $1<c<\frac{3}{2}$, we have, as $N \rightarrow \infty$,

$$
\begin{equation*}
T_{c}(N ; k, 2)=N \sum_{m=1}^{\infty} \frac{\tau(m) \lambda_{k, 2}(m)}{m}+O\left(N^{c / 2+1 / 4} \log N\right) \tag{4}
\end{equation*}
$$

and for $1<c<2$, we have, as $N \rightarrow \infty$,

$$
T_{c}(N ; k, r)=N \sum_{m=1}^{\infty} \frac{\tau(m) \lambda_{k, r}(m)}{m}+O\left(N^{c / 3+1 / 3} \log N\right), \quad \text { if } \quad r \geq 3
$$

where $\lambda_{k, r}(n)$ is a multiplicative function defined by

$$
\lambda_{k, r}\left(p^{a}\right)= \begin{cases}1, & \text { if } a \equiv 0(\bmod k) \tag{5}\\ -1, & \text { if } a \equiv r(\bmod k) \\ 0, & \text { otherwise }\end{cases}
$$

and $\tau(n)$ denotes the number of divisors of n.
As mentioned above, in the limiting case when $k \rightarrow \infty$, a ($k, 2$)-integer becomes a squarefree integer, which leads to the following corollary.

Corollary 2. For $1<c<\frac{3}{2}$, we have, as $N \rightarrow \infty$,

$$
\begin{equation*}
T_{c}(N ; \infty, 2)=N \prod_{p}\left(1-\frac{2}{p^{2}}\right)+O\left(N^{c / 2+1 / 4} \log N\right) \tag{6}
\end{equation*}
$$

where the big O-term is independent of k.

Proof. For a fixed large N, every positive integer a, and a positive r-free integer b, the inequality $a^{\lfloor N\rfloor} b \leq N$ holds only when $a=1$. This indicates that in the interval $[1, N]$, every (N, r)-integer is an r-free integer. Thus, as $N \rightarrow \infty$, the function $T_{c}(N ; \infty, 2)$ counts the number of positive integers $n \leq N$ such that $\left\lfloor n^{c}\right\rfloor$ and $\left\lfloor n^{c}\right\rfloor+1$ are square-free integers. In view of (5), we have

$$
\sum_{m=1}^{\infty} \frac{\lambda_{N, r}(m)}{m^{s}}=\frac{\zeta(N s)}{\zeta(r s)}, \quad s>\frac{1}{r} .
$$

When $N \rightarrow \infty$, since $\zeta(N s)=1$, we have,

$$
\sum_{m=1}^{\infty} \frac{\lambda_{N, 2}(m)}{m^{s}}=\frac{1}{\zeta(2 s)}
$$

The main term of (6) follows from (4) of Theorem 1 and we get

$$
\sum_{m=1}^{\infty} \frac{\tau(m) \lambda_{N, 2}(m)}{m}=\sum_{\substack{d, t \\ \operatorname{gcd} \operatorname{gcd}(d, t)=1}} \frac{\mu(d) \mu(t)}{d^{2} t^{2}}=\prod_{p}\left(1-\frac{2}{p^{2}}\right)
$$

Since the big O-term of (4) is independent to k, Corollary 2 follows.
Similarly, since an ($\infty, 3$)-integer becomes a cube-free integer, we obtain an improved result for (3) in the following corollary.

Corollary 3. For $1<c<2$, we have, as $N \rightarrow \infty$,

$$
T_{c}(N ; \infty, 3)=N \prod_{p}\left(1-\frac{2}{p^{3}}\right)+O\left(N^{c / 3+1 / 3} \log N\right)
$$

2 Lemmas

We collect now some lemmas needed later.
Lemma 4. [14, Lemma 2.6] Let

$$
q_{k, r}(n)= \begin{cases}1, & \text { if } n \text { is a }(k, r) \text {-integer; } \\ 0, & \text { if } n \text { is not a }(k, r) \text {-integer }\end{cases}
$$

denote the characteristic function of the set of (k, r)-integers. Then

$$
q_{k, r}(n)=\sum_{a^{k} b^{r} c=n} \mu(b) .
$$

Let

$$
d(r, k, n):=\sum_{n_{1}^{r} n_{2}^{k}=n} 1
$$

denote the number of ways of writing an integer n in the form $n=n_{1}^{r} n_{2}^{k}$, and put

$$
D(r, k, x)=\sum_{n \leq x} d(r, k, n)
$$

In the proof of our main result, we need the following estimate for the function $D(r, k, x)$ whose proof can be found in [8, Section 14.3].

Lemma 5. For a sufficiently large $x \in \mathbb{R}$, we have

$$
D(r, k, x) \ll x^{1 / r}
$$

Lemma 6. For $x \geq 1$, we have

$$
\sum_{m \leq x} \lambda_{k, r}(m) \ll x^{1 / r}
$$

Proof. In view of (5), Lemmas 4 and 5, we have

$$
\sum_{m \leq x} \lambda_{k, r}(m)=\sum_{a^{k} b^{r} \leq x} \mu(b) \ll \sum_{a^{k} b^{r} \leq x} 1 \ll x^{1 / r}
$$

The proof of Theorem 1 makes use of the following estimate, due originally to Rieger [10], for the number of integers n up to x such that $\left\lfloor n^{c}\right\rfloor$ belongs to an arithmetic progression.

Lemma 7. ([10]) For $1<c<2$, let x be a positive real number, and let q and a be two integers such that $0 \leq a<q \leq x^{c}$. Then

$$
\sum_{\substack{n \leq x \\\left\lfloor n^{c}\right\rfloor \equiv a(\bmod q)}} 1=\frac{x}{q}+ \begin{cases}O\left(\frac{x^{(c+4) / 7}}{q^{1 / 7}}\right), & \text { for } q<x^{c-5 / 4} \\ O\left(\frac{x^{(c+1) / 3}}{q^{1 / 3}}\right), & \text { for } x^{c-5 / 4} \leq q<x^{c-1 / 2} \\ O\left(\frac{x^{c}}{q}\right), & \text { for } x^{c-1 / 2} \leq q<x^{c}\end{cases}
$$

The proofs of the next two lemmas make use of ideas similar to those in Lemma 2.1 of [1].

Lemma 8. Let $A_{c}(x ; k, r)$ and $B_{c}(x ; k, r)$ denote the number of 6 -tuples $\left(d_{1}, t_{1}, d_{2}, t_{2}, u, v\right)$ satisfying the conditions

$$
\begin{equation*}
d_{2}^{k} t_{2}^{r} v-d_{1}^{k} t_{1}^{r} u=1, \quad d_{1}^{k} t_{1}^{r} u \leq x^{c} . \tag{7}
\end{equation*}
$$

I) If $x^{c}<d_{1}^{k} t_{1}^{r} d_{2}^{k} t_{2}^{r} \leq x^{4 c / 3}$, then

$$
A_{c}(x ; k, r) \ll x^{4 c / 3 r} \log x
$$

II) If $x^{4 c / 3}<d_{1}^{k} t_{1}^{r} d_{2}^{k} t_{2}^{r} \leq x^{2 c}$, then

$$
B_{c}(x ; k, r) \ll x^{2 c / 3} \log x .
$$

Proof. I) For a fixed choice of d_{1}, t_{1}, d_{2} and t_{2} satisfying (7), we have $d_{1}^{k} r_{1}^{r} u \equiv-1\left(\bmod d_{2}^{k} t_{2}^{r}\right)$, which fixes the value of u modulo $d_{2}^{k} t_{2}^{r}$. In view of (7), the total number of possibilities for u is $O\left(1+x^{c} / d_{1}^{k} t_{1}^{r} d_{2}^{k} t_{2}^{r}\right)$. By (7), the value of v is fixed for a given choice of $d_{1}, t_{1}, d_{2}, t_{2}, u$. Then, by Lemma 5 , we have

$$
\begin{aligned}
A_{c}(x ; k, r) & \ll \sum_{x^{c}<d_{1}^{k} t_{1}^{r} d_{2}^{k} t_{2}^{r} \leq x^{4 c / 3}}\left(1+\frac{x^{c}}{d_{1}^{k} t_{1} d_{2}^{k} t_{2}^{r}}\right) \\
& \ll \sum_{x^{c}<m \leq x^{4 c / 3}} \tau(m) d(k, r ; m)\left(1+\frac{x^{c}}{m}\right) \\
& \ll \sum_{x^{c}<m \leq x^{4 c / 3}} d(k, r ; m)\left(\log m+\frac{x^{c} \log m}{m}\right) \\
& \ll x^{4 c / 3 r} \log x+x^{c / r} \log x \ll x^{4 c / 3 r} \log x .
\end{aligned}
$$

II) From (7), we have $u v d_{1}^{k} t_{1}^{r} d_{2}^{k} t_{2}^{r} \leq x^{c}\left(x^{c}+1\right)$, whence $u v \leq x^{c}\left(x^{c}+1\right) x^{-4 c / 3}$ for every 6 -tuple counted by $B_{c}(x)$. From a divisor argument, the total number of choices for u, v is therefore bounded by $O\left(x^{2 c / 3} \log x\right)$. For ever such choice of u, v, the number of solutions in $d_{1}, t_{1}, d_{2}, t_{2}$ of the equation $d_{2}^{k} t_{2}^{r} v-d_{1}^{k} t_{1}^{r} u=1$ is $O(\log x)$; see [7].

3 Proof of Theorem 1

From $q_{k, r}(n)=\sum_{d \mid n} \lambda_{k, r}(d)$, we have

$$
\begin{aligned}
& T_{c}(N ; k, r)=\sum_{n \leq N} q_{k, r}\left(\left\lfloor n^{c}\right\rfloor\right) q_{k, r}\left(\left\lfloor n^{c}\right\rfloor+1\right) \\
& =\sum_{n \leq N}\left(\sum_{d \backslash\left\lfloor n^{c}\right\rfloor} \lambda_{k, r}(d)\right)\left(\sum_{t\left\lfloor\left\lfloor n^{c}\right\rfloor+1\right.} \lambda_{k, r}(t)\right)
\end{aligned}
$$

In view of Lemma 8, we have

$$
\begin{aligned}
& =: \Sigma_{1}+O\left(N^{2 c / 3} \log N\right) \text {. }
\end{aligned}
$$

By the Chinese remainder theorem, there is a positive integer α, unique modulo $d t$, satisfying the congruence system $\alpha \equiv 0(\bmod d)$ and $\alpha+1 \equiv 0(\bmod t)$. Thus,

$$
\Sigma_{1}=\sum_{\substack{d, t \\ \operatorname{gcc}(d) t)=1 \\ d t \leq N c}} \lambda_{k, r}(d) \lambda_{k, r}(t) \sum_{\substack{n \leq N \\\left\lfloor n^{c}\right\rfloor \equiv \alpha(\bmod d t)}} 1 .
$$

In view of Lemma 7, we have

$$
\begin{aligned}
\Sigma_{1} & =N \sum_{\substack{d, t \\
\text { gcd d,t)=1} \\
d t \leq N^{c}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}+O\left(N^{(c+4) / 7}\left|\sum_{\substack{d, t \\
\text { gcd }(d, t)=1 \\
d \leq N^{c-5 / 4}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{(d t)^{1 / 7}}\right|\right) \\
& +O\left(N^{(c+1) / 3} \left\lvert\, \sum_{\substack{d, t \\
\text { gcd } \\
N^{c-5}(d, t)=1 \\
N^{c-5 / 4}<d t \leq N^{c-1 / 2}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{\left.(d t)^{1 / 3} \mid\right)+O\left(N^{c}\left|\sum_{\substack{d, t \\
\text { gcd } d(t, t)=1 \\
N^{c-1 / 2}<d t \leq N^{c}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}\right|\right) .} .\right.\right.
\end{aligned}
$$

In view of Lemma 6, we note that,

$$
\begin{aligned}
& \sum_{\substack{d, t \\
\text { gcd ddt)=1} \\
d t \leq N^{c-5 / 4}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{(d t)^{1 / 7}}= \sum_{m \leq N^{c-5 / 4}} \frac{\tau(m) \lambda_{k, r}(m)}{m^{1 / 7}} \\
& \ll \sum_{m \leq N^{c-5 / 4}} \frac{\lambda_{k, r}(m)}{m^{1 / 7-\varepsilon}} \ll \begin{cases}\left(N^{c-5 / 4}\right)^{\varepsilon+1 / r-1 / 7}, & \text { if } r<7 ; \\
\log N, & \text { if } r \geq 7,\end{cases} \\
& \sum_{\substack{d, t \\
\text { gct }, t)=1 \\
N^{c-5 / 4}<d t \leq N^{c-1 / 2}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{(d t)^{1 / 3}}=\sum_{N^{c-5 / 4<m \leq N^{c-1 / 2}}} \frac{\tau(m) \lambda_{k, r}(m)}{m^{1 / 3}} \\
& \ll \sum_{N^{c-5 / 4<m \leq N^{c-1 / 2}}} \frac{\lambda_{k, r}(m)}{m^{1 / 3-\varepsilon}} \lll \begin{cases}\left(N^{c-1 / 2}\right)^{\varepsilon+1 / r-1 / 3}, & \text { if } r=2 ; \\
\log N, & \text { if } r \geq 3,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\substack{d, t \\
\text { gcd }(d, t)=1 \\
N^{c-1 / 2}<d t \leq N^{c}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t} & =\sum_{N^{c-1 / 2}<m \leq N^{c}} \frac{\tau(m) \lambda_{k, r}(m)}{m} \\
& \ll \sum_{N^{c-1 / 2}<m \leq N^{c}} \frac{\lambda_{k, r}(m)}{m^{1-\varepsilon}} \ll\left(N^{c-1 / 2}\right)^{\varepsilon+1 / r-1} .
\end{aligned}
$$

Thus,

$$
\Sigma_{1}=N \sum_{\substack{d, t \\ \text { gcd dot, }=1 \\ d t \leq N c}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}+ \begin{cases}O\left(N^{c / 2+1 / 4}\right) \log N, & \text { if } r=2 \\ O\left(N^{c / 3+1 / 3}\right) \log N, & \text { if } r \geq 3\end{cases}
$$

Note that

$$
\begin{align*}
& \sum_{\substack{d, t \\
\operatorname{gcd}, t)=1 \\
d t \leq N^{c}}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}=\left(\sum_{\substack{d, t \\
\operatorname{gcd}(d, t)=1}}+\sum_{\substack{d, t \\
\operatorname{gcd}(d, t)=1 \\
d t>N^{c}}}\right)\left(\frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}\right) \\
& =\sum_{\substack{d, t \\
\operatorname{gcc}(d, t)=1}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}+O\left(\sum_{m>N^{c}} \frac{\tau(m) \lambda_{k, r}(m)}{m}\right) \\
& =\sum_{\substack{d, t \\
\operatorname{gcd}(d, t)=1}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}+O\left(N^{c / r-c} \log N\right) . \tag{8}
\end{align*}
$$

Since $\frac{c}{r}-c<0$, the sum on the right hand side of (8) converges when $r>1$. Thus,

$$
\Sigma_{1}=N \sum_{\substack{d, t \\ \operatorname{gcd}(d, t)=1}} \frac{\lambda_{k, r}(d) \lambda_{k, r}(t)}{d t}+ \begin{cases}O\left(N^{c / 2+1 / 4}\right) \log N, & \text { if } r=2 \\ O\left(N^{c / 3+1 / 3}\right) \log N, & \text { if } r \geq 3\end{cases}
$$

which completes the proof of Theorem 1.

4 Acknowledgments

This work was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Grant No. RGNS 63-40.

References

[1] J. Brüdern, A. Perelli, and T. D. Wooley, Twins of k-free numbers and their exponential sum, Michigan Math. J. 47 (2000), 173-190.
[2] X. D. Cao and W. G. Zhai, The distribution of square-free numbers of the form $\left\lfloor n^{c}\right\rfloor$, J. Théor. Nombres Bordeaux 10 (1998), 287-299.
[3] X. D. Cao and W. G. Zhai, On the distribution of square-free numbers of the form $\left\lfloor n^{c}\right\rfloor$ (II), Acta Math. Sinica (Chin. Ser.) 51 (2008), 1187-1194.
[4] J. M. Deshouillers, A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences, Hardy Ramanujan J. 41 (2019), 127-132.
[5] S. I. Dimitrov, Consecutive square-free numbers of a special form, 2018. Preprint available at https://arxiv.org/abs/1702.03983.
[6] S. I. Dimitrov, Consecutive cube-free numbers of the form $\left\lfloor n^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor+1$, Appl. Math.in Eng. and Econ.-44th. Int. Conf., AIP Conf. Proc. (2018), 2048, 050004.
[7] T. Estermann, On the representation of a number as the sum of two numbers not divisible by k-th powers, J. London Math. Soc. 6 (1931), 37-40.
[8] A. Ivić, The Theory of the Riemann Zeta Function, Wiley, 1985.
[9] I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form $\lfloor f(n)\rfloor$, Mat. Sbornik N.S. 33 (1953), 559-566.
[10] G. J. Rieger, Remark on a paper of Stux concerning squarefree numbers in non-linear sequences, Pacific. J. Math. 78 (1978), 241-242.
[11] T. Srichan, On the distribution of (k, r)-integers in Piatetski-Shapiro sequences, Czech. Math. J. 71 (2021), 1063-1070.
[12] I. E. Stux, Distribution of squarefree integers in non-linear sequences, Pacific. J. Math. 59 (1975), 577-584.
[13] M. V. Subbarao and V. C. Harris, A new generalization of Ramanujan's sum, J. London. Math. Soc. 44 (1966), 595-604.
[14] M. V. Subbarao and D. Suryanarayana, On the order of the error function of the (k, r) integers, J. Number Theory 6 (1974), 112-123.
[15] P. Tangsupphathawat, T. Srichan, and V. Laohakosol, Consecutive square-free numbers in Piatetski-Shapiro sequences, Bull. Aust. Math. Soc. (2021), to appear.
[16] M. Zhang and J. Li, Distribution of cube-free numbers with form $\left\lfloor n^{c}\right\rfloor$, Front. Math. China 12 (2017), 1515-1525.

2020 Mathematics Subject Classification: Primary 11L07; Secondary 11N37.
Keywords: generalized r-free integer, Piatetski-Shapiro sequence.

Received October 27 2021; revised version received January 12 2022; February 2 2022. Published in Journal of Integer Sequences, February 22022.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Corresponding author.

