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Abstract

Let (Fp)n>0 and (Lp)n>0 denote the sequences of Fibonacci numbers and Lucas
numbers, respectively. In 1950 Dov Jarden showed that if m = 5 and n is odd and
positive, then

where
A, =5F2-5F,+1, B,=5F?+5F,+1.

He went on to show that if n and k are both odd and positive and 7 is the value of the
Legendre symbol (k|5), then A, | Agn, By | Brn when n =1 and A,, | Bgpn, Bn | Akn
when 1 = —1. In this paper we show how to generalize these results for values of m
which are odd and square-free to the Lucas sequence (V},),>0.
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1 Introduction

Let P, @ be integers and «, 3 denote the zeros of f(r) = 2> — Pz + Q. We will use D
(= P? — 4Q) to represent the discriminant (o — 3)? of f(z). Let

U, = (a" — ") /(a—B) and V, =a"+ B (1)

For n > 0, it is easy to see that both U, and V,, are integers. The sequences (U,,) and (V},)
are called the Lucas sequences. For example, if we put P =1, Q = —1, then U,, = F}, and
Vn = Ly, where (F},) is the sequence of Fibonacci numbers and (L,,) is the sequence of Lucas
numbers. In the sequel we will use n to denote a positive integer.

In a short paper originally published in Hebrew in 1950, Dov Jarden (see [8, §8] for an
English version) verified by using (1) the identity

Ls,/L, = A,B,, (2)
where n is odd and
A, =5F*—-5F,+1, B,=5F+5F,+1.
This rather pretty identity does not seem to be very well known. Since
L2 —5F? = 4(-1)",

we can write
A, =L2—-5F,+5 B,=L>+5F,+5.

Let k£ be any odd positive integer. Most of Jarden’s paper is devoted to proving the
following result.

Theorem 1. Let n, k denote odd positive integers. We have
A, | Ay and B, | By, when k=1,4 (mod 5).

Also,
A, | Ben and B, | Ag,  when k= 2,3 (mod 5).

This result was called a crossover theorem by Brillhart, Montgomery, and Silverman [2]
and was enlisted by them to assist in compiling a table of integer factorizations of the Lucas
numbers.

The purpose of this paper is to generalize Jarden’s crossover theorem. In order to do
this we will require some results from the theory of what today are called Aurifeuillians. We
begin by defining the cyclotomic polynomial ®,,(x) € Z[x] to be



where (,, is a primitive m™ root of unity and the product is taken over all values s between
0 and m and relatively prime to m. It is well known that we can write ®,,(x) as

O (z) = [ [(a? = 1)/, (3)

dm

where p is the Mobius function. Lucas [5, 6], observed that certain formulas for ®,,(z), which
he attributed to Aurifeuille and Le Lasseur, could be used to derive identities involving the
Lucas sequences and for factoring some of these expressions. For example, in [6, p. 172] he
gave the identity

Vion/Van = (Vi + 5Q" Vo, + 7Q*")* — 10Q™ (Van, + 2Q" V).

He derived this from the Aurifeuillian formula

7% +1 4 3 2 2 3 2 2
o = (@' 52t Tt 4 5w 1) — 10’ + 20 + 20 4 1),
T

CI)QO (ZL’) =

by putting x = o™ /™. Notice that this expression for Vig,/Va, will factor as a difference of
squares when 10Q" is a perfect integral square. This means that Q = 10L?, where L is an
integer.
Other results, apparently unknown to Lucas, can be obtained by substituting other ex-
pressions involving /5™ for x in Aurifeuillian formulas. As an example, consider
x® —1

s (x) = o (% + 3z +1)* = 5z(z + 1),

a formula known to Lucas [6, p. 168]. If we put = (—a™/B")"/?, we get
Van/Vi = (V2 = 5Q")? + 5Q" DU = (DU — Q")* + 5Q" DU

If —5Q"D is a perfect integral square we can find a factorization of Vs,/V,,. When we
consider the special case of P =1, ) = —1, we have —5Q"D = 25 when n is odd and we
get (2).

For recent information concerning Aurifeuillians and additional references the reader is
advised to consult Granville and Pleasants [7] and Wagstaff [12, §4.1]. For some historical
commentary, see Williams [13, pp. 126-127, pp. 318-319].

2 Preliminary results

Let m (> 3) be a fixed square-free positive odd integer. Put o = (—1)"2" and m* = om =

1 (mod 4). For a real number r, we will use y/r to denote the positive square root of r when
r >0 or iy/|r| when r < 0. Next, set

Sm={s:1<s<m;ged(m,s) = 1}.
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By the definition of ¢(m), we have

Now let € € {1,—1} and put 5% = {s:1<s < m;(slm) = e} for a fixed e. As there are

just as many values of s € S,,, such that (s|m) = 1 and that (s|m) = —1, we see that

#Sy) = #5559 = o(m) /2.

Also, note that for any s € S,,, we also have m — s € S,,. Thus, S,, consists of ¢(m)/2 pairs

(s,m — s). It follows that since s + m — s = m, we get

Z s =map(m)/2.

SGSm
If we put
2 = Z s,
sesy)
we have
59 + 59 = ma(m),2
Since m > 3, there must exist some integer r such that the Jacobi symbol (r|m) = —1 and

ged(r 4+ 1,m) = 1. Thus, we get

ryle = Z rs = Z s =39 (mod m).

sessy sess,
Since m | S+ 259, we get
(r+ 129 =0 (mod m)

which means that
2O =) =0 (mod m).

Also, since (rs|m) = —(s|m), we find that
> (slm) ==Y (slm);
SESm sESm
hence,
> (slm) =0.
SESm

Let I be a given integral domain and let p(z) € I[z] be the polynomial
p(z) = apx” + a1z + -+ + ap1T + an,
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where a; € I (j = 0,1,...,n). If p(z) = p(—x), then a; = 0 whenever 2 t j; also, if
p(x) = —p(—=), then a; = 0 whenever 2 | j. We say that p(x) is palindromic of order n over
Iif

aj = Qp—j (j:O,1,2,...,n),

and that p(x) is antipalindromic of order n if
aj=—an—; (j=0,1,2,...,n).

When [ = 7Z, we will omit including I and simply say that p(z) is palindromic or antipalin-
dromic. Notice that under this definition the polynomial x = (0z* + x + 0) is palindromic of
order 2 over I. Also, if p(x) is antipalindromic of degree n, where 2 | n, then a,/, = 0.

The next results follow easily from the above observations and definitions. We first let
p(z) denote a polynomial over I which is either palindromic or antipalindromic of order n
and define ¢(z) = p(—x).

i) If 2 | n, then ¢(z) is either palindromic or antipalindromic of order n over I, according
to whether p(x) is palindromic or antipalindromic.

ii) If 2 4 n, then ¢(z) is antipalindromic or palindromic of order n over I, according to
whether p(z) is palindromic or antipalindromic.

iii) If 2 | n and p(z) = q(z), then p(x) = r(2?), where r(x) is a palindromic or antipalin-
dromic polynomial over I of order n/2, according to whether p(z) is palindromic or
antipalindromic.

iv) If 2 | n and p(z) = —q(z), then p(x)/x = r(z?), where r(z) is a palindromic or
antipalindromic polynomial over I of order n/2 — 1, according to whether p(z) is
palindromic or antipalindromic.

Proposition 2. p(z) is palindromic of order n over I if and only if

p(x) = x"p(1/x)

and p(x) is antipalindromic of order n over I if and only if

p(x) = —a"p(1/x).
From this result, we can easily derive the following:

v) If ¢1, o € I and py(x), pa(x) are both either palindromic or antipalindromic polyno-
mials of order n over I, then

c1pi () + copa(z)

is a palindromic or antipalindromic polynomial of order n over I according to whether
p1(z) and py(z) are palindromic or antipalindromic.
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vi) If pi(x) and py(z) are both palindromic or antipalindromic polynomials of order n4
and ne, respectively, over I, then

p1(z)p2()

is a palindromic polynomial of order n; + ng over I.

vii) If p; is a palindromic polynomial of degree n; and ps is an antipalindromic polynomial
of degree ns, then

pi(z)pa(z)

is an antipalindromic polynomial of order n; + ny over I.

3 Some Aurifeuillian identities

We now let (;, denote any fixed primitive 2™ root of unity. Define for m above

AR@) = ] @ =G (6)

5657(?

Set e = ¢(m)/2 and observe that if o = 1, then 2 | e. By results of Gauss and Dirichlet

(see [3]), we know that Al (x) is a polynomial of degree e over O, the maximal order of the
quadratic field Q(v/m*). Indeed

AQ (1) = 5 V() — Vi Zin(0),

where Y, (x), Zn(z) € Z[z] and Y,,(z) = Z,,(z) (mod 2). Also, by using (4) we can show
that we have
AR (@) = 2°Af) (1))

when m =1 (mod 4) and
AR)(@) = (—2)° AL 9 (1))

when m = —1 (mod 4). Hence,
Y (2) = 2V (1/2),  Zin(z) = 2°Zn(1/2)
when m = 1 (mod 4) and
Vin(#) = (=2) Yo (1/2),  —Zn(z) = (—2)"Zn(1/1)

when m = —1 (mod 4). By using Proposition 2 we can summarize the palindromic-
antipalindromic properties of Y;,,(z), Z,,(z) in Table 1.



m (mod 4) | e (mod 2) Y, () Zm ()
1 0 palindromic of order e palindromic of order e
—1 0 palindromic of order e antipalindromic of order e
—1 1 antipalindromic of order e palindromic of order e

Table 1: Palindromic-antipalindromic properties of Y, (), Z,(x).

Put
L) (x) = AQ ()AL (). @
= Gp(z) — exv/m*H,,(z),
where
Cn) = (Y)Y —2) = 0 2y () Zi(~1),
Hip(2) = V() B (@) — Vi) Zin( 1)

Notice that because Y,,(z) = Z,,(z) (mod 2), we have G,,(z), H,,(x) both polynomials over
Z. By appealing to Table 1 and Properties v), vi), vii) of Section 2, we can produce Table 2.

m (mod 4) | e (mod 2) Gm(x) H,,(x)
1 0 palindromic of order 2e palindromic of order 2e
—1 0 palindromic of order 2e antipalindromic of order 2e
-1 1 antipalindromic of order 2e palindromic of order 2e

Table 2: Palindromic-antipalindromic properties of G,,(z), H,(z).

We note that G, (—x) = Gp,(x) and H,,(—
of Section 2, we have G,,(z) = P,
properties of P, (x), Qn(z) are

r) = —H,,(x); thus, by Properties iii) and iv)
(2?), H";( 2) — Qm(2?), where the palindromic/antipalindromic
presented in Table 3.

o | e (mod 2) P,(x) Qm(z)

1 0 palindromic of order e palindromic of order e — 1
—1 0 palindromic of order e antipalindromic of order e — 1
-1 1 antipalindromic of order e palindromic of order e — 1

Table 3: Palindromic-antipalindromic properties of P,,(x), Q.. (z).



Notice that if ¢ = —1 (m = —1 (mod 4)), then by Properties i) and ii) both P,,(—xz) and
Qm(—x) are palindromic of order e, e — 1, respectively. We now have

Ly (2) = Pu(2®) — exv/m*Quu(2?), (8)

an identity proved in greater generality by Schinzel [10]. If we put C,,(z) = Py(x), Dy (z) =
Qm(z) when ¢ = 1 and Cy,(z) = Py(—x), Dy(x) = Qu(—x) when 0 = —1. We see that
both C,,(z) and D,,(z) are palindromic of order e and e — 1, respectively. We write

Cn(z) = chx“j (¢; €Z,7=0,1,...¢)
j=0

and

e—1
Dp(z) = da® ' (d; €Z,j=0,1,....e—1).
=0

For small values of m, a table of coefficients ¢; and d; can be found in Riesel [9, Table 34].
Also, Brent [1], has given an efficient algorithm for computing these coefficients.
Note also that
AR (@) AL (@) = Pn().

Since
A (=) ALY (=) = @y (—2),
we get
L) (2) LG9 (@) = @ (2)@pu(—1) = P (a?). (9)
Suppose 0 = —1. In this case we must have m* = —m. If we replace = by iz, where
i? = —1, in (8), we get
LY (ix) = P (—2%) — eizv/m*Qp(—x?)
= P, (—2%) — exv/mQy(—2?)
= Cp(2?) — exy/mDy, (4?) (10)
and

L (ix) LS9 (ix) = @, (—2%) = oy (2?). (11)

Thus, if 0 = 1, we have m* = m and



4  Aurifeuillian factorizations

For a fixed m, put
F(e) _ ﬂneLgel)((_an/ﬂn>l/2)
Notice by (9) and (3)

F7(L€)FT(L_E) _ ﬁZne@m<_an/ﬁn>

Hv“m/d.

dlm

This is the Aurifeuillian factorization of the integer J,,, V:d(m/ 9,

Let R(z), S(z) € Z|x], where R(x), S(x) are palindromic of order d, d — 1 respectively.
If 2| d, we can write

d d/2-1
R(x) = erxj = Z ri(a? 4+ 2% + gzl (12)
=0 =0
and
d—1 d/2—1
S(x) = sipd = Y si@! + 271, (13)
j=0 3=0

where r; € Z(j = 0,1,...,d/2 —1) and s; € Z(j = 0,1,...,d/2 —1). When 2 { d, we can
write

(d—1)/2
R(z) = ri(z? + z%), (14)
=0
(d—1)/2
S(z) = s5(27 + 2) 4 s(q_pypal T2 (15)
=0

(16)

where r; € Z (j = 0,1,...,(d —1)/2) and s; € Z (j = 0,1,...,(d — 1)/2). We can now
establish the following simple theorem.

Theorem 3. Suppose 2 | d, o =1 and
K©(x) = R(z*) — ex/mS(z?),

then

BUE (=) B)) = Lan + e/my/=Q (o = 8)Jan,
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where

d/2—1
Lin= ) r(=17Q"Via-gpn + (~1)"?rappQ""?,

J=0
d/2—1

Jin =Y 5i(=1/Q"Ua 3 1)n-
=0
Proof. This follows easily from (12) and (13) by putting z = (—a™/3")"/? and noting that
QMBI y dIngin _ qin gin(ld-20n | g2y _ iy,
and
QIm BN qd=1min gin _ qin gin(gEd-2-0n _ o (@=2-0m) — _Qin(o — B)Ua_zjm.

Hence,

[d,n _ 5an(_an/6n)’ Jd,n _ ﬁ(d—l)ns(_an/ﬁn)‘

We also have.
Theorem 4. Suppose 2 | d, o = —1 and
KO (iz) = R(z?) — ex/mS(z?),
then
BdnK(e)((_an//@n)l/Q) _ Id,n . Em /Qn‘]d,nv
where
d/2—1
Iy, = Z Q™ Vig—2j)n + Td/and/27
=0
d/2—1
Jd,n = Z San]Vv(dejfl)n-
=0
Proof. This follows on putting = (a”/4")"/? and making use of (12) and (13). O

Theorem 5. Suppose 21 d and
K9 (iz) = R(z*) — exv/mS(2?),

then
BUK (= [B™)?) = Iy — e/m/ Q" T,
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where
(d=1)/2

]d,n: Z Tanj‘/(d—2j)n7
=0
(d—1)/2

Jan = Z SanjV(d—2j—1)n + S(d—1)/2Qn(d71)/2'
=0

Proof. Putting z = (a"/B™)Y/? we get
Lon = B"R(@"/BY),  Jan = B4"S(a"/5")
from (14) and (15). O
It follows from Theorem 3 that if o = 1, then

E = Iep + ev/my/=Q (o = B)Je;
if o = —1, then by Theorems 4 (2 | €¢) and 5 (21 ¢)
Fl9 = I+ eV/my/Q" e
In the former case, we see that F\ € Z if and only if Vmy/—Q"(a — B) € Z; in the latter

case we have F\? € Z if and only if Vmy/ QM € Z.
Remark 6. If 2 | e, by Theorem 3 we have for = (—a"/3")/?

F9 =1, + eVm*/=Q" (o = B) ],

where in this case
e/2—1

L= (=1 QViegjyn + (=1)7ccpQ""?,
=0
e/2—1

In = Z di(—1) Q™ U(e—2j—1yn.

=0
If 2 { e, by Theorem 5, we get for x = (a™/3")"/2,

Fée) =1I,+ E\/ﬁ\/ Q" Jn,
where

(e—1)/2 .
Li=Y " ¢;Q"Vieajm,
=0
(e—3)/2
Jo= Y djQ"Viegj_iyn + die—1)2Q" V.

=0
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We conclude this section with two simple examples.
Example 1: m = 5.

Suppose m = 5; in this case we have e = ¢(5)/2 = 2 and from [9] we find that ¢y = 1 and
¢ =3 and dy = 1. Thus, by (7) and Theorem 3, we have

FT(LE) — len + 6\/5 V _Qn(a - ﬁ)Je,na

where

[e,n = CO‘/Zn - ClQn = ‘/271 - 3Qn = Vn2 - 5Qn7
Jen = doU,, = U,.

Thus,
VEwn/Vn = (Vn2 —5Q" + \/5\/ —Qn(a - 5)Un)(VnZ —5Q" — \/S\/ _Qn<04 - 5)Un)

when 7 is odd we need (o« — 8) € Z in order that F\” € Z. This will be the case when
@ =—1and P =1, and we get

Vin/Vio = Lsn /Ly = (L2 4+ 54 5F,) (L2 +5— 5F,),
which is Jarden’s identity.
Example 2: m = 7.

Suppose m = 7. We get e = ¢(7)/2 =3 and ¢o = 1, ¢; = 3, dy = 1, d; = 1. By Theorem 5,

we get
F7(L€) = leq + E\/?\/ Q"Jen,

where

[e,n = COVE’m + ClQnVn = ‘/?m + 3ann = Vng7

Je,n = dO‘/Zn + den = ‘/Qn + Qn = Vn2 - Qn'
Thus,

F\9 = V2 +e/7Q"(V; — Q")

and

Vin/ Vi = FOF,
We see that £\ € Z when n is odd and Q) = 7L?. In this case
FO = V34 er s (V2 - Q"),

and
n+1

Via/ Vi = (V2 + 75 LM(VE — QM) (VP — 75 L*(V2 - Q")).

n
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5 The main result

Let k be an odd integer such that ged(k,m) = 1 and we let n denote the Jacobi symbol

(k|m). Consider
AR = T " =G
5657(?

We then have
Alm(@hy = T @ = ¢h.

8657(7?

This is because

(¢ s € Sy = {5 €89},

which follows from

Slem — £5': ('|m) = en, s' € Sy}
={s:s=ks (modm),se Sﬁs)}
= kS (mod m).
Put
A%ﬂ)(l,k)
Tn(ze)k(x) =T O
’ AR (@)
H l’k _ Csk
5657(5) o qu
_ H ¢k 1>8L
e (/) =

Let Ci(x) denote the polynomial & 2~ ¢ 7[z], which is of degree k — 1 and symmetric

over Z. From

we find that
k-1

19 x) = [T ¢V T[x/¢s - ¢

sesly) =1

k—1
= 11 I - ..

sESﬁﬁ) J=1
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By standard arguments in algebraic number theory, we know that
¢3¢ where s€S9 =12 k-1

are the (k—1)e eigenvalues of a square matrix M of size (k—1)e with entries from O. Indeed,
M = C; ® Cy, where C; is the companion matrix of Cy(z), Cy is the companion matrix of
Afﬁ)(x) and ® denotes the Kronecker product. Thus, TT(;)k(x) is a monic polynomial of degree
(k — 1)e in Olz]. It follows that

¢ 1
T3 (@) = 5[ Xma(@) = eV/me Wi (@),
where X, x(7), Wii(x) € Z[z] and X, () = Wy k(z) (mod 2). From the definition of
Téf?k(a:), it is easy to show that

7 (2 = {2V T (1/2). ifm =1 (mod 4);
m,k x(kfl)eTqil—’;)(l/x)’ fm=—1 (mod 4).

Thus, when m = 1 (mod 4), both X, x(x) and W,, x(x) are palindromic of order (k — 1)e
and when m = —1 (mod 4), X,,, x(z) is palindromic and W,, x(z) is antipalindromic of order
(k—1e.

By using the arguments in Section 4, we find from (7) that if we define

Koole) = LD () /L) @),

then
K(G)

m,k

(2) =T,

m,k

()T ) (—x) = Ryp(a?) — exv/m*Spp(2?), (17)

m,k

where R, ;(x), Smi(x) € Z]x] with palindromic-antipalindromic properties given in Table
4.

RmJg(iIf) SmJg(iIZ’)
1 | palindromic of order d(k — 1) | palindromic of order d(k — 1) — 1
—1 | palindromic of order d(k — 1) | antipalindromic of order d(k — 1) — 1

Table 4: Palindromic-antipalindromic properties of R, (), Sp.k(2).

We are now able to prove a more general version of Jarden’s theorem.

Theorem 7. If 0 = 1, n is odd and /mv/—Q(a — B) € 7Z, then £ FT(LZ") € Z and
EY | FY when k is odd and 1 = (k|m).
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Proof. By (17) and Theorem 3, we see that ﬂd”KS?k(x) € Z when k is odd, z = (—a™/p")"/?

and d = (k — 1)e. Since

F;,EE) — B”eLm((—a"/ﬁn)lﬂ) and Fé;ﬁ) — ﬁnkeLm((—Oznk/ﬁnk)l/Q),

we see that if o = 1 and /myv/—Q(a — 8) € Z, then F\°, Ffjj) € Z. Also, by (17) we see

that F\" /F\9 € Z.
If we have integers L, M, S such that
M? +4(=1)"7 L = mS?

and put P =M, Q = (—1)"2" L2, we get

]

(18)

D=(a—pB)=mS?= (a—f) = vVmS = vVm*/—Q(a — ) = VmLy/mS = mLS € Z.

When o = —1, we define x = (—1)*~1/2 We have

i {(m:)k’, when k = 1;

e —(ix)*, when k = —1.
It follows from (6) that when x = 1, we have
A (ik) = T (@)* = ¢
565'7(;)

and
Al (ia®y = T ((ia)* = i),
SGSLE)

As done earlier in this section we find that

A (iat) AR (i) = T

SES»S;)

(i) — ¢

—c T (ix).

We are now able to deduce from (7) that

K (i) = L7 (i) | L) (i) = T30, (i) T, ) (—i).

m,k

When x = —1, we get

and

(19)



Thus, since k is odd, we have

Also, since

we get

sGSﬁ{e)

Now from (7), we have
LD (k) = A (j27) Alen) (—jgh)
= [T (i) =) 1] () = &)
seSkh sesty)
Thus,

Lot T I T G i o

Ly (i) sesto 5eg)

By combining this formula with (19) and (17), we get

L(f-me) k . .
I ) 700, (i) (=) = KL, (i), (20)
Ly, (ix) ’ ’ ’
We are now able to prove a version of Theorem 7 when o = —1.

Theorem 8. If ¢ = —1, n is odd and vmQ € Z, then F\°, Frgzne) € 7 and F | Féznﬁ)
when k is odd and n = (k|m).

Proof. By (17), we have
K’(;)k(m> = Ry i(—2®) — eiv/m* S i (—2?),

where both R, x(—x), Spr(—2) are palindromic of order d and d — 1, respectively. Thus,
by Theorem 4, we see that
oK, i) € 2

when k is odd, z = (—a™/f")"/? and /mQ € Z. The remainder of the proof follows in the
same way as the proof of Theorem 7. [

In the case of 0 = —1, we must have /m@ € Z, which means that Q = mL?, where L is
an integer. Thus, Theorems 7 and 8 are the generalized Jarden crossover theorems for odd,
square-free m > 3.
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6 Some further remarks

Although we have constrained m > 3, it is possible to prove the crossover theorem in the
case that m = 3. Here, we get

Fl9 =V, +e/3Q% =V, + ¢35 L",
for Q = 3L2%. It is a simple matter to verify that
RO | FC

for odd n, k and

1, if k=1 (mod 3);
n=(km) = {1 F=10modd)
—1, if k=2 (mod 3).

Hence, the crossover theorem can also be generalized for m = 3.
We also note that in the case of m = 1 (mod 4), we can write I, (and consequently

Fﬁf)) in terms of the (U,) sequence only by making use of the simple identity

Van = DU? +2Q™.

We find that
e/2—1
L, = Z (—1)7¢;Q" Vie_gjyn + (_1)e/2ce/2Qne/2
=0
e/2—1 e/2—1
=D Y (IR oy + @ (2 3 (<1 + (1) e
=0 =0
Note that
6/2—1 e
2 (Ve + (1) Pep =) (~1)¢; = Cu(-1)
7=0 7=0
Thus,
e/2—1
Ien =D Z (_1)]CanJU(2e/2—j)n + Qne/QCm(_D-
=0

By (7) and (8), we have

and



hence,
C%(~1)+mD2(-1) =1

which, since C,,(—1) and D,,(—1) € Z, means that C%(—1) = 1 and D,,(—1) = 0. By a
result in Wagstaff [11, Theorem 2], we have

Con(2%) — V/maD,, (2*) = H (2% — 2(s|m) cos <%) x4+ 1), (21)

seSy,

where S, = {s : s € Sy, s < (m —1)/2}. Here we have 2cos (22) = (5, + (,°. Since
m — s € Sy, whenever s € S,,, we see that #S!, = ¢(m)/2. If we put x =i in (21), we get

C(=1) = [ —ilslm)2 cos (%)

seSy,
m 2
= (—1)%> H (s|m) H 2 cos (E) :
seS!, ses!, m
Since (m — s|m) = (—s|m) = (s|m), we see from (5) that
2) " (slm) =) (s|m) = 0.
sesy, SESm

Thus, for each s € S/, there must exist some s* € S/ (s* # s) such that (s*|m) = —(s|m)
or (s*sjm) = —1. It follows that

[T (slm) = (-1,
sesS!,

Thus,

C(=1) = [ 2cos (%) .

seSy,

When m is prime, we know by an old result of Gauss (see [4, (4)]) that
27s
272 s —-s _ (_ (m—1)/4
HQCOS(m) H§m+Cm (—1) .
sest, sest,
If m is composite, there is a very simple proof in Gurak [4, pp. 255-256] that
2
H 2 cos (LS) =1.
m
s€Sy,
It follows that

C(-1) = {(—1)(m_1)/4, if m is prime;

1, if m is composite.

18



References

1]

2]

Richard P. Brent, On computing factors of cyclotomic polynomials, Math. Comput. 61
(1993), 131-149.

John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and
Lucas factorizations, Math. Comput. 50 (1988), 251-260.

P. G. Lejeune Dirichlet, Vorlesungen tiber Zahlentheorie, 4" edition, Supplement VII,
Chelsea, 1968.

S. Gurak, Minimal polynomials for Gauss periods with f = 2, Acta Arith. 121 (2007),
233-257.

E. Lucas, Théoremes d’arithmétique, Atti della Reale Accademia delle scienze di Torino
13 (1878), 271-278.

E. Lucas, Sur les formules de Cauchy et de Lejeune-Dirichlet, Assoc. Francaise pour
I’Avancement des Sciences, Comptes Rendus 7 (1878), 164-173.

Andrew Granville and Peter Pleasants, Aurifeuillian factorization, Math. Comput. 75
(2005), 489-508.

Dov Jarden, Recurring Sequences, 24 edition, Riveon Lematematika, 1966.

Hans Riesel, Prime Numbers and Computer Methods for Factorization, Birkhaiiser,
1985.

A. Schinzel, On primitive prime factors of a” — 0", Math. Proc. Cambridge Philos. Soc.
58 (1962), 555-562.

S. S. Wagstaff, Jr., Aurifeuillian factorizations and the period of the Bell numbers
modulo a prime, Math. Comput. 65 (1996), 383-391.

S. S. Wagstaft, Jr., The Joy of Factoring, Volume 68, Student Mathematical Library,
American Mathematical Society, 2013.

H. C. Williams, Edouard Lucas and Primality Testing, CMS series of Monographs and
Advanced Texts, Volume 22, Wiley-Interscience, John Wiley & Sons, 1998.

2010 Mathematics Subject Classification: Primary 11B37; Secondary 11Y11, 11B50.
Keywords: linear recurrence, Lucas function.

19



Received May 30 2022; revised version received August 8 2022. Published in Journal of
Integer Sequences, August 8 2022.

Return to Journal of Integer Sequences home page.

20


https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminary results
	Some Aurifeuillian identities
	Aurifeuillian factorizations
	The main result
	Some further remarks

