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Abstract

Recently, some new convolution formulas extending the orthogonality of the Stirling

numbers of the first and second kind were shown by algebraic techniques. The formulas

involve sums of products of the two Stirling numbers wherein the inner arguments

vary while differing by a prescribed amount and the outer arguments are fixed. Here,

we provide combinatorial proofs of these formulas using direct enumeration and sign-

changing involutions. Our arguments may be extended to establish generalizations of

the foregoing results in terms of the r-Stirling numbers.

1 Introduction

Perhaps two of the most prevalent number sequences in enumerative combinatorics are the
Stirling numbers of the first and second kind, which will be denoted here by

[

n

k

]

and
{

n

k

}

respectively in accordance with [7]. See sequences A008275 and A008277 in the On-Line

Encyclopedia of Integer Sequences [12] and references contained therein. Recall that
[

n

k

]

counts the permutations of [n] = {1, . . . , n} having k cycles (and is often referred to as the
signless Stirling number of the first kind), whereas

{

n

k

}

enumerates the partitions of [n] with
k blocks. Both kinds of Stirling numbers satisfy a variety of identities; see, for example, the
texts [4, Chap. V], [5, §6.1], and [10] as well as the recent papers [2, 3, 6, 11].
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We will need the following further notation. Define the generalized harmonic number
σλ(m;n) by

σλ(m;n) =
∑

m≤i1<···<iλ≤n

λ
∏

j=1

1

ij
, λ > 0,

with σ0(m;n) = 1. Denote the Lah number (see [12, A008297]) by
⌊

n

k

⌋

, which counts the
partitions of [n] into k contents-ordered blocks (i.e., blocks in which the order of the elements
contained therein matters). Recall that

⌊

n

k

⌋

is given explicitly by
⌊

n

k

⌋

= n!
k!

(

n−1
k−1

)

for 1 ≤ k ≤ n,

which is also seen to hold for k = 0 and all n ≥ 0 if one adopts the convention
(

i

−1

)

= δi,−1

for integers i ≥ −1.
Chu [3] considered the following general sums where λ denotes an arbitrary integer:

Φm,n(λ) =
n−λ
∑

k=m

[

n

k + λ

]{

k

m

}

(1)

and

Ψm,n(λ) =
n−λ
∑

k=m

[

n

k + λ

]{

k

m

}

(−1)n−k. (2)

Note that the evaluations of (1) and (2) when λ = 0 correspond to the well-known identities

n
∑

k=m

[

n

k

]{

k

m

}

=

⌊

n

m

⌋

and
n

∑

k=m

[

n

k

]{

k

m

}

(−1)n−k = δm,n,

see, e.g., [5, §6.1]. Further, the evaluation of (2) when λ = 1 is known and gives

n−1
∑

k=m

[

n

k + 1

]{

k

m

}

(−1)n−k = (−1)n−m (n− 1)!

m!
,

which corresponds to [5, Identity 6.25].
The following general identities for Φm,n(λ) and Ψm,n(λ) were established in [3] by alge-

braic methods using a connection coefficient approach:

Φm,n(λ) =
n−λ
∑

j=m

(n− 1)!

m!

(

j − 1

m− 1

)

σλ−1(j + 1;n− 1), λ > 0, (3)

Φm,n(λ) =
−λ
∑

i=0

i
∑

j=0

(−1)λ+j

nλ+i

(

−λ

i

){

i

j

}⌊

j + n

m

⌋

, λ < 0, (4)
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Ψm,n(λ) = (−1)n−m (n− 1)!

m!
σλ−1(m+ 1;n− 1), λ > 0, (5)

Ψm,n(λ) =
−λ
∑

i=0

(−1)λ

nλ+i

(

−λ

i

){

i

m− n

}

, λ < 0. (6)

Throughout, one may assume n,m ≥ 0 with λ ∈ Z, where it is seen that the lower index of
summation in the definitions of Φm,n(λ) and Ψm,n(λ) may be replaced by k = max{m,−λ}.
Note also that both Φm,n(λ) and Ψm,n(λ) are zero if n < m + λ; hence, one may assume
further n ≥ m+ λ to avoid trivialities.

In the next section, we provide combinatorial proofs of (3)–(6). We make use of direct
enumeration to show (3), together with sign-changing involutions to prove (4)–(6). Our
proofs may be extended to afford combinatorial explanations of some related recurrences
from [3] for Φm,n(λ) and Ψm,n(λ). In the third section, we generalize (3)–(6) to the r-Stirling
numbers of the first and second kind, which are denoted by

[

n

k

]

r
and

{

n

k

}

r
. See [1, 8], where

these numbers were introduced, and [9] for a list of useful properties.
Recall that

[

n

k

]

r
enumerates the permutations of [n + r] having k + r cycles in which

the elements of [r] lie in distinct cycles, while
{

n

k

}

r
counts partitions of [n + r] with k + r

blocks in which the elements of [r] belong to distinct blocks. Note that
[

n

k

]

r
and

{

n

k

}

r

reduce respectively to
[

n

k

]

and
{

n

k

}

when r = 0. Using the combinatorial interpretation for
the r-Stirling numbers, one may extend the arguments of the subsequent section and find
formulas for the sums obtained by replacing

[

n

k+λ

]

and
{

k

m

}

in (1) and (2) with
[

n

k+λ

]

r
and

{

k

m

}

s
respectively for arbitrary non-negative r and s. Our formulas will be seen to reduce to

those given in (3)–(6) above in the case r = s = 0.

2 Combinatorial proofs

In this section, we provide combinatorial explanations of formulas (3)–(6) above.

Proof of (3). We construct a set of configurations comprising the elements of [n] and provide
two different enumerations of this set. Given λ > 0 and m ≤ k ≤ n − λ, first arrange
the members of [n] according to a permutation having k + λ cycles C1, . . . , Ck+λ, where
the smallest element is first in each cycle and cycles are ordered according to the size of
their respective first elements. We then arrange the first k cycles C1, . . . , Ck according to
a partition having m blocks, where cycles within a block are written in decreasing order of
their first elements. Note that one may then erase the pair of parentheses enclosing each
cycle so that now cycle starters correspond to left-right minima within m contents-ordered
blocks. The remaining λ cycles Ck+1, . . . , Ck+λ are set aside. Let Ak = A(m,n,λ)

k denote the
set of configurations of [n] that arise in this manner for m ≤ k ≤ n−λ. Define A = A(m,n,λ)

by A = ∪n−λ
k=mAk. Then it is seen that Φm(λ) gives the cardinality of A.

We now enumerate members of A by considering the smallest element j+1 belonging to
cycle Ck+1. To do so, we arrange the elements of [j] according to an arbitrary permutation
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(written using the one-line notation) and insert m − 1 internal dividers in any of
(

j−1
m−1

)

ways. Then elements between consecutive dividers (or preceding the first or following the
last divider) constitute the elements within one of m (nonempty) contents-ordered blocks.
Since the ordering of the blocks themselves is immaterial, we divide by m!, and hence there
are j!

m!

(

j−1
m−1

)

=
⌊

j

m

⌋

ways in which to arrange the members of [j]. Further, the number of
ways in which to insert the elements of [j + 2, n] so that exactly λ− 1 additional cycles are
created is given by

(n− 1)!

j!

∑

j+1≤i1<···<iλ−1≤n−1

λ−1
∏

j=1

1

ij
=

(n− 1)!

j!
σλ−1(j + 1;n− 1)

if λ > 1 (which also holds if λ = 1 since σ0(j + 1;n − 1) = 1). To see this, note that
i1 + 1, . . . , iλ−1 + 1, where iℓ is as in the preceding multi-sum, would correspond to the
starters of cycles Ck+2, . . . , Ck+λ, respectively. Hence, each factor iℓ for 1 ≤ ℓ ≤ λ − 1 is
“missed” in the product (j + 1)(j + 2) · · · (n − 1) = (n−1)!

j!
. Thus, for each j ∈ [m,n − λ],

there are
⌊

j

m

⌋

· (n−1)!
j!

σλ−1(j + 1;n − 1) = (n−1)!
m!

(

j−1
m−1

)

σλ−1(j + 1;n − 1) members of Aj and
considering all possible j completes the proof.

Proof of (4). Let n,m ≥ 0 be fixed with λ < 0. Given 0 ≤ j ≤ i ≤ −λ, let Bi,j denote the
set of configurations obtained as follows. Choose exactly i of the elements of I = [n+1, n−λ]
and arrange them according to an ordinary partition with j blocks. We then arrange these j
blocks B1, . . . , Bj , together with the members of [n], according to a Lah distribution having
m blocks. Then insert the −λ− i unchosen elements of I into this Lah distribution so that
at the time of insertion each element is placed so that it directly precedes some member of
[n] (and not any of the blocks Bℓ for ℓ ∈ [j]). Further, if S = {s1 > · · · > s−λ−i} denotes the
set of elements to be inserted, then s1 is to be added first directly prior to some member of
[n] within one of the m blocks. The element s2 is to be added in the same way, where if s2 is
placed in the same slot as s1 was, then s2 is to follow s1 (this ensures that s2 is also inserted
directly prior to some element of [n]). The remaining elements s3, . . . , s−λ−i are then to be
added sequentially in this same manner. Then the absolute value of the generic summand
in the formula on the right-hand side of (4) is seen to give |Bi,j| for all i and j. Define the
sign of a member of Bi,j to be (−1)λ+j and let B = ∪−λ

i=0 ∪
i
j=0 Bi,j . Then the right side of (4)

gives the sum of the signs of all members of B.
To complete the proof, we define a sign-changing involution on B. To do so, we will need

the following further definitions. First, we will refer to the blocks of π ∈ B whose members
themselves are either individual elements of [n− λ] or blocks whose elements belong to I as
super-blocks. We will refer to an internal block consisting of members of I within a super-
block as a sub-block. Note that each member of Bi,j contains exactly j sub-blocks in all
and each member of B has exactly m super-blocks, the contents of which we now describe
in further detail. By a free element within a super-block B, we mean a member of I not
belonging to any of the sub-blocks lying within B. Given a ∈ [n], let La denote the (ordered)
set consisting of free elements and/or sub-blocks occurring to the left of a if a is the leftmost
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member of [n] lying within its super-block or between a and the next member of [n] to its left
if not. If b is the rightmost member of [n] in its super-block, then letMb denote the collection
of sub-blocks occurring to the right of b. Note that since free elements are to precede directly
elements of [n], no free elements can occur to the right of b since it is rightmost and thus Mb

consists solely of sub-blocks. Finally, let Nc for c ∈ I denote the contents of a super-block
of π that contains no elements of [n] and whose smallest element lying within one of the
sub-blocks is c. Note that Nc, like Mb, can contain no free elements. Further, within a
nonempty La, the sub-blocks are followed by any free elements (in decreasing order). Given
b ∈ [n] or c ∈ I, let Mb be empty if b is not the rightmost element of [n] in its super-block
and let Nc be empty if c does not correspond to the smallest element lying within a sub-block
of a super-block containing no elements of [n].

Let p denote the smallest index j ∈ [n− λ] such that at least one of the following holds:

(i) j ∈ [n], with Lj nonempty,

(ii) j ∈ [n] and Mj is nonempty, with Mj 6= {a1}, . . . , {ak} for some k ≥ 1,

(iii) j ∈ I and Nj is nonempty, with Nj 6= {a1}, . . . , {ak} for some k ≥ 1,

where a1 < · · · < ak in (ii) and (iii). If both (i) and (ii) apply to the smallest j as described,
then consider only (i).

We now can define the involution on B. Given p as specified above, let K1, . . . , Kr denote
the individual sub-blocks (in order, from left to right) contained within Lp, Mp or Np,
whichever is applicable. Let u be the smallest element in K1 ∪ · · · ∪Kr. If K1 6= {u}, then
either add u to the block directly preceding it if Kj = {u} for some j ∈ [2, r] or remove u

from the non-singleton to which it currently belongs and add it back as a singleton to follow
this block. Note that this operation always reverses the sign. If K1 = {u}, then consider
K2, . . . , Kr and look to move the smallest element of K2 ∪ · · · ∪Kr as before, if possible. We
continue until some element within K1 ∪ · · · ∪ Kr has been moved, or we have that these
blocks consist of singletons arranged in increasing order (which can only occur in scenario
(i) above). If p applies to a situation in (i) in which r ≥ 1 and Ki = {ai} for i ∈ [r]
with a1 < · · · < ar (followed by any free elements), or in which r = 0 and Lp = b1 · · · bs,
where the bi are free elements with b1 > · · · > bs and s ≥ 1, then we change the status of
m = max{a1, . . . , ar, b1, . . . , bs}. Note that m occurs either as Kr = {m} or as b1 = m; thus,
we may either erase the brackets enclosing m and designate m a free element if the former,
or vice versa, if the latter. This operation again reverses the sign and completes the pairing
of all possible π for which Li is nonempty for some i.

Let B∗ ⊆ B denote the set of survivors of the involution above. Then B∗ comprises
those configurations in which Li is empty for all i ∈ [n], with Mj and Nj consisting of
singletons (possibly none) arranged in ascending order for all j. Then each member of B∗

has positive sign and |B∗| =
∑n−λ

k=m

[

n

k+λ

]{

k

m

}

. To realize this, first note that any left-right
minima belonging to [n] within a super-block of ρ ∈ B∗ may be viewed as a cycle starter
(in some permutation of [n]). If we denote the number of these cycles by k + λ, then it is
seen that there are k objects altogether (k + λ cycles and −λ singleton sub-blocks) to be
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arranged in the m super-blocks of ρ, wherein the members of I (written as singleton blocks)
within a super-block must occur in ascending order following any elements of [n] which are
arranged in cycles written in decreasing order. Thus, given any permutation of [n] with k+λ

cycles, there are
{

k

m

}

ways in which to arrange the cycles as described together with the −λ

elements of I so as to form a member of B∗. Considering all possible k implies |B∗| is as
stated and completes the proof.

Proof of (5). Given λ > 0 and m ≤ k ≤ n − λ, let Ck = C(m,n,λ)
k denote the set of configu-

rations that are obtained by first arranging the elements of [n] according to a permutation
having k + λ cycles expressed in standard form and then forming a partition with m blocks
using the first k of these cycles. Here, cycles are assumed to be ordered by the size of their
respective smallest (= first) elements. Define the sign of each member of Ck to be (−1)n−k.
Let C = C(m,n,λ) be given by C = ∪n−λ

k=mCk. Then Ψm,n(λ) gives the sum of the signs of all
members of C.

We define an involution on C as follows. Given π ∈ C, identify the block B of π containing
the smallest element of [n] within its cycles out of all the blocks of π that contain at least
two elements of [ℓ] within their respective cycles, where ℓ + 1 denotes the first element of
the λ-th largest cycle of π (i.e., if π ∈ Ck for some k, then ℓ + 1 is the first element of the
(k+1)-st cycle). Let a and b where a < b denote the two smallest elements of [ℓ] lying within
the cycles of B. If a and b occur in the same cycle as (a · · · b · · · ), then we break this cycle
at b to get (a · · · ) and (b · · · ), and vice versa, if a and b occur in different cycles of B.

This operation defines a sign-changing involution on all of C except for those members
in which B fails to exist, i.e., for members of Cm in which the (m + 1)-st cycle has first
element m+1. Note that the elements of [m] in these members of Cm all belong to different
cycles, with each of these cycles constituting a singleton block within the partition of cycles.
Upon erasing the outer brackets enclosing these singleton blocks, it is seen that the set of
survivors of the involution above are synonymous with permutations of [n] having λ + m

cycles altogether wherein the elements of [m + 1] belong to distinct cycles, and hence it is
enumerated by the (m+1)-Stirling number of the first kind

[

n−m−1
λ−1

]

m+1
. Furthermore, each

survivor has sign (−1)n−m. Upon considering the elements ij + 1, where j ∈ [λ − 1] and
ij < ij+1 for all j, that start the final λ− 1 cycles, we have

[

n−m− 1

λ− 1

]

m+1

=
(n− 1)!

m!

∑

m+1≤i1<···<iλ−1≤n−1

λ−1
∏

j=1

1

ij
,

which implies Ψm,n(λ) = (−1)n−m (n−1)!
m!

σλ−1(m+ 1;n− 1) as desired.

Proof of (6). Given λ < 0 and max{m,−λ} ≤ k ≤ n − λ, let Dk = D(m,n,λ)
k denote the

set of configurations of [n − λ] obtained by first arranging the elements of [n] according to
a permutation having k + λ cycles and then placing these cycles in an m-block partition,
together with the elements of I = [n+ 1, n− λ] (which do not go in cycles). Define the sign
of a member of Dk by (−1)n−k and denote the union of all Dk by D. Identify the block B

6



of π ∈ D that contains the smallest element of [n] out of all the blocks of π that contain at
least two elements of [n] within their cycles. Applying to π the involution from the proof
of (5) above using the block B, we may consider only those members of D whose cycles all
have length one, with at most one cycle per block of the partition.

Thus, if m < n, we have Ψm,n(λ) = 0, since there would be no survivors of the involution,
which agrees with (6) in this case since

{

i

m−n

}

= 0 for all i ≥ 0 as m − n < 0. If m = n,

then each block of a survivor contains a single 1-cycle (i) for some i ∈ [n], with n−λ choices
concerning the placement of the elements of I within the blocks of the m-partition. Note
that the sign of each survivor is (−1)n−k = (−1)λ since k = n − λ in order for every cycle
to have length one. Thus, we get (−n)−λ in this case which agrees with the formula when
m = n. If m > n, first note that all cycles must again have length one with these cycles
going in n distinct blocks of the partition within a survivor of the involution. Then we select
(

−λ

i

)

members of [n + 1, n − λ] to comprise m − n additional blocks, which can be effected

in
{

i

m−n

}

ways. Finally, the remaining members of I go in the blocks already containing

the 1-cycles, which can be achieved in n−λ−i = 1
nλ+i ways. Considering all possible i, where

0 ≤ i ≤ −λ, implies the formula in the case m > n and completes the proof of (6).

We conclude this section by providing combinatorial proofs of some related recurrences
for Φm,n(λ) and Ψm,n(λ) which were shown in [3] by other methods. Counting members of
the set A from the proof of (3) in another way yields the following recurrence for Φm,n(λ):

Φm,n(λ) =
n−1
∑

i=m+λ−1

(n− 1)!

i!
Φm,i(λ− 1), λ > 0. (7)

Proof. One may assume n ≥ m + λ, for otherwise both sides of (7) are zero. Consider the
smallest element i+1 of the last cycle within a member ofA(m,n,λ), wherem+λ−1 ≤ i ≤ n−1.
Then the elements of [i] are arranged according to some member of A(m,i,λ−1) with i+1 going
in a new cycle by itself. Elements of [i + 2, n] are then inserted sequentially so that each
x ∈ [i + 2, n] directly follows some element of [x − 1] occurring in either one of the m

(contents-ordered) blocks or in one of the λ cycles that are set aside. Note that no x can
be placed at the very beginning of one of the m blocks since this would create implicitly a
new cycle with first element x contradicting that i + 1 was the smallest element of the last
cycle. Thus, there are (i+ 1)(i+ 2) · · · (n− 1) = (n−1)!

i!
ways in which to insert the elements

of [i+ 2, n] and considering all possible i implies (7).

The argument used to show (5) can be extended to prove the following recurrence relations
from [3] for Ψm,n(λ) where λ > 0:

Ψm,n(λ) =
n−λ+1
∑

i=m+1

(−1)i−m (i− 1)!

m!
Ψi,n(λ− 1) (8)

=
n−1
∑

i=m+λ−1

(−1)n−i (n− 1)!

i!
Ψm,i(λ− 1). (9)
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Proof. Note that one may assume λ > 1 in (8) and (9), as they are seen to hold when

λ = 1 since Ψm,n(1) = (−1)n−m (n−1)!
m!

and Ψi,n(0) = δi,n. By the proof of (5), we have

Ψm,n(λ) = (−1)n−m
[

n−m−1
λ−1

]

m+1
. Upon replacing m by m− 1 and λ by λ+ 1 in (8) and (9),

one may then show equivalently

[

n−m

λ

]

m

=
n−λ
∑

i=m

(i− 1)!

(m− 1)!

[

n− i− 1

λ− 1

]

i+1

(10)

=
n−1
∑

i=m+λ−1

(n− 1)!

i!

[

i−m

λ− 1

]

m

. (11)

Before proceeding with the proof of (10), let us introduce a couple of definitions which we
will also make use of in the next section. Permutations enumerated by the r-Stirling number
[

n

k

]

r
are called r-permutations and we will refer to a cycle containing a member of [r] within

an r-permutation as special, with all other cycles being non-special. The same descriptors
will also be used for the elements themselves of the sets [r] and of [r+1, n+ r], respectively.
Analogous terminology can be applied to the r-partitions enumerated by

{

n

k

}

r
. Assume that

the smallest element is first in all cycles. To show (10), we argue that the right side counts
the permutations enumerated by

[

n−m

λ

]

m
according to the smallest element i+ 1 of the first

non-special cycle where m ≤ i ≤ n − λ. Note that there are (i−1)!
(m−1)!

choices regarding the

placement of the elements of [i] since the elements of [m] belong to different cycles, with
i+ 1 going in a new cycle by itself. At this point, we may regard each of the i+ 1 elements
already inserted as special (each starting its own respective cycle) when placing the elements
of [i + 2, n]. Note that λ − 1 additional non-special cycles must be created when these
elements are placed since already one non-special cycle has been started. Thus, there are
[

n−i−1
λ−1

]

i+1
possibilities concerning the placement of the elements of [i+2, n] and considering

all i completes the proof of (10). A similar proof applies to (11), where instead one considers
the element i+ 1 starting the last non-special cycle for some i ∈ [m+ λ− 1, n− 1].

3 Generalization

Given r, s ≥ 0, let

Φ(r,s)
m,n (λ) =

n−λ
∑

k=m

[

n

k + λ

]

r

{

k

m

}

s

(12)

and

Ψ(r,s)
m,n (λ) =

n−λ
∑

k=m

[

n

k + λ

]

r

{

k

m

}

s

(−1)n−k. (13)

In this section, we find formulas for (12) and (13) which generalize those above corresponding
to the case r = s = 0. Let xm = x(x + 1) · · · (x + m − 1) for a positive integer m, with

x0 = 1. We first consider Φ
(r,s)
m,n (λ).
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Theorem 1. We have

Φ(r,s)
m,n (λ) =

n
∑

ℓ=m+λ

ℓ−λ
∑

j=m

(ℓ− 1)!rn−ℓ

m!

(

n

ℓ

)(

j + s− 1

m+ s− 1

)

σλ−1(j + 1; ℓ− 1), λ > 0, (14)

and

Φ(r,s)
m,n (λ) =

n
∑

ℓ=0

−λ
∑

i=0

i
∑

j=0

(−1)λ+j(ℓ+ j)!rn−ℓ

ℓλ+im!

(

n

ℓ

)(

−λ

i

){

i

j

}(

ℓ+ j + s− 1

m+ s− 1

)

, λ < 0. (15)

Proof. To show (14), we first generalize the sets Ak and A from the proof of (3) above.

Define A(r,s)
k to be the extension of Ak obtained by replacing [n] with [n + r] and allowing

some of the elements of J = [r + 1, n + r] to go in special cycles starting with elements
of [r] and then allowing some of the first k non-special cycles to go in s special blocks
when forming a partition of cycles according the some s-partition enumerated by

{

k

m

}

s
. Let

A(r,s) = ∪n−λ
k=mA

(r,s)
k , which extends the prior set A. Note that Φ

(r,s)
m,n gives |A(r,s)|. To count

the members of A(r,s) in another way, first suppose n−ℓ elements of J are to go in the special
cycles. Then there are

(

n

ℓ

)

rn−ℓ ways in which to choose and arrange these elements. Let
U = {u1 < · · · < uℓ} denote the subset of J consisting of the unchosen members. Proceeding
at this point in a manner analogous to the proof of (3) above, suppose uj+1 is the smallest

element of the (k + 1)-st non-special cycle within a member of A(r,s)
k for some k. Then

members of V = {u1, . . . , uj} form the cycles which constitute the non-special elements in
a partition enumerated by

{

k

m

}

s
. Since a special block within such a partition need not

contain a non-special cycle, it follows that there are j!
m!

(

j+s−1
m+s−1

)

ways in which to arrange the
elements of V . Then uj+1 starts a new cycle and the remaining elements of U − V can be

inserted into the current structure in (ℓ−1)!
j!

σλ−1(j + 1; ℓ − 1) ways. Considering all possible

ℓ and j then gives (14).

To show (15), we consider sets B(r,s)
i,j,ℓ of configurations π that are obtained as follows.

First, pick n − ℓ elements of J which are to be placed in r special cycles starting with
elements of [r]. Next, form an ordinary j-block partition utilizing exactly i elements chosen
from K = [n+r+1, n+r−λ]. Using the elements of U , where U is as in the prior paragraph,
together with the j blocks, we form a partition having m+ s contents-ordered blocks where
the first s blocks are labeled and allowed to be empty and the last m blocks are unlabeled
and nonempty. Finally, to obtain a configuration π, the −λ− i unchosen members of K are
added to this partition in decreasing order of size in such a way that each one is inserted
directly preceding an element of U . Let B(r,s) denote the union of all possible B(r,s)

i,j,ℓ and

define the sign of π ∈ B(r,s)
i,j,ℓ by (−1)λ+j. Then one may verify that the right side of (15)

gives the sum of the signs of all members of B(r,s). Apply now the involution used in the
proof of (4) above (considering also the contents of the s labeled blocks above, if needed).
Then the set L of survivors is as before, but with elements of U in place of [n] and where s

additional labeled super-blocks may contain sub-blocks and/or members of U . Let p denote
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the number of left-right minima corresponding to elements of U within all the super-blocks
of a member of L. Then there are

{

k

m

}

s
ways in which to arrange the elements of U and K

within such a member of L, where k = p− λ. Further, taking into account the placement of
the elements of J − U as well, there are

[

n

p

]

r
ways to arrange the elements of J . Note that

each member of L has positive sign as i = j = −λ is required. Considering all possible p, it
is seen that the cardinality of L is given by Φ

(r,s)
m,n , which completes the proof.

Taking r = 0 or s = 0, for example, in (14) gives identities for λ > 0 such as

n−λ
∑

k=m

[

n

k + λ

]{

k

m

}

r

=
n−λ
∑

j=m

(n− 1)!

m!

(

j + r − 1

m+ r − 1

)

σλ−1(j + 1;n− 1)

and

n−λ
∑

k=m

[

n

k + λ

]

r

{

k

m

}

=
n

∑

ℓ=m+λ

ℓ−λ
∑

j=m

(ℓ− 1)!rn−ℓ

m!

(

n

ℓ

)(

j − 1

m− 1

)

σλ−1(j + 1; ℓ− 1).

Note that letting r = 0 in either of these formulas recovers (3). Taking λ = −1 in (15) yields

n+1
∑

k=m

[

n

k − 1

]

r

{

k

m

}

s

=
n

∑

ℓ=0

ℓ!rn−ℓ

m!

(

n

ℓ

)(

(ℓ+ 1)

(

ℓ+ s

m+ s− 1

)

− ℓ

(

ℓ+ s− 1

m+ s− 1

))

.

There are the following comparable formulas for Ψ
(r,s)
m,n (λ).

Theorem 2. We have

Ψ(r,s)
m,n (λ) =

u
∑

i=0

u−i
∑

j=0

(−1)n−m−j(n− i− 1)!ri

m!

(

n

i

)(

s

j

)

σλ−1(m+j+1;n−i−1), λ > 0, (16)

and

Ψ(r,s)
m,n (λ) =

n
∑

i=0

n−i
∑

j=0

−λ
∑

ℓ=0

(−1)λ+ij!ri

(vi,j + s)λ+ℓ

(

n

i

)(

s

j

)(

n− i

j

)(

−λ

ℓ

){

ℓ

m− vi,j

}

, λ < 0, (17)

where u := n−m− λ and vi,j := n− i− j.

Proof. To show (16), let C(r,s)
k be obtained by first forming r-permutations of [n+ r] having

k + λ non-special cycles and then arranging the first k non-special cycles according to an s-
partition having m non-special blocks. Let members of C(r,s)

k have sign (−1)n−k and C(r,s) =

∪n−λ
k=mC

(r,s)
k . Then Ψ

(r,s)
m,n gives the sum of the signs of all members of C(r,s). Applying the

involution used in the proof of (5) above (considering also any cycles placed in the s special
blocks, if necessary) implies that the set M of survivors consists of those members of C(r,s) in
which k = m+ j for some 0 ≤ j ≤ s wherein the k + 1 smallest members of J belonging to

10



non-special cycles each start their own cycle, with the first k of these cycles lying in different
blocks of the s-partition. If i denotes the number of members of J going in special cycles
within a member of M , then we have j ≤ u− i and there are (n−i−1)!

(m+j)!
σλ−1(m+j+1;n− i−1)

ways in which to arrange those members of J lying in non-special cycles but not starting
one of the first k + 1 non-special cycles. Further, there are

(

m+j

j

)(

s

j

)

j! ways to choose and
then arrange the cycle starters of the cycles that go in the special blocks within a member
of M . Upon considering all possible values of i and j, the right side of (16) is seen to give
the sum of the signs of members of M .

To show (17), we form the setD(r,s)
k consisting of configurations obtained by first arranging

the elements of [n + r] according to an r-permutation having k + λ non-special cycles and
then arranging these non-special cycles, together with the elements of K, according to an
s-partition of size k+ s having m+ s blocks. Define the sign of members of D(r,s)

k as (−1)n−k

and let D(r,s) be the union of all D(r,s)
k . Let i again denote the number of elements of J going

in one of the r special cycles and j be the number of special blocks that contain at least
one non-special cycle in the s-partition. Upon applying the prior involution, to determine
the sum of the signs of all members of D(r,s), we may assume that the non-special cycles
all have length one and occur in different blocks of the s-partition. Note that if m < vi,j ,
then it is seen that there are no survivors of the involution corresponding to such i and j,
and indeed the summands for such i and j in the sum on the right side of (17) are all seen
to be zero. If m = vi,j, then there are (m + s)−λ ways in which to add the elements of
K within a surviving configuration, which is accounted for by the terms in the sum where
ℓ = 0. Finally, if m > vi,j, then ℓ members of K for some 1 ≤ ℓ ≤ −λ must occupy the
remaining unfilled non-special blocks, which implies the remaining terms in the sum account
for survivors where m > vi,j . Combining this case with the prior cases implies the right side
of (17) gives the sum of the signs of all survivors, which completes the proof.

Letting, for example, r = 0 or s = 0 in (16) gives for λ > 0 the identities

n−λ
∑

k=m

[

n

k + λ

]{

k

m

}

r

(−1)n−k =
u

∑

j=0

(−1)n−m−j(n− 1)!

m!

(

r

j

)

σλ−1(m+ j + 1;n− 1)

and

n−λ
∑

k=m

[

n

k + λ

]

r

{

k

m

}

(−1)n−k = (−1)n−m

u
∑

i=0

(n− i− 1)!ri

m!

(

n

i

)

σλ−1(m+ 1;n− i− 1).
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[9] G. Nyul and G. Rácz, The r-Lah numbers, Discrete Math. 338 (2015), 1660–1666.

[10] J. Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers, World
Scientific, 2016.

[11] M. Shattuck, Combinatorial identities for Stirling numbers of the first kind via involu-
tion, Integers 12 (2012), Paper #A59.

[12] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2022. Available
at https://oeis.org.

2020 Mathematics Subject Classification: Primary: 05A19; Secondary: 05A05.
Keywords: combinatorial identity, Stirling number, Lah number, combinatorial proof.

(Concerned with sequences A008275, A008277, and A008297.)

Received August 25 2021; revised version received January 9 2022. Published in Journal of

Integer Sequences, January 29 2022.

Return to Journal of Integer Sequences home page.

12

https://oeis.org
https://oeis.org/A008275
https://oeis.org/A008277
https://oeis.org/A008297
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Combinatorial proofs
	Generalization

