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Abstract

In this paper we present a generalization of Faulhaber’s formula to sums of arbitrary

complex powers m ∈ C. These summation formulas for sums of the form
∑⌊x⌋

k=1 k
m and

∑n
k=1 k

m, where x ∈ R
+ and n ∈ N, are based on a series acceleration involving Stirling

numbers of the first kind. While it is well-known that the corresponding expressions ob-

tained from the Euler-Maclaurin summation formula diverge, our summation formulas

are all very rapidly convergent.

1 Introduction

For two natural numbers m,n ∈ N0, the Faulhaber formula [1], given by

n
∑

k=0

km =
1

m+ 1

m
∑

k=0

(−1)k
(

m+ 1

k

)

Bkn
m−k+1, (1)

where the Bk’s are the Bernoulli numbers, provides a very efficient way to compute the
sum of the m-th powers of the first n natural numbers. This formula was found by Jacob
Bernoulli around 1700 and was first proved by Carl Gustav Jacobi in 1834.

We prove a rapidly convergent exact generalization of Faulhaber’s formula to finite sums
of the form

∑⌊x⌋
k=1 k

m and
∑n

k=1 k
m for all exponents m ∈ C. Our key tool is the so-called
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Weniger transformation [2, (4.1)] found by J. Weniger, transforming an inverse power series
into an inverse factorial series [2, (1.1)]. This transformation of inverse power series was first
found by Oskar Schlömilch around 1850 [3, 4, 5] based on earlier works of James Stirling in
1730 [6].

In an expanded form, one of our summation formulas for the sum
∑n

k=1

√
k, where n ∈ N,

looks like

n
∑

k=1

√
k =

2

3
n3/2 +

1

2

√
n− 1

4π
ζ

(

3

2

)

+
√
n

∞
∑

k=1

(−1)k+1

∑k
l=1

(2l−3)!!
2l(l+1)!

Bl+1S
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)

=
2

3
n3/2 +

1

2

√
n− 1

4π
ζ

(

3

2

)

+

√
n

24(n+ 1)
+

√
n

24(n+ 1)(n+ 2)

+
53
√
n

640(n+ 1)(n+ 2)(n+ 3)
+

79
√
n

320(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+ · · · ,

(2)

where the Bl’s are the Bernoulli numbers and S
(1)
k (l) denotes the Stirling numbers of the

first kind.
The above identity (2) is deduced by setting the variable x := n ∈ N into the more

general formula

⌊x⌋
∑

k=1

√
k

=
2

3
x3/2 − 1

4π
ζ

(

3

2

)

−
√
xB1({x}) +

√
x

∞
∑

k=1

(−1)k
∑k

l=1(−1)l (2l−3)!!
2l(l+1)!

S
(1)
k (l)Bl+1({x})

(x+ 1)(x+ 2) · · · (x+ k)

=
2

3
x3/2 − 1

4π
ζ

(

3

2

)

+

(

1

2
− {x}

)√
x+

(

1
4
{x}2 − 1

4
{x}+ 1

24

)√
x

(x+ 1)

+

(

1
24
{x}3 + 3

16
{x}2 − 11

48
{x}+ 1

24

)√
x

(x+ 1)(x+ 2)
+

(

1
64
{x}4 + 3

32
{x}3 + 21

64
{x}2 − 7

16
{x}+ 53

640

)√
x

(x+ 1)(x+ 2)(x+ 3)

+

(

1
128

{x}5 + 19
256

{x}4 + 109
384

{x}3 + 29
32
{x}2 − 977

768
{x}+ 79

320

)√
x

(x+ 1)(x+ 2)(x+ 3)(x+ 4)
+ · · · ,

(3)

where this time the Bl({x})’s are the fractional Bernoulli polynomials and x ∈ R
+ is a

positive real number. All other formulas in this article have a similar shape, when we
expand them.

We have searched our resulting formulas in the literature and on the internet. We could
find only two of them, namely equation (46) and its analogues for the sums

∑n
k=1

1
km

with
m ∈ N≥2, which were already known to Stirling in 1730 [3, 7], and equation (45), which was
obtained by Gregorio Fontana around 1780 [3, 8]. Both of these formulas were originally
found in another form without the use of Bernoulli numbers.
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We believe that all other generalized Faulhaber formulas presented in this article are new
and that our method to obtain them has not been recognized before.

2 Definitions and basic facts

As usual, we denote the floor of x by ⌊x⌋ and the fractional part of x by {x}. The symbol
N := {1, 2, 3, 4, . . .} denotes the set of natural numbers and R

+ := {x ∈ R : x > 0} represents
the set of positive real numbers. We also set N0 := N∪ {0} and R

+
0 := R

+ ∪ {0}. Moreover,
we define H

+ := {z ∈ C : Re(z) > 0} and let ζ(s) denote the Riemann zeta function at
the point s ∈ C \ {1}. For a complex number z = reiϕ ∈ C, we let |z| = r ∈ R

+
0 denote

its absolute value and by ϕ = arg(z) ∈ (−π, π] its argument or phase. We define for all
θ ∈ (−π

2
, π
2
) the secant function by sec(θ) := 1

cos(θ)
. For z ∈ C, the notation z → ∞ means

that |z| → ∞.

The double factorial function for n ∈ N0 is defined by n!! :=
∏⌊(n−1)/2⌋

k=0 (n− 2k).

Definition 1. (Pochhammer symbol [2, p. 1429]) We define the Pochhammer symbol (or
rising factorial function) (z)k by

(z)k := z(z + 1)(z + 2)(z + 3) · · · (z + k − 1) =
Γ(z + k)

Γ(z)
, (4)

where Γ(z) is the gamma function [9, (5.2.1), p. 136] defined as the meromorphic continuation
of the integral

Γ(z) :=

∫ ∞

0

e−ttz−1dt for all z ∈ C with Re(z) > 0 (5)

to the whole complex plane C.

Definition 2. (Stirling numbers of the first kind [2, (A.2), p. 1437] and [10, A008275]) Let
k, l ∈ N0 be two non-negative integers such that k ≥ l ≥ 0. We set the Stirling numbers of
the first kind S

(1)
k (l) as the connecting coefficients in the identity

(z)k = (−1)k
k
∑

l=0

(−1)lS
(1)
k (l)zl, (6)

where (z)k is the rising factorial function. Furthermore, we set S
(1)
k (l) = 0 if k, l ∈ N0 with

l > k.

Definition 3. (Binomial coefficients [11]) We introduce the binomial coefficient
(

z
s

)

for all
z ∈ C and s ∈ C by [11, (5) and (11), pp. 8–9]

(

z

s

)

: =
Γ(z + 1)

Γ(s+ 1)Γ(z − s+ 1)
. (7)
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Moreover, for z ∈ C \ {0,−1,−2,−3, . . .} we have the following asymptotic expansion as
k → ∞ [11, (18), p. 2 and p. 35]

(

z

k

)

=
(−1)k

Γ(−z)kz+1
+O

(

1

kz+2

)

for all z ∈ C and k ∈ N. (8)

Definition 4. (Bernoulli polynomials and Bernoulli numbers [1, 12, 13, 14]) We define for
n ∈ N0 the n-th Bernoulli polynomial Bn(x) via the following exponential generating function
[1] as

text

et − 1
=

∞
∑

n=0

Bn(x)

n!
tn ∀t ∈ C with |t| < 2π. (9)

We also define the n-th Bernoulli number Bn as the value of the n-th Bernoulli polynomial
Bn(x) at the point x = 0, that is

Bn := Bn(0). (10)

For all n ∈ N0 we have the explicit formula [12, Proposition 23.2, p. 86]

Bn(x) =
n
∑

k=0

(

n

k

)

Bkx
n−k. (11)

For all 0 ≤ y ≤ 1 it is valid that [13, Corollary B.4, (B.21), p. 500]

|B1(y)| ≤
1

2
and that |Bn(y)| ≤

2ζ(n)n!

(2π)n
for all n ∈ N≥2. (12)

We have [14, (1.10), p. 282]

(−1)kBk(1− y) = Bk(y) for all k ∈ N0 and 0 ≤ y ≤ 1. (13)

Definition 5. (Digamma function [9, pp. 136–138]) We set the digamma function ψ(z) to

ψ(z) : =
Γ′(z)

Γ(z)
for all z ∈ C \ {0,−1,−2,−3, . . .}. (14)

Therefore, ψ(z) is an analytic function for all z ∈ C\(−∞, 0]. For all z ∈ C\{0,−1,−2,−3, . . .},
we have the identity [9, (5.5.2), p. 138]

ψ(z + 1) = ψ(z) +
1

z
(15)

and for all n ∈ N we have the formula [9, (5.4.14), p. 137]

n
∑

k=1

1

k
= ψ(n+ 1) + γ. (16)
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Definition 6. (Hurwitz zeta function [9, p. 607]) We define the Hurwitz zeta function ζ(s, z)
for all complex numbers s ∈ C with Re(s) > 1 and all z ∈ C \ {0,−1,−2,−3, . . .} by

ζ(s, z) : =
∞
∑

k=0

1

(k + z)s
. (17)

The function ζ(s, z) extends to an analytic function on C \ {0,−1,−2,−3, . . .} in the z-
variable and for every z /∈ {0,−1,−2,−3, . . .} to a meromorphic function in s ∈ C\{1} with
a simple pole at s = 1. For all s ∈ C \ {1} and all z ∈ C \ {0,−1,−2,−3, . . .} it satisfies the
identity

ζ(s, z + 1) = ζ(s, z)− 1

zs
. (18)

For all m ∈ C \ {1} and all n ∈ N we have the formula [15, (1.2), p. 2]

n
∑

k=1

km = ζ(−m)− ζ(−m,n+ 1). (19)

3 The structure of inverse factorial series expansions

In this section we study the structure of inverse factorial series expansions for analytic
functions possessing an asymptotic series expansion by applying a theorem of G. N. Watson
[16, Theorem 2, p. 45]. The main result of this section is Theorem 10, from which we later
deduce convergent inverse factorial series expansions for the functions ζ(s, z + 1 − y) and
ψ(z + 1− y), where 0 ≤ y ≤ 1.

For this procedure, we need the following variant of a result found by J. Weniger [2,
(4.1), p. 1433].

Lemma 7. (finite Weniger transformation [2]) For every finite inverse power series
∑n

k=1
ak
zk
,

where the ak’s are any complex numbers and n ∈ N, the following transformation formula
holds:

n
∑

k=1

ak
zk

=
n
∑

k=1

(−1)k
∑k

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

as z → ∞. (20)

Moreover, we have

n
∑

k=1

ak
zk

=
∞
∑

k=1

(−1)k
∑n

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
. (21)
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Proof. For l ∈ N we have ([2, (A.14), p. 1438], [17, (6), p. 78])

1

zl
=

∞
∑

k=0

(−1)kS
(1)
k+l(l)

(z + 1)(z + 2) · · · (z + k + l)

=
∞
∑

k=l

(−1)k−lS
(1)
k (l)

(z + 1)(z + 2) · · · (z + k)

=
∞
∑

k=1

(−1)k−lS
(1)
k (l)

(z + 1)(z + 2) · · · (z + k)

=
n
∑

k=1

(−1)k−lS
(1)
k (l)

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

as z → ∞,

where we used in the third step that S
(1)
k (l) = 0 for k < l.

Therefore, we obtain that

n
∑

k=1

ak
zk

=
n
∑

l=1

al
zl

=
n
∑

l=1

al

n
∑

k=1

(−1)k−lS
(1)
k (l)

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

=
n
∑

k=1

(−1)k
∑n

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

=
n
∑

k=1

(−1)k
∑k

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

as z → ∞,

which is the first claimed formula (20).
The second formula (21) follows from the calculation

n
∑

k=1

ak
zk

=
n
∑

l=1

al
zl

=
n
∑

l=1

al

∞
∑

k=1

(−1)k−lS
(1)
k (l)

(z + 1)(z + 2) · · · (z + k)

=
∞
∑

k=1

(−1)k
∑n

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
,

because we can always interchange a finite summation with an infinite summation.

Lemma 8. (Uniqueness of inverse factorial series expansions) If for all z ∈ C with Re(z) > 0
a function f has the absolutely convergent series expansion

f(z) =
∞
∑

k=1

bk
(z + 1)(z + 2) · · · (z + k)

and the asymptotic expansion

f(z) =
n
∑

k=1

ck
(z + 1)(z + 2) · · · (z + k)

+O

(

1

zn+1

)

as z → ∞,
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then we have ck = bk for all k ∈ N and the absolutely convergent series expansion

f(z) =
∞
∑

k=1

ck
(z + 1)(z + 2) · · · (z + k)

.

Proof. For all n ∈ N we have
∑∞

k=n+1
|bk|·|z|

n

|(z+1)||(z+2)|···|(z+k)|
→ 0 as z → ∞, because this infinite

series is convergent for all z ∈ C with Re(z) > 0 by assumption and consists of the monotone

decreasing positive terms |bk|·|z|
n

|(z+1)||(z+2)|···|(z+k)|
→ 0 as z → ∞.

From the above observation and the given absolutely convergent inverse factorial series
expansion of f(z), we deduce for all n ∈ N that

∣

∣

∣

∣

∣

∞
∑

k=n

bk
(z + 1)(z + 2) · · · (z + k)

∣

∣

∣

∣

∣

≤
∞
∑

k=n

|bk|
|(z + 1)||(z + 2)| · · · |(z + k)|

=
|bn|

|(z + 1)||(z + 2)| · · · |(z + n)| +
1

|z|n
∞
∑

k=n+1

|bk| · |z|n
|(z + 1)||(z + 2)| · · · |(z + k)|

= O

(

1

zn

)

as z → ∞,

which means that limz→∞(f(z)) = 0 and we have

zm
∞
∑

k=n

bk
(z + 1)(z + 2) · · · (z + k)

−→ 0 as z → ∞ for all m ∈ {0, 1, 2, . . . , n− 1}.

The result now follows by induction on n ∈ N via a repeated application of the above limit.
For n = 1, we get

f(z) =
b1

z + 1
+

∞
∑

k=2

bk
(z + 1)(z + 2) · · · (z + k)

=
c1

z + 1
+O

(

1

z2

)

as z → ∞,

which implies by multiplying both sides with z + 1 and letting z → ∞ that c1 = b1.
Similarly, for n = 2, we get using c1 = b1 that

f(z)− c1
z + 1

=
b2

(z + 1)(z + 2)
+

∞
∑

k=3

bk
(z + 1)(z + 2) · · · (z + k)

=
c2

(z + 1)(z + 2)
+O

(

1

z3

)

,

which implies by multiplying both sides with (z+1)(z+2) and letting z → ∞ that c2 = b2.
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In general, we can induct from n−1 to n using that ck = bk for all k ∈ {1, 2, 3, . . . , n−1}
by the identity

f(z)−
n−1
∑

k=1

ck
(z + 1)(z + 2) · · · (z + k)

=
bn

(z + 1)(z + 2) · · · (z + n)
+

∞
∑

k=n+1

bk
(z + 1)(z + 2) · · · (z + k)

=
cn

(z + 1)(z + 2) · · · (z + n)
+O

(

1

zn+1

)

as z → ∞,

again by multiplying both sides with (z+1)(z+2) · · · (z+n) and letting z → ∞ to conclude
that ck = bk holds also for k = n. This proves that ck = bk for all k ∈ N.

The key to our generalized Faulhaber formulas is the following theorem.

Theorem 9. (Watson’s Transformation Theorem [16, Theorem 2, p. 45]) Let f(z) be a func-
tion of z ∈ C which is analytic when Re(z) > 0; and let f(z) be also analytic in the region
D of the complex plane defined by

D : =
{

z ∈ C : |z| > γ and | arg(z)| ≤ π

2
+ α + 3δ

}

,

where γ ≥ 0 is a finite number, α > 0, δ > 0 and α + 3δ < π
2
.

In the region D let f(z) possess the asymptotic expansion

f(z) =
n
∑

k=0

ak
zk

+Rn(z) = a0 +
a1
z

+
a2
z2

+
a3
z3

+
a4
z4

+ · · ·+ an
zn

+Rn(z),

where

|an| < Aρnn! and |Rn(z)z
n+1| < Bσnn!

with some constants A, B, ρ and σ, which are independent of n.
Let M ≤ M0 be any positive real number, where M0 is the largest positive root of the

equation

e
−

2 cos(α)
ρM0 − 2 cos

(

sin(α)

ρM0

)

· e−
cos(α)
ρM0 + 1− p2 = 0,

where

1 < p < 1 + e−π cot(α).

Then the function f(z) can be expanded into the absolutely convergent series

f(z) = b0 +
∞
∑

k=1

bk
(Mz + w + 1)(Mz + w + 2) · · · (Mz + w + k)

,

when Re(z) > 0 and w ∈ C with Re(w) ≥ 0.
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Proof. The proof of this theorem is given in Watson’s paper [16].

Theorem 10. (Structure of inverse factorial series expansions)
Let f(z) be a function of z ∈ C which is analytic when Re(z) > 0; and let f(z) be also
analytic in the region D of the complex plane defined by

D : = {z ∈ C : |z| > 0 and | arg(z)| ≤ π − ε, where ε > 0 is arbitrarily small} .

In the region D let f(z) possess the asymptotic expansion

f(z) =
n
∑

k=1

ak
zk

+Rn(z) =
a1
z

+
a2
z2

+
a3
z3

+ · · ·+ an
zn

+Rn(z),

where

|an| < Aρnn! and |Rn(z)z
n+1| < Bσnn!

with some constants A, B, ρ < 3
π
and σ, which are independent of n.

Then the function f(z) is equal to the absolutely convergent inverse factorial series

f(z) =
∞
∑

k=1

(−1)k
∑k

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
(22)

for Re(z) > 0.

Proof. Let f(z) and the region D be as described in the above Theorem 10. Because of the
conditions on the function f(z) and the region D, we can choose in Theorem 9 the variables
γ := 0, α := π

2
−4ε, δ := ε and p := 1+ε for ε > 0 arbitrarily small by [16, beginning of p. 85].

We have then that M0 =
3
πρ

− ε for some arbitrarily small number ε > 0 and because ρ < 3
π
,

we obtain that M0 > 1. According to Watson’s Theorem 9 with M := 1 < M0, w := 0 and
a0 = b0 = 0, we know that we can expand the function f(z) into an absolutely convergent
series of the form

f(z) =
∞
∑

k=1

bk
(z + 1)(z + 2) · · · (z + k)

for some constants bk ∈ C and all z ∈ C with Re(z) > 0.
On the other hand, we have by applying a finite Weniger transformation (20) to the

asymptotic expansion of f(z) that

f(z) =
n
∑

k=1

(−1)k
∑k

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)
+O

(

1

zn+1

)

as z → ∞

also holds.
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Comparing the two expressions above for f(z) by using Lemma 8 with

ck := (−1)k
k
∑

l=1

(−1)lS
(1)
k (l)al,

we conclude that there is an absolutely convergent series

f(z) =
∞
∑

k=1

(−1)k
∑k

l=1(−1)lS
(1)
k (l)al

(z + 1)(z + 2) · · · (z + k)

for all z ∈ C with Re(z) > 0.

4 The convergent inverse factorial series expansions for

ζ(s, z + 1− y) and ψ(z + 1− y)

In this section, in Theorem 13 we deduce the convergent inverse factorial series expansions
for the functions ζ(s, z + 1− y) and ψ(z + 1− y), where 0 ≤ y ≤ 1.

For this, we need the following lemma.

Lemma 11. (Euler-Maclaurin summation formula [13, Theorem B.5, pp. 500–501]) Sup-
pose that n ∈ N is a positive integer and that the function f(t) has continuous derivatives
through the n-th order on the interval [a, b] where a and b are real numbers with a < b. Then
we have

∑

a<k≤b

f(k) =

∫ b

a

f(t)dt+
n
∑

k=1

(−1)k
Bk({b})
k!

f (k−1)(b)−
n
∑

k=1

(−1)k
Bk({a})

k!
f (k−1)(a)

+
(−1)n+1

n!

∫ b

a

f (n)(t)Bn({t})dt.
(23)

Proof. The proof of this Lemma 11 is given in [13, p. 501].

From the above Lemma 11, it follows the next lemma.

Lemma 12. (Asymptotic series expansions for ζ(s, z + h) and ψ(z + h) with 0 ≤ h ≤ 1)
Let n ∈ N0 and let s ∈ C \ {1} such that Re(s) > −n.We for z ∈ C with | arg(z)| < π and
0 ≤ h ≤ 1 the asymptotic series expansions

ζ(s, z + h) =
z1−s

s− 1
+

z1−s

s− 1

n
∑

k=1

(

1− s

k

)

Bk(h)

zk
+On(z) (24)

10



with

|On(z)| =
∣

∣

∣

∣

(

1− s

n+ 2

)

n+ 2

s− 1

∫ ∞

0

Bn+1 ({x− h})− (−1)n+1Bn+1(h)

(x+ z)n+s+1
dx

∣

∣

∣

∣

≤ 2(n+ 2)

|s− 1|

∣

∣

∣

∣

(

1− s

n+ 2

)∣

∣

∣

∣

|Bn+1| secn+Re(s)+1
(

1
2
arg(z)

)

(n+ Re(s))|z|n+Re(s)
max

{

1, eIm(s) arg(z)
}

(25)

and

ψ(z + h) = log(z)−
n
∑

k=1

(−1)kBk(h)

kzk
+ Un(z) (26)

with

|Un(z)| =
∣

∣

∣

∣

∫ ∞

0

(−1)n+1Bn+1(h)− Bn+1({x− h})
(x+ z)n+2

dx

∣

∣

∣

∣

≤ 2 |Bn+1| secn+2
(

1
2
arg(z)

)

(n+ 1)|z|n+1
. (27)

Proof. Let 0 < h ≤ 1 and let z ∈ C with |arg(z)| < π. Setting a := −h, b := N and

f(x) := 1
(z+h+x)s

with dnf(x)
dxn = dn

dxn

(

1
(z+h+x)s

)

= − (n+1)!
s−1

(

1−s
n+1

)

1
(z+h+x)n+s into Lemma 11, we

obtain for s ∈ C with Re(s) > 1 that

ζ(s, z + h) =
∞
∑

k=0

1

(z + h+ k)s
= lim

N→∞

(

∑

−h<k≤N

1

(z + h+ k)s

)

=

∫ ∞

−h

1

(z + h+ x)s
dx+ lim

N→∞





n
∑

k=1

(−1)k
Bk({N})

k!

dk−1
(

1
(z+h+x)s

)

dxk−1

∣

∣

∣

∣

∣

x=N





−
n
∑

k=1

(−1)k
Bk({−h})

k!

dk−1
(

1
(z+h+x)s

)

dxk−1

∣

∣

∣

∣

∣

x=−h

+
(−1)n+1

n!

∫ ∞

−h

dn
(

1
(z+h+x)s

)

dxn

∣

∣

∣

∣

∣

x=t

Bn({t})dt

=
z1−s

s− 1
+

z1−s

s− 1

n
∑

k=1

(−1)k
(

1− s

k

)

Bk({1− h})
zk

+ (−1)n
(

1− s

n+ 1

)

n+ 1

s− 1

∫ ∞

0

Bn({x− h})
(x+ z)n+s

dx.

Now replacing n by n+ 1, we get

ζ(s, z + h) =
z1−s

s− 1
+

z1−s

s− 1

n+1
∑

k=1

(−1)k
(

1− s

k

)

Bk({1− h})
zk

+ (−1)n+1

(

1− s

n+ 2

)

n+ 2

s− 1

∫ ∞

0

Bn+1({x− h})
(x+ z)n+s+1

dx.

This is equivalent to

ζ(s, z + h) =
z1−s

s− 1
+

z1−s

s− 1

n
∑

k=1

(−1)k
(

1− s

k

)

Bk(1− h)

zk

+ (−1)n+1

(

1− s

n+ 2

)

n+ 2

s− 1

∫ ∞

0

Bn+1({x− h})−Bn+1(1− h)

(x+ z)n+s+1
dx.

11



We use the relation (13) and deduce equation (24), which extends ζ(s, z + h) analytically
to the whole punctured complex s-plane C \ {1}. Therefore, the equation (24) is also true
for all s ∈ C \ {1}. By using the identity (18), we see that the formula (24) is also true for
h = 0. The bound (25) for the error term On(z) follows from [14, p. 294] and [15, p. 6]. This
proves the first part about ζ(s, z + h) of the above Lemma 12.

Now, we prove the second part for ψ(z + h). For z ∈ C with |arg(z)| < π, n ≥ 2 and
0 ≤ h ≤ 1 we have the following series expansion [14, Ex. 4.4, p. 295]:

ln (Γ(z + h)) =

(

z + h− 1

2

)

ln(z)− z +
1

2
ln(2π) +

n
∑

k=2

(−1)kBk(h)

k(k − 1)zk−1
− 1

n

∫ ∞

0

Bn ({x− h})
(x+ z)n

dx.

Replacing n by n+ 1 again, we get

ln (Γ(z + h)) =

(

z + h− 1

2

)

ln(z)− z +
1

2
ln(2π) +

n+1
∑

k=2

(−1)kBk(h)

k(k − 1)zk−1

− 1

n+ 1

∫ ∞

0

Bn+1 ({x− h})
(x+ z)n+1

dx

=

(

z + h− 1

2

)

ln(z)− z +
1

2
ln(2π) +

n
∑

k=2

(−1)kBk(h)

k(k − 1)zk−1

+
1

n+ 1

∫ ∞

0

(−1)n+1Bn+1(h)−Bn+1 ({x− h})
(x+ z)n+1

dx.

Differentiating this identity with respect to the variable z, we get equation (26). The estimate
(27) for the error term Un(z) follows from [14, p. 294 and Ex. 4.2, p. 295].

We get the following theorem.

Theorem 13. (Inverse factorial series expansions for ζ(s, z + 1− y) and ψ(z + 1− y)) Let
0 ≤ y ≤ 1 and let s ∈ C \ {1}. For z ∈ H

+ and all a ∈ N0 we have the absolutely convergent
inverse factorial series expansions

ζ(s, z + 1− y) =
z1−s

s− 1
+

z1−s

s− 1

a
∑

k=1

(−1)k
(

1− s

k

)

Bk(y)

zk

+
z1−s−a

s− 1

∞
∑

k=1

(−1)k+a

∑k
l=1

(

1−s
l+a

)

S
(1)
k (l)Bl+a(y)

(z + 1)(z + 2) · · · (z + k)

(28)

and

ψ(z + 1− y) = log(z)−
a
∑

k=1

Bk(y)

kzk
+

1

za

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l

l+a
S
(1)
k (l)Bl+a(y)

(z + 1)(z + 2) · · · (z + k)
. (29)

12



Proof. Let s ∈ C \ {1, 0,−1,−2,−3, . . .} be a fixed complex number and let z ∈ C \ (−∞, 0]
with | arg(z)| ≤ π − ε < π for some arbitrarily small, but fixed ε > 0. Setting h := 1− y for
0 ≤ y ≤ 1 into the identities (24) and (26), by using the relation (13) and by exchanging n
with n+ a we deduce that

ζ(s, z + 1− y) =
z1−s

s− 1
+

z1−s

s− 1

n+a
∑

k=1

(−1)k
(

1− s

k

)

Bk(y)

zk
+On+a(z) (30)

and that

ψ(z + 1− y) = log(z)−
n+a
∑

k=1

Bk(y)

kzk
+ Un+a(z), (31)

where On+a(z) and Un+a(z) are as in the previous Lemma 12 with h := 1− y.
We can write the equations (30) and (31) in the form

ζ(s, z + 1− y) =
z1−s

s− 1
+

z1−s

s− 1

a
∑

k=1

(−1)k
(

1− s

k

)

Bk(y)

zk

+
z1−s−a

s− 1

n
∑

k=1

(−1)k+a

(

1− s

k + a

)

Bk+a(y)

zk
+On+a(z)

(32)

and

ψ(z + 1− y) = log(z)−
a
∑

k=1

Bk(y)

kzk
− 1

za

n
∑

k=1

Bk+a(y)

(k + a)zk
+ Un+a(z). (33)

In the following calculations, we use the fact that the function g(k) := 2k grows faster than
any polynomial p(k) as k → ∞.

From equation (32) we get (28) for s ∈ C \ {1, 0,−1,−2,−3, . . .} by applying Theorem
10 with Rn(z) := (s− 1)zs+a−1On+a(z) to the analytic function f1(z) defined by

f1(z) : = (s− 1)zs+a−1

[

ζ(s, z + 1− y)− z1−s

s− 1
− z1−s

s− 1

a
∑

k=1

(−1)k
(

1− s

k

)

Bk(y)

zk

]

=
n
∑

k=1

(−1)k+a

(

1− s

k + a

)

Bk+a(y)

zk
+ (s− 1)zs+a−1On+a(z)

on z ∈ C \ (−∞, 0] with | arg(z)| ≤ π − ε < π. Because of the relation |xs| = xRe(s) for
x ∈ R

+
0 and the use of the identity (8), we have

∣

∣

∣

∣

(

1− s

k + a

)

Bk+a(y)

∣

∣

∣

∣

≤ 2ζ(k + a)(k + a)!(k + a)Re(s)−2

(2π)k+a |Γ(s− 1)| +O

(

2ζ(k + a)(k + a)!(k + a)Re(s)−3

(2π)k+a

)

<
C1(a)k!

πk

13



and with A1 := max
{

1, eIm(s) arg(z)
}

, A2 := max
{

1, e− Im(s) arg(z)
}

, as well as Re(s) > −n, we
get that

∣

∣(s− 1)zs+a−1On+a(z)
∣

∣

≤ 2(n+ a+ 2)A1

∣

∣

∣

∣

(

1− s

n+ a+ 2

)∣

∣

∣

∣

|Bn+a+1| e− Im(s) arg(z) secn+a+Re(s)+1
(

1
2
arg(z)

)

|n+ a+ Re(s)| · |z|n+1

≤ 4(n+ a+ 2)A2

|n+ a+ Re(s)| ·
ζ(n+ a+ 1)(n+ a+ 1)!(n+ a+ 2)Re(s)−2 secn+a+Re(s)+1

(

1
2
arg(z)

)

(2π)n+a+1 |Γ(s− 1)| |z|n+1

+O

(

4(n+ a+ 2)A2

|n+ a+ Re(s)| ·
ζ(n+ a+ 1)(n+ a+ 1)!(n+ a+ 2)Re(s)−3 secn+a+Re(s)+1

(

1
2
arg(z)

)

(2π)n+a+1|z|n+1

)

<
C2(a) sec

n
(

1
2
arg(z)

)

n!

πn|z|n+1

for some positive constants C1(a), C2(a) depending on a and independent of n. In the last
computation above, we have used the relation |zs| = |z|Re(s)e− Im(s) arg(z).

The above bound for |(s− 1)zs+a−1On+a(z)| also holds if Re(s) ≤ −n by taking C2(a)
large enough, because Re(s) ≤ −n is only possible for finitely many n’s and in each case we

have |(s− 1)zs+a−1On+a(z)| ≤ C(n)
|z|n+1 for all n ∈ N and some positive constants C(n).

To get formula (28) also for all s ∈ {0,−1,−2,−3, . . .}, we apply the Weniger transforma-
tion formula (21) directly to the function f1(z) with n := 1−s−a and On+a(z) = O1−s(z) = 0.

Similarly, from equation (33) we obtain the formula (29) by applying Theorem 10 with
Rn(z) := zaUn+a(z) to the analytic function f2(z) defined by

f2(z) : = za

[

log(z)− ψ(z + 1− y)−
a
∑

k=1

Bk(y)

kzk

]

=
n
∑

k=1

Bk+a(y)

(k + a)zk
+ zaUn+a(z)

on z ∈ C with | arg(z)| ≤ π − ε < π, because we have

∣

∣

∣

∣

Bk+a(y)

k + a

∣

∣

∣

∣

≤ 2ζ(k + a)(k + a)!

(2π)k+a(k + a)
<
C3(a)k!

πk

and

|zaUn+a(z)| ≤
2 |Bn+a+1| secn+a+2

(

1
2
arg(z)

)

(n+ a+ 1)|z|n+1
≤ 4ζ(n+ a+ 1) secn+a+2

(

1
2
arg(z)

)

(n+ a+ 1)!

(2π)n+a+1(n+ a+ 1)|z|n+1

<
C4(a) sec

n
(

1
2
arg(z)

)

n!

πn|z|n+1

for some positive constants C3(a), C4(a) depending on a and independent of n.

14



5 The generalized Faulhaber formulas

In this section we prove our generalized versions of Faulhaber’s formula, which all converge
very rapidly. For their proofs, we use the above Theorem 13.

Theorem 14. (extended generalized Faulhaber formulas) For every complex number m ∈
C \ {−1} and every positive real number x ∈ R

+, we have

⌊x⌋
∑

k=1

km =
1

m+ 1
xm+1 + ζ (−m) +

xm+1

m+ 1

∞
∑

k=1

(−1)k
∑k

l=1

(

m+1
l

)

S
(1)
k (l)Bl({x})

(x+ 1)(x+ 2) · · · (x+ k)
. (34)

More generally, for every x ∈ R
+ and every a ∈ N0, we have

⌊x⌋
∑

k=1

km =
1

m+ 1
xm+1 + ζ (−m) +

1

m+ 1

a
∑

k=1

(−1)k
(

m+ 1

k

)

Bk({x})xm−k+1

+
xm−a+1

m+ 1

∞
∑

k=1

(−1)k+a

∑k
l=1

(

m+1
l+a

)

S
(1)
k (l)Bl+a ({x})

(x+ 1)(x+ 2) · · · (x+ k)

(35)

and for m = m1 + im2 ∈ C \ {−1} with m1 = Re(m) ≥ −1 the special case

⌊x⌋
∑

k=1

km =
1

m+ 1
xm+1 + ζ (−m) +

1

m+ 1

⌊m1+1⌋
∑

k=1

(−1)k
(

m+ 1

k

)

Bk({x})xm−k+1

+ (−1)⌊m1+1⌋x
m−⌊m1+1⌋+1

m+ 1

∞
∑

k=1

(−1)k
∑k

l=1

(

m+1
l+⌊m1+1⌋

)

S
(1)
k (l)Bl+⌊m1+1⌋({x})

(x+ 1)(x+ 2) · · · (x+ k)
.

(36)

Moreover, if m = −1, for every positive real number x ∈ R
+ and every a ∈ N0 we have

⌊x⌋
∑

k=1

1

k
= log(x) + γ −

a
∑

k=1

Bk({x})
kxk

+
1

xa

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l

l+a
S
(1)
k (l)Bl+a({x})

(x+ 1)(x+ 2) · · · (x+ k)
. (37)

In particular, for x ∈ R
+ we have

⌊x⌋
∑

k=1

1

k
= log(x) + γ +

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l

l
S
(1)
k (l)Bl({x})

(x+ 1)(x+ 2) · · · (x+ k)
(38)

and that

⌊x⌋
∑

k=1

1

k
= log(x) + γ − B1({x})

x
+

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l

l+1
S
(1)
k (l)Bl+1({x})

x(x+ 1)(x+ 2) · · · (x+ k)
. (39)
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Proof. From the formula (28) with the parameters s := −m, z := x and y := {x}, we get

⌊x⌋
∑

k=1

km − ζ(−m) = −ζ(−m,x+ 1− {x})

=
1

m+ 1
xm+1 +

1

m+ 1

a
∑

k=1

(−1)k
(

m+ 1

k

)

Bk({x})xm−k+1

+
xm−a+1

m+ 1

∞
∑

k=1

(−1)k+a

∑k
l=1

(

m+1
l+a

)

S
(1)
k (l)Bl+a ({x})

(x+ 1)(x+ 2) · · · (x+ k)

by using the formula (19) with n := ⌊x⌋ = x − {x} in the first step. This gives the above
identity (35) with its special cases (34) and (36).

Similarly, we now use the formula (29) again with the variables z := x and y := {x}, and
then we get

⌊x⌋
∑

k=1

1

k
− γ = ψ(x+ 1− {x})

= log(x)−
a
∑

k=1

Bk({x})
kxk

+
1

xa

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l

l+a
S
(1)
k (l)Bl+a({x})

(x+ 1)(x+ 2) · · · (x+ k)

by employing the formula (16) with n := ⌊x⌋ = x − {x} in the first line of the above
calculation. This gives the above identity (37) with its special cases (38) and (39).

By setting x := n ∈ N into Theorem 14, we obtain the following corollary.

Corollary 15. (generalized Faulhaber formulas) For every complex number m ∈ C \ {−1}
and every natural number n ∈ N, we have

n
∑

k=1

km =
1

m+ 1
nm+1 + ζ (−m) +

nm+1

m+ 1

∞
∑

k=1

(−1)k
∑k

l=1

(

m+1
l

)

BlS
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)
(40)

and more generally when a ∈ N0 that

n
∑

k=1

km =
1

m+ 1
nm+1 + ζ (−m) +

1

m+ 1

a
∑

k=1

(−1)k
(

m+ 1

k

)

Bkn
m−k+1

+
nm−a+1

m+ 1

∞
∑

k=1

(−1)k+a
∑k

l=1

(

m+1
l+a

)

Bl+aS
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)
.

(41)
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We have again when m = m1 + im2 ∈ C \ {−1} with m1 = Re(m) ≥ −1 the special case

n
∑

k=1

km =
1

m+ 1
nm+1 + ζ (−m) +

1

m+ 1

⌊m1+1⌋
∑

k=1

(−1)k
(

m+ 1

k

)

Bkn
m−k+1

+ (−1)⌊m1+1⌋n
m−⌊m1+1⌋+1

m+ 1

∞
∑

k=1

(−1)k
∑k

l=1

(

m+1
l+⌊m1+1⌋

)

Bl+⌊m1+1⌋S
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)
.

(42)

For m = −1, for every natural number n ∈ N and every a ∈ N0 we have

n
∑

k=1

1

k
= log(n) + γ −

a
∑

k=1

Bk

knk
+

1

na

∞
∑

k=1

(−1)k+1
∑k

l=1
(−1)l

l+a
Bl+aS

(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)
. (43)

In particular, for every n ∈ N we have

n
∑

k=1

1

k
= log(n) + γ +

∞
∑

k=1

(−1)k+1
∑k

l=1
(−1)l

l
BlS

(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)

= log(n) + γ +
1

2(n+ 1)
+

5

12(n+ 1)(n+ 2)
+

3

4(n+ 1)(n+ 2)(n+ 3)

+
251

120(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+ · · ·

(44)

and

n
∑

k=1

1

k
= log(n) + γ +

1

2n
+

∞
∑

k=1

(−1)k
∑k

l=1
Bl+1

l+1
S
(1)
k (l)

n(n+ 1)(n+ 2) · · · (n+ k)

= log(n) + γ +
1

2n
− 1

12n(n+ 1)
− 1

12n(n+ 1)(n+ 2)
− 19

120n(n+ 1)(n+ 2)(n+ 3)

− 9

20n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
− · · · .

(45)

For every positive real number x ∈ R
+ and for every natural number n ∈ N, we list the

following 8 most used generalized Faulhaber summation formulas:

1.) Generalized Faulhaber formula for the partial sums of ζ(2):

17



For every natural number n ∈ N, we have

n
∑

k=1

1

k2
= ζ(2)− 1

n
+

∞
∑

k=1

(−1)k+1
∑k

l=1(−1)lBlS
(1)
k (l)

n(n+ 1)(n+ 2) · · · (n+ k)

= ζ(2)− 1

n
+

∞
∑

k=1

1

k + 1
· (k − 1)!

n(n+ 1)(n+ 2) · · · (n+ k)

= ζ(2)− 1

n
+

1

2n(n+ 1)
+

1

3n(n+ 1)(n+ 2)
+

1

2n(n+ 1)(n+ 2)(n+ 3)

+
6

5n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+ · · · .

(46)

2.) Extended generalized Faulhaber formula for the partial sums of ζ(3):

For every real number x ∈ R
+, we obtain

⌊x⌋
∑

k=1

1

k3
= ζ(3)− 1

2x2
+

1

2x

∞
∑

k=1

(−1)k+1

∑k
l=1(−1)l(l + 1)S

(1)
k (l)Bl({x})

x(x+ 1)(x+ 2) · · · (x+ k)
. (47)

3.) Extended generalized Faulhaber formula for the sum of the square roots:

For every real number x ∈ R
+, we get

⌊x⌋
∑

k=1

√
k =

2

3
x3/2 − 1

4π
ζ

(

3

2

)

+ x
√
x

∞
∑

k=1

(−1)k
∑k

l=1
(−1)l(2l−5)!!

2l−1l!
S
(1)
k (l)Bl({x})

(x+ 1)(x+ 2) · · · (x+ k)
. (48)

4.) Generalized Faulhaber formula for the partial sums of ζ(−3/2):

For every natural number n ∈ N, we have

n
∑

k=1

k
√
k

=
2

5
n5/2 +

1

2
n3/2 +

1

8

√
n− 3

16π2
ζ

(

5

2

)

+ 3
√
n

∞
∑

k=1

(−1)k+1

∑k
l=1

(2l−3)!!
2l+1(l+2)!

Bl+2S
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)

=
2

5
n5/2 +

1

2
n3/2 +

1

8

√
n− 3

16π2
ζ

(

5

2

)

+

√
n

1920(n+ 1)(n+ 2)

+

√
n

640(n+ 1)(n+ 2)(n+ 3)
+

611
√
n

107520(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
275

√
n

10752(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
159157

√
n

1146880(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)
+ · · · .

(49)
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5.) Generalized Faulhaber formula for the partial sums of ζ(−5/2):

For every natural number n ∈ N, we obtain that

n
∑

k=1

k2
√
k

=
2

7
n7/2 +

1

2
n5/2 +

5

24
n3/2 +

15

64π3
ζ

(

7

2

)

+ 15
√
n

∞
∑

k=1

(−1)k+1

∑k
l=1

(2l−3)!!
2l+2(l+3)!

Bl+3S
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)

=
2

7
n7/2 +

1

2
n5/2 +

5

24
n3/2 +

15

64π3
ζ

(

7

2

)

−
√
n

384(n+ 1)
−

√
n

384(n+ 1)(n+ 2)

− 37
√
n

7168(n+ 1)(n+ 2)(n+ 3)
− 55

√
n

3584(n+ 1)(n+ 2)(n+ 3)(n+ 4)

− 1995
√
n

32768(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
− · · · .

(50)

6.) Generalized Faulhaber formula for the sum of the inverses of the square roots:

For every natural number n ∈ N, we get that

n
∑

k=1

1√
k
= 2

√
n+ ζ

(

1

2

)

+
1

2
√
n
+

1√
n

∞
∑

k=1

(−1)k
∑k

l=1
(2l−1)!!
2l(l+1)!

Bl+1S
(1)
k (l)

(n+ 1)(n+ 2) · · · (n+ k)

= 2
√
n+ ζ

(

1

2

)

+
1

2
√
n
− 1

24
√
n(n+ 1)

− 1

24
√
n(n+ 1)(n+ 2)

− 31

384
√
n(n+ 1)(n+ 2)(n+ 3)

− 15

64
√
n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

− · · · .
(51)

7.) Extended generalized Faulhaber formula for the partial sums of ζ(3/2):

For every real number x ∈ R
+, we have

⌊x⌋
∑

k=1

1

k
√
k
= ζ

(

3

2

)

− 2√
x
− B1({x})

x
√
x

+
2√
x

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l(2l+1)!!
2l+1(l+1)!

S
(1)
k (l)Bl+1({x})

x(x+ 1)(x+ 2) · · · (x+ k)
.

(52)

8.) Extended generalized Faulhaber formula for the partial sums of ζ(5/2):

For every real number x ∈ R
+, we obtain

⌊x⌋
∑

k=1

1

k2
√
k
= ζ

(

5

2

)

− 2

3x3/2
+

4

3
√
x

∞
∑

k=1

(−1)k+1

∑k
l=1

(−1)l(2l+1)!!
2l+1l!

S
(1)
k (l)Bl({x})

x(x+ 1)(x+ 2) · · · (x+ k)
. (53)
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In equations 3.), 4.) and 5.), we have used that ζ
(

−1
2

)

= − 1
4π
ζ
(

3
2

)

, ζ
(

−3
2

)

= − 3
16π2 ζ

(

5
2

)

and that ζ
(

−5
2

)

= 15
64π3 ζ

(

7
2

)

, which follow from the functional equation of the Riemann zeta
function [14, (11.05), p. 63] and are also given in [23, (2), (5) and (9)].

6 Conclusion

We have proved a rapidly convergent generalization of Faulhaber’s formula to sums of arbi-
trary complex powers m ∈ C. In our eyes, these formulas are useful because of their rapid
convergence. We believe that they may also have applications in physics [18], such as the
extended version of Faulhaber’s formula [19, 20]. With the universal technique, explained in
this paper, one can obtain other summation formulas of this type [21, 22]. A generalization
of Faulhaber’s formula for alternating sums can be found in [22].
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