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Abstract

We use Rieger’s technique to generalize a previous result on the distribution of

consecutive r-free integers in Piatetski-Shapiro sequences.

1 Introduction

Let r be a fixed integer ≥ 2. A positive integer n is called r-free whenever it is not divisible
by the r-th power of a prime. By convention, 2-free and 3-free integers are called square-free
and cube-free, respectively. The Piatetski-Shapiro sequence of parameter c is defined by

N
c = {⌊nc⌋}n∈N (c > 1, c /∈ N),
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where ⌊z⌋ is the integer part of z ∈ R. The Piatetski-Shapiro sequence was introduced
by Piatetski-Shapiro [9] to study prime numbers in a sequence of the form ⌊f(n)⌋, where
f(n) is a polynomial. The study of the distribution of square-free and cube-free integers
in Piatetski-Shapiro sequences has a long and rich history; see [2, 3, 4, 10, 12, 16]. The
distribution of consecutive square-free and cube-free integers in Piatetski-Shapiro sequences
is also a topic of interest. In 2018 Dimitrov [5] proved that for every fixed 1 < c < 7/6, there
exist infinitely many consecutive square-free integers of the form ⌊nc⌋, ⌊nc⌋+ 1 by showing
that

∑

x/2<n≤x
⌊nc⌋, ⌊nc⌋+1are square-free

1 =
1

2

∏

p

(

1−
2

p2

)

x+O
(

x
6c+1

8
+ε
)

, for 1 < c <
7

6
. (1)

Very recently, Tangsupphathawat, Srichan, and Laohakosol [15] used Rieger’s technique
in [10] to improve the range of c and the error term in Dimitrov’s work in (1). They showed
that for 1 < c < 3/2, and sufficiently small ε > 0,

∑

n≤x
⌊nc⌋, ⌊nc⌋+1are square-free

1 =
∏

p

(

1−
2

p2

)

x+O
(

x
2c+1

4
+ε
)

(x → ∞). (2)

In the case of cube-free numbers, Zhang and Li [16] proved that, for any ε less than 10−10,
one has

∑

n≤x
⌊nc⌋ is cube-free

1 =

(

1

ζ(3)
+ o(xε)

)

x for 1 < c <
11

6
.

In 2018, Dimitrov [6] used the method of Zhang and Li to prove that

∑

n≤x
⌊nc⌋,⌊nc⌋+1are cube-free

1 =
∏

p

(

1−
2

p3

)

x+O(x1−δ2/2), for 1 < c <
31

17
, (3)

where 0 < δ < min{31−17c
9c−9

, 10−10} is a sufficiently small constant.
From these articles, it is interesting to study similar problems of counting integers in

Piatetski-Shapiro sequences which belong to larger classes such as the (k, r)-integers, defined
below. In 1966, Subbarao and Harris [13] generalized the notion of r-free integers as follows:
let k and r be fixed positive integers with 1 < r < k. A positive integer n is called a (k, r)-
integer if n is of the form n = akb, where a, b ∈ N and b is r-free. They noticed that in the
limiting case when k → ∞, a (k, r)-integer becomes an r-free integer.

Recently, the second author [11] studied the distribution of (k, r)-integer, considered as
generalized r-free integers, in Piatetski-Shapiro sequences. He proved that for all pairs of
exponents (κ1, λ1) and (κ2, λ2) satisfying

rλ1 − κ1 < 1, rλ2 − κ2 > 1, kλ1 − κ1 > 1,
r(λ2 − λ1)− (κ2 − κ1)

λ2(1 + κ1)− λ1(1 + κ2)
> 1,
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we have

∑

n≤N
⌊nc⌋ is a (k, r)-integer

1 =
ζ(k)

ζ(r)
N +O(N (c/r)+δ(κ1,λ1,κ2,λ2) logN),

for 1 < c < r(λ2−λ1)−(κ2−κ1)
λ2(1+κ1)−λ1(1+κ2)

, where δ(κ1, λ1, κ2, λ2) =
(λ2κ1−λ1κ2)+r−1(κ2−κ1)

λ2(1+κ1)−λ1(1+κ2)
.

In this work, we use use Rieger’s technique [10] to generalize the previous result on the
distribution of consecutive r-free integers in Piatetski-Shapiro sequences, by proving the
following result:

Theorem 1. Let k, r be integers with 1 < r < k. For a large N ∈ N, let

Tc(N ; k, r) :=
∑

n≤N
⌊nc⌋, ⌊nc⌋+1are (k, r)-integers

1

denote the number of positive integers n ≤ N such that ⌊nc⌋ and ⌊nc⌋+1 are (k, r)-integers.
For 1 < c < 3

2
, we have, as N → ∞,

Tc(N ; k, 2) = N
∞
∑

m=1

τ(m)λk,2(m)

m
+O(N c/2+1/4 logN), (4)

and for 1 < c < 2, we have, as N → ∞,

Tc(N ; k, r) = N
∞
∑

m=1

τ(m)λk,r(m)

m
+O(N c/3+1/3 logN), if r ≥ 3,

where λk,r(n) is a multiplicative function defined by

λk,r(p
a) =











1, if a ≡ 0 (mod k);

−1, if a ≡ r (mod k);

0, otherwise,

(5)

and τ(n) denotes the number of divisors of n.

As mentioned above, in the limiting case when k → ∞, a (k, 2)-integer becomes a square-
free integer, which leads to the following corollary.

Corollary 2. For 1 < c < 3
2
, we have, as N → ∞,

Tc(N ;∞, 2) = N
∏

p

(

1−
2

p2

)

+O(N c/2+1/4 logN), (6)

where the big O-term is independent of k.
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Proof. For a fixed large N , every positive integer a, and a positive r-free integer b, the
inequality a⌊N⌋b ≤ N holds only when a = 1. This indicates that in the interval [1, N ], every
(N, r)-integer is an r-free integer. Thus, as N → ∞, the function Tc(N ;∞, 2) counts the
number of positive integers n ≤ N such that ⌊nc⌋ and ⌊nc⌋ + 1 are square-free integers. In
view of (5), we have

∞
∑

m=1

λN,r(m)

ms
=

ζ(Ns)

ζ(rs)
, s >

1

r
.

When N → ∞, since ζ(Ns) = 1, we have,

∞
∑

m=1

λN,2(m)

ms
=

1

ζ(2s)
.

The main term of (6) follows from (4) of Theorem 1 and we get

∞
∑

m=1

τ(m)λN,2(m)

m
=

∑

d, t
gcd gcd(d,t)=1

µ(d)µ(t)

d2t2
=

∏

p

(

1−
2

p2

)

.

Since the big O-term of (4) is independent to k, Corollary 2 follows.

Similarly, since an (∞, 3)-integer becomes a cube-free integer, we obtain an improved
result for (3) in the following corollary.

Corollary 3. For 1 < c < 2, we have, as N → ∞,

Tc(N ;∞, 3) = N
∏

p

(

1−
2

p3

)

+O(N c/3+1/3 logN).

2 Lemmas

We collect now some lemmas needed later.

Lemma 4. [14, Lemma 2.6] Let

qk,r(n) =

{

1, if n is a (k, r)-integer;

0, if n is not a (k, r)-integer,

denote the characteristic function of the set of (k, r)-integers. Then

qk,r(n) =
∑

akbrc=n

µ(b).
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Let
d(r, k, n) :=

∑

nr
1n

k
2=n

1

denote the number of ways of writing an integer n in the form n = nr
1n

k
2, and put

D(r, k, x) =
∑

n≤x

d(r, k, n).

In the proof of our main result, we need the following estimate for the function D(r, k, x)
whose proof can be found in [8, Section 14.3].

Lemma 5. For a sufficiently large x ∈ R, we have

D(r, k, x) ≪ x1/r.

Lemma 6. For x ≥ 1, we have

∑

m≤x

λk,r(m) ≪ x1/r.

Proof. In view of (5), Lemmas 4 and 5, we have

∑

m≤x

λk,r(m) =
∑

akbr≤x

µ(b) ≪
∑

akbr≤x

1 ≪ x1/r.

The proof of Theorem 1 makes use of the following estimate, due originally to Rieger [10],
for the number of integers n up to x such that ⌊nc⌋ belongs to an arithmetic progression.

Lemma 7. ([10]) For 1 < c < 2, let x be a positive real number, and let q and a be two
integers such that 0 ≤ a < q ≤ xc. Then

∑

n≤x
⌊nc⌋≡ a (mod q)

1 =
x

q
+























O
(

x(c+4)/7

q1/7

)

, for q < xc−5/4;

O
(

x(c+1)/3

q1/3

)

, for xc−5/4 ≤ q < xc−1/2;

O
(

xc

q

)

, for xc−1/2 ≤ q < xc.

The proofs of the next two lemmas make use of ideas similar to those in Lemma 2.1 of
[1].

Lemma 8. Let Ac(x; k, r) and Bc(x; k, r) denote the number of 6-tuples (d1, t1, d2, t2, u, v)
satisfying the conditions

dk2t
r
2v − dk1t

r
1u = 1, dk1t

r
1u ≤ xc. (7)
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I) If xc < dk1t
r
1d

k
2t

r
2 ≤ x4c/3, then

Ac(x; k, r) ≪ x4c/3r log x.

II) If x4c/3 < dk1t
r
1d

k
2t

r
2 ≤ x2c, then

Bc(x; k, r) ≪ x2c/3 log x.

Proof. I) For a fixed choice of d1, t1, d2 and t2 satisfying (7), we have dk1t
r
1u ≡ −1 (mod dk2t

r
2),

which fixes the value of u modulo dk2t
r
2. In view of (7), the total number of possibilities for

u is O(1 + xc/dk1t
r
1d

k
2t

r
2). By (7), the value of v is fixed for a given choice of d1, t1, d2, t2, u .

Then, by Lemma 5, we have

Ac(x; k, r) ≪
∑

xc<dk1 t
r
1d

k
2 t

r
2≤x4c/3

(1 +
xc

dk1t
r
1d

k
2t

r
2

)

≪
∑

xc<m≤x4c/3

τ(m)d(k, r;m)(1 +
xc

m
)

≪
∑

xc<m≤x4c/3

d(k, r;m)(logm+
xc logm

m
)

≪ x4c/3r log x+ xc/r log x ≪ x4c/3r log x.

II) From (7), we have uvdk1t
r
1d

k
2t

r
2 ≤ xc(xc+1), whence uv ≤ xc(xc+1)x−4c/3 for every 6-tuple

counted by Bc(x). From a divisor argument, the total number of choices for u, v is therefore
bounded by O(x2c/3 log x). For ever such choice of u, v, the number of solutions in d1, t1, d2, t2
of the equation dk2t

r
2v − dk1t

r
1u = 1 is O(log x); see [7].

3 Proof of Theorem 1

From qk,r(n) =
∑

d|n λk,r(d) , we have

Tc(N ; k, r) =
∑

n≤N

qk,r(⌊n
c⌋)qk,r(⌊n

c⌋+ 1)

=
∑

n≤N

(

∑

d|⌊nc⌋

λk,r(d)
)(

∑

t|⌊nc⌋+1

λk,r(t)
)

=
(

∑

d,t
gcd(d,t)=1

dt≤Nc

+
∑

d,t
gcd(d,t)=1

dt>Nc

)

λk,r(d)λk,r(t)
∑

n≤N
⌊nc⌋≡ 0 (mod d)

⌊nc⌋+1≡ 0 (mod t)

1.

In view of Lemma 8, we have

Tc(N ; k, r) =
∑

d,t
gcd(d,t)=1

dt≤Nc

λk,r(d)λk,r(t)
∑

n≤N
⌊nc⌋≡ 0 (mod d)

⌊nc⌋+1≡ 0 (mod t)

1 +
∑

d,t
gcd(d,t)=1

dt>Nc

λk,r(d)λk,r(t)
∑

n≤N
⌊nc⌋≡ 0 (mod d)

⌊nc⌋+1≡ 0 (mod t)

1

=: Σ1 +O(N2c/3 logN).
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By the Chinese remainder theorem, there is a positive integer α, unique modulo dt, satisfying
the congruence system α ≡ 0 (mod d) and α + 1 ≡ 0 (mod t). Thus,

Σ1 =
∑

d,t
gcd(d,t)=1

dt≤Nc

λk,r(d)λk,r(t)
∑

n≤N
⌊nc⌋≡α (mod dt)

1.

In view of Lemma 7, we have

Σ1 = N
∑

d,t
gcd(d,t)=1

dt≤Nc

λk,r(d)λk,r(t)

dt
+O

(

N (c+4)/7
∣

∣

∣

∑

d,t
gcd(d,t)=1

dt≤Nc−5/4

λk,r(d)λk,r(t)

(dt)1/7

∣

∣

∣

)

+O
(

N (c+1)/3
∣

∣

∣

∑

d,t
gcd(d,t)=1

Nc−5/4<dt≤Nc−1/2

λk,r(d)λk,r(t)

(dt)1/3

∣

∣

∣

)

+O
(

N c
∣

∣

∣

∑

d,t
gcd(d,t)=1

Nc−1/2<dt≤Nc

λk,r(d)λk,r(t)

dt

∣

∣

∣

)

.

In view of Lemma 6, we note that,

∑

d,t
gcd(d,t)=1

dt≤Nc−5/4

λk,r(d)λk,r(t)

(dt)1/7
=

∑

m≤Nc−5/4

τ(m)λk,r(m)

m1/7

≪
∑

m≤Nc−5/4

λk,r(m)

m1/7−ε
≪

{

(N c−5/4)ε+1/r−1/7, if r < 7;

logN, if r ≥ 7,

∑

d,t
gcd(d,t)=1

Nc−5/4<dt≤Nc−1/2

λk,r(d)λk,r(t)

(dt)1/3
=

∑

Nc−5/4<m≤Nc−1/2

τ(m)λk,r(m)

m1/3

≪
∑

Nc−5/4<m≤Nc−1/2

λk,r(m)

m1/3−ε
≪

{

(N c−1/2)ε+1/r−1/3, if r = 2;

logN, if r ≥ 3,

and

∑

d,t
gcd(d,t)=1

Nc−1/2<dt≤Nc

λk,r(d)λk,r(t)

dt
=

∑

Nc−1/2<m≤Nc

τ(m)λk,r(m)

m

≪
∑

Nc−1/2<m≤Nc

λk,r(m)

m1−ε
≪ (N c−1/2)ε+1/r−1.
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Thus,

Σ1 = N
∑

d,t
gcd(d,t)=1

dt≤Nc

λk,r(d)λk,r(t)

dt
+

{

O(N c/2+1/4) logN, if r = 2;

O(N c/3+1/3) logN, if r ≥ 3.

Note that

∑

d,t
gcd(d,t)=1

dt≤Nc

λk,r(d)λk,r(t)

dt
=

(

∑

d,t
gcd(d,t)=1

+
∑

d,t
gcd(d,t)=1

dt>Nc

)(λk,r(d)λk,r(t)

dt

)

=
∑

d,t
gcd(d,t)=1

λk,r(d)λk,r(t)

dt
+O

(

∑

m>Nc

τ(m)λk,r(m)

m

)

=
∑

d,t
gcd(d,t)=1

λk,r(d)λk,r(t)

dt
+O

(

N c/r−c logN
)

. (8)

Since c
r
− c < 0, the sum on the right hand side of (8) converges when r > 1. Thus,

Σ1 = N
∑

d,t
gcd(d,t)=1

λk,r(d)λk,r(t)

dt
+

{

O(N c/2+1/4) logN, if r = 2;

O(N c/3+1/3) logN, if r ≥ 3,

which completes the proof of Theorem 1.
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