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Abstract

We use Rieger’s technique to generalize a previous result on the distribution of
consecutive r-free integers in Piatetski-Shapiro sequences.

1 Introduction

Let r be a fixed integer > 2. A positive integer n is called r-free whenever it is not divisible
by the r-th power of a prime. By convention, 2-free and 3-free integers are called square-free
and cube-free, respectively. The Piatetski-Shapiro sequence of parameter ¢ is defined by

N ={[n"|}nen  (¢>1,c¢N),
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where |z| is the integer part of z € R. The Piatetski-Shapiro sequence was introduced
by Piatetski-Shapiro [9] to study prime numbers in a sequence of the form | f(n)|, where
f(n) is a polynomial. The study of the distribution of square-free and cube-free integers
in Piatetski-Shapiro sequences has a long and rich history; see [2, 3, 4, 10, 12, 16]. The
distribution of consecutive square-free and cube-free integers in Piatetski-Shapiro sequences
is also a topic of interest. In 2018 Dimitrov [5] proved that for every fixed 1 < ¢ < 7/6, there
exist infinitely many consecutive square-free integers of the form [n¢|, |n¢] + 1 by showing

that
3 1:%H<1—%>x—|—0<w6?1+5>, for1<c<g. (1)

z/2<n<w p p
[n€], [n¢|+1are square-free

Very recently, Tangsupphathawat, Srichan, and Laohakosol [15] used Rieger’s technique
in [10] to improve the range of ¢ and the error term in Dimitrov’s work in (1). They showed
that for 1 < ¢ < 3/2, and sufficiently small € > 0,

Z 1:H<1—%>x+0(1‘%4+1+5> (r — o0). (2)

p
n<z P
[n¢], |n¢|+1are square-free

In the case of cube-free numbers, Zhang and Li [16] proved that, for any ¢ less than 10719,
one has

> 1—(ﬁ+0($6)>$ for1<c<%.

n<x
[n€] is cube-free

In 2018, Dimitrov [6] used the method of Zhang and Li to prove that

Z 1:H<1—%>x+0(x1_62/2), for 1 <c< ?—;, (3)

n<x p p
[n€],[n¢]+1are cube-free
where 0 < § < min{2=7¢, 107} is a sufficiently small constant.

From these articles, it is interesting to study similar problems of counting integers in
Piatetski-Shapiro sequences which belong to larger classes such as the (k, r)-integers, defined
below. In 1966, Subbarao and Harris [13] generalized the notion of r-free integers as follows:
let k& and 7 be fixed positive integers with 1 < r < k. A positive integer n is called a (k,7)-
integer if n is of the form n = a*b, where a,b € N and b is r-free. They noticed that in the
limiting case when k — oo, a (k,r)-integer becomes an r-free integer.

Recently, the second author [11] studied the distribution of (k,r)-integer, considered as
generalized r-free integers, in Piatetski-Shapiro sequences. He proved that for all pairs of
exponents (k1, A1) and (kg, \2) satisfying

7”()\2 — )\1) — (Iig — :‘il)
Ao(1+ K1) — A (1 + ko)

7")\1—/11<1,7“>\2—I€2>1, k)\l—:‘€1>1, >1,



we have

k
Z 1 = C( >N + O(N(C/T)Jr&(ﬁl,/\l,ng,/\g) lOg N),
— ¢(r)

[n¢|is a (k,r)-integer

r(A2—A1)—(k2—r1) (Aak1—A1k2)+r H(ko—r1)
for I <ec< >\2(1+H1) A (1+k2) A2(1+k1)—A1 (1+K2)
In this work, we use use Rieger’s technique [10] to generalize the previous result on the

distribution of consecutive r-free integers in Piatetski-Shapiro sequences, by proving the
following result:

, where 6(k1, A, ko, Ao) =

Theorem 1. Let k,r be integers with 1 < r < k. For a large N € N, let

To(N;k,r) = Z 1
n<N
[n¢], |n¢|+1are (k,r)-integers

denote the number of positive integers n < N such that |n¢| and |n°| + 1 are (k,r)-integers.
F0r1<c<—, we have, as N — oo,

= 7(m)A
T.(N;k,2) = N Y DCRTE T Aea(m) o verz1/a g vy, (4)
m=1
and for 1 < ¢ < 2, we have, as N — o0,
o0 A T
T.(N;k,r) = N RE2RRTD T(m)\ +O(NB BlogN),  if >3,
m=1

where A (n) is a multiplicative function defined by

1, if a =0 (mod k);
Mer(P) =< =1, ifa=r (mod k); (5)
0, otherwise,

and 7(n) denotes the number of divisors of n.

As mentioned above, in the limiting case when k — oo, a (k, 2)-integer becomes a square-
free integer, which leads to the following corollary.

Corollary 2. Forl <c< —, we have, as N — o0,

T.(N;o0,2) = N[ (1 . z%> O(N/*1/410g N), (6)
p

where the big O-term is independent of k.



Proof. For a fixed large N, every positive integer a, and a positive r-free integer b, the

inequality a¥1b < N holds only when a = 1. This indicates that in the interval [1, N], every

(N, r)-integer is an r-free integer. Thus, as N — oo, the function T.(N;00,2) counts the

number of positive integers n < N such that [n¢| and [n°| + 1 are square-free integers. In

view of (5), we have

i AN, (m) C (Ns) 1
=1

ms  ((rs)’ r

When N — oo, since ((Ns) = 1, we have,

- )\Ng(m 1
Z m* C(2s)

m=1

The main term of (6) follows from (4) of Theorem 1 and we get

o~ 7(m )\Nz (m) p(d)p(t) 2
D D Dl ekl | (GRS
" ged gcd7(d,t):1 !

Since the big O-term of (4) is independent to k, Corollary 2 follows. O

Similarly, since an (0o, 3)-integer becomes a cube-free integer, we obtain an improved
result for (3) in the following corollary.

Corollary 3. For 1 < ¢ < 2, we have, as N — oo,

2
T.(N;oo,3) = N (1- z?) + O(N/3*1310g N).
p

2 Lemmas

We collect now some lemmas needed later.

Lemma 4. [1/, Lemma 2.6] Let

1, if nis a (k,r)-integer;
() = { (%)

0, if nis not a (k,r)-integer,
denote the characteristic function of the set of (k,r)-integers. Then

Go(m) = 3 uld).

akbrec=n
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Let

d(r,k,n) = Zl

Tk _—
n1n2 =N

denote the number of ways of writing an integer n in the form n = njn%, and put

D(r,k,x) Zdrkn

n<x

In the proof of our main result, we need the following estimate for the function D(r, k,z)
whose proof can be found in [8, Section 14.3].

Lemma 5. For a sufficiently large x € R, we have
D(r k,z) < A

Lemma 6. For x > 1, we have

Proof. In view of (5), Lemmas 4 and 5, we have
Z Agr(m) = Z u(b) < Z 1< 2/
msx akbr<z akbr<z

]

The proof of Theorem 1 makes use of the following estimate, due originally to Rieger [10],
for the number of integers n up to z such that [n¢] belongs to an arithmetic progression.

Lemma 7. ([10]) For 1 < ¢ < 2, let x be a positive real number, and let ¢ and a be two
integers such that 0 < a < q < x°. Then

(c+4)/7 —5/4.
O(qu/7 )7 fOT'q<Q?C /1

x c
Z 1=24 O<z<qf/1§/3), for 2784 < g < o 1/2;
n<lx q

1n°) =a (mod q) O(%), for 2¢7V2 < ¢ < z°.

The proofs of the next two lemmas make use of ideas similar to those in Lemma 2.1 of
[1].

Lemma 8. Let A.(x;k,r) and B.(x;k,r) denote the number of 6-tuples (dy,t1,ds,ta, u,v)
satisfying the conditions

ditho — d¥ttu = 1, dittu < a°. (7)



1) If z¢ < drtrdbty, < 23, then
Az k1) < 2% log .
II) If x%/® < dit7dsty < 2%, then
Be(w;k,r) < 2**log .
Proof. 1) For a fixed choice of dy, t;,dy and t, satisfying (7), we have dftju = —1 (mod d5t3),
which fixes the value of u modulo d4t;. In view of (7), the total number of possibilities for

uis O(1 + x¢/d¥"dkts). By (7), the value of v is fixed for a given choice of dy,t;,ds, o, u
Then, by Lemma 5, we have

:I/.C
Aok, r) < > (1+m)
we<dbtr dts <gde/s 1re2

< Y rmd(k,rm)(1+ =)

m
xC<m§x4c/3

x¢logm
< Z d(k,r;m)(logm + S )
xe<m<ade/3

< ¥ logx + 2" log & < 4% log .

IT) From (7), we have uvd?ttd5ty < x¢(2¢+1), whence uv < x°(2°+1)2~%/3 for every 6-tuple
counted by B.(z). From a divisor argument, the total number of choices for u, v is therefore
bounded by O (223 1og x). For ever such choice of u, v, the number of solutions in dy, ¢,, da, to
of the equation dithv — ditTu = 1 is O(log x); see [7]. O

3 Proof of Theorem 1

From gy, (n) = >_4, Akr(d) , we have
TN E ) = 3 g (10 (1) + 1)

=) ( > /\k,r(d)>( > Ak,r@))

n<N - d|[n°] t][n°]+1

(E Y s Y1

d,t d,t n<N
ged(d,t)=1 ged(d,t)=1 |n€] =0 (mod d)
dt<N¢ dt>N¢ [n€]+1=0 (mod t)

In view of Lemma &8, we have

T.(N;k,r) Z Mo (t) Y T+ )T M) Y1

n<N d,t n<N
gcd(d t) [n€] =0 (mod d) ged(d,t)=1 [n€] =0 (mod d)
dtSNC [n€]4+1 =0 (mod t) dt>N¢ [n€]4+1=0 (mod t)

—: %, + O(N*/31log N).



By the Chinese remainder theorem, there is a positive integer a;, unique modulo dt, satistying
the congruence system o = 0 (mod d) and o+ 1 =0 (mod ¢). Thus,

Z Ak,r(d)/\k,r(t) Z L.

s n<N
gc;l(i,]li]):l [n¢|=a (mod dt)
t<

In view of Lemma 7, we have

s=N Y W co(venr| 3 Akf(d)Ak,r(t)D

> @y
ged(d,t)=1 ged(d,t)=1
dt<N¢ dt<Nc—5/4
M (d) Mg (1) Mo ()N (1)
ol ¥ O ofe| 3 Autliu)
2 Ty 2
gcd(d’,t):l gcd(d‘,t):l
Nc_5/4<dt§Nc_1/2 NC_1/2<dtSNC

In view of Lemma 6, we note that,

3 Ak ()Mo (t) > 7(m) g (m)

d,t (dt)1/7 5/4 m1/7
ged(d,t)=1 m<Nc—5/
dt<NC¢—5/4
< Z der < (Nems/M)eet/r=U/T i < T
m1/7 ) log N ifr>7
m<Ne—5/4 , > 7.

)\krd/\k,rt T?TL)\;C’T’ITL
5 Dhs®) g Tl

(dt)l/fi m1/3
gcd(cjl,,tz):l Nc75/4<m§Nc71/2
N675/4<dt§chl/2
A m Nc—1/2 a+1/r—1/37 if r = 2;
< 2 ni’f/(s—a) < {1( N | i r >3
Nc—5/4<m§Nc—1/2 Og ) r e )

and

A () A (1) 7(m) A (m)
D AP S
ged(d,t)=1 N <m<Ne¢
Ne—1/2cdi<Ne

< Z Ak,r(m) < (Nc—1/2)£+1/7”—1'

Nc—1/2<mSNc



Thus,

N2 4 1og N, if r = 2;
S=N Y Ak (@M (t) ) OC Jlog N, if r =2;
— dt O(N<*1/3)1og N, if r > 3.

ged(d,t)=1
dt<NC¢

Note that
Ak (d) Ak e (d) N gy
> -2 - 2 ()
gcg(i’,}v)cﬁ gcd(d t) 1 gcc(ll(d t)c 1
t< t>N
)\k‘ r(d))\k r(t) T(m) >‘k r(m)
— — L B2+ 0 S M S
ng%l dt (m;w m )
=y Al o (yerreiog ). ®)
d.t
ged(d,t)=1

Since ¢ — ¢ < 0, the sum on the right hand side of (8) converges when r > 1. Thus,

S Mer ()M (t) | JO(N2T ) Nog N, if 7 = 2;
L dt O(N</31/3) log N, if r > 3,

gcd(dit):l

which completes the proof of Theorem 1.
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