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Abstract

A positive integer [ is k-special if for every integer n there exist non-zero integers
x,y, and z such that n = 22 + ky? — [22. For all odd integers k, we find infinite classes
of k-special numbers and 2k-special numbers.

1 Introduction

The representations of a natural number as a sum of squares have been widely studied by
many mathematicians. Nowicki [3] and Lam [2] proved that all natural numbers can be
written in the form z? + y? — c2? where xyz # 0 if and only if ¢ is of the form ¢ or 2g,
where either ¢ = 1 or ¢ is a product of primes of the form 4m + 1. Later, Prugsapitak and
Thongngam [4] defined a k-special number. A positive integer [ is k-special if every integer
n can be expressed as n = 12 + ky? — [2? for some non-zero integers x,y, and z. They proved
that 1 is k-special if and only if & is not divisible by 4.

In this article, we will be interested in representing natural numbers in the form 22 +
ky? — 122 where xyz # 0 for given positive integers k and [. For all odd integers k, we apply
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Lam’s method [2] to identify k-special numbers and 2k-special numbers and additionally we
show that there are infinitely many k-special numbers and 2k-special numbers.

2 Main results

In this section, we present k-special and 2k-special number for an odd integer k. We can
show that z? + 2ky? where ged(z, 2ky) = 1 and 2% + ky? where ged(z, ky) = 1 are 2k-special
and k-special respectively by modifying Lam’s approach [2].

Theorem 1. Let k and | be odd integers. If I can be written as x* + 2ky? for some positive
integers x and y where ged(x, 2ky) = 1, then [ is 2k-special.

Proof. Let | be an odd integer and | = 2% + 2ky? for some positive integers x and y where
ged(z, 2ky) = 1. We first find the representation of odd numbers of the form a? + 2kb? — [c?
where abe # 0. Since ged(z, 2ky) = 1, there exist integers g and [y such that

rag + 2kyBy = 1.
For a positive integer n, let a,, = ay + 2nky and S, = Sy — nx. It is easy to see that
oy, + 2kyB, = x(ag + 2nky) + 2ky(By — nx) = xag + 2kyfy = 1.

Next, let a, = ) + a,, b, = yj + B, and ¢, = j, where j is an integer which will be chosen
later. Thus

a2 + 2kb2 — 1c2 = (2 + )? + 2k(yj + Ba)? — (2° + 2ky?) 52
= 2?52 + 2xjo, + a2 + 2ky* 5% + dykjB, + 2k5% — 2257 — 2Ky 52
=2xja, + dykjB, + ozi + 2]{;52
= 2j(za, + 2kyB,) + a2 + 2kB2.

Since z is odd and x«,, + 2ky3, = 1, we can see that «,, is odd. Thus
a? + 2kb? — lc? = 2j + o + 2k 37

for non-negative integers i. Let m be an odd integer. For a non-negative integer n, we choose
a suitable value of an integer j,, such that

m = 2j, + a2 4+ 2kB> = a2 + 2kb?: — 12

where a,, = zj, + an, b, = yj, + B, and ¢, = j,. We can see that a,b,c, = 0 if and only if
m is one of the following values; a2 + 2k32, a2 + 2k32 — 2, /2 or a2 + 2k(2 — 23, /y. Since

lim o, = lim —f,, = o0,
n—oo n—oo



there exists a non-negative integer n such that o +2k382 —2a,,/x > m and 3, < 0. Therefore
we obtain a representation for m, namely m = a? + 2kb? — 2 where a,b,c, # 0.

We next find the representation of even integers. Since ged(x,2ky) = 1, we have
ged(x, ky) = 1. Then there exist integers «p and Sy such that

xag + kyBy = 1.
For a positive integer n, let a,, = ag + kny and 3, = Sy — nz. Then
oy, + kyB, = x(ag + kny) + ky(Bo — nz) = zap + kany + kyBo — kynx = xag + kypy = 1.

Now let a,, = xj+2a,, b, = yj+ [, and ¢, = 7 where 7 is an integer which will be determined
later. Then

a2 + 2kb? — 12 = (x] + 20)? + 2k(yj + Bn)? — (22 + 2ky?) 5>
= 2%5% + dxjoy, +4a’ + 2ky? 5 + dykjB, + 2k32 — 2757 — 2ky?5°
= 4j(za, + kyBy) + 402 + 2kB2.

Since x is odd, we have

402 + 2kB2 = 4(ap + kny)* + 2k(By — nx)?
= 4o + 8knyag + 4k*n*y* + 2k S5 — 4kna By + 2kn*a?
= 2kB; + 2kn*2®  (mod 4)
= 2k 4+ 2kn®  (mod 4).

Thus,
2k32 (mod 4), if n is even;

402 + 2kB] =
i On {21{;(53 +1) (mod 4), ifnisodd.

For every non-negative integer r, we obtain two identities for representing even integers
given by

a3, 4+ 2kbs. — lca. = (2] + 209, )? 4 2k(yj + P )* — (2% + 2%)j% = 45 + 4a3, + 2kf3,
and

a%r—}—l + ka%r—&—l - lc%r—l—l = (2] + 2009,11)% + 2(yj + Bors1)” — (2% + 2y%);5°
=45+ 40‘§r+1 + 2kﬁ227"+1'

Let m be an even integer. There are four cases to consider; namely,
e Case 1: m =0 (mod 4) and 82 =0 (mod 4),

e Case 22 m=2 (mod 4) and 52 =0 (mod 4),
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e Case 3 m=0 (mod 4) and 82 =1 (mod 4),
e Case J: m =2 (mod 4) and 83 = 1 (mod 4).

Since all cases can be handled similarly, we provide the proof for Case 1 as follows. We
choose a suitable value of an integer j,, such that

m = 4jo, + 4a3, + 2kBs, = a3, + 2kbs, — lc3,

where as, = xjo, + 20, ba, = yjo, + Bor and cg. = Jo.. We can see that as,.bo.cop = 0
if and only if m is one of the following values: 4a3. + 2kS3 403, + 2kB2 — 8a, /v or
4a3, + 2kB3. — 4P, /y. Since

lim ap, = lim —f,, = oo,
r—00 r—00

there exists a non-negative integer r such that 4a3, + 2kf33. — 8, /z > m and (. < 0.
Therefore we obtain a representation for m, namely m = a3, +2kb2, — Ic2 where ao,by,Co, #

0. [l

For an odd integer k, we obtain a sufficient condition for an odd integer to be 2k-special.
The necessary condition is unknown to us. However we can provide a necessary condition for
the 2-special number. That is, if d is 2-special, then d = m? + 2n? for some integers m and
n. We first recall a well-known lemma (see, for example, [1]) before proving our mentioned
conclusion.

Lemma 2. Let p be a prime. Then p = x? + 2y for some integers x and y if and only if
p=2orp=1,3 (mod 8).

Using the above lemma, we have the following.

Lemma 3. A positive integer n can be written as x* + 2y? for some integers v and vy if
and only if all primes of the form 8k + 5 or 8k + 7 have an even exponent in the prime
factorization of n.

Proof. If n = 22 + 2y? for some integers x and ¥, then
n=1z>+2y" = (z +yvV-2)(z — yv-2).

Let p be a prime of the form 8%k + 5 or 8k + 7 and p divides n. Since —2 is a quadratic
non-residue modulo p, we see that p is a prime in Z[v/—2]. Thus p divides z + y/—2 or p
divides  — yv/—2. If p divides = + y/—2, then p divides x — yv/—2. Hence p divides 2z and
p divides 2y. Since p is odd, we have that p divides both x and y. Similarly, we can show
that if p divides 2 —yy/—2, then p divides both x and y. Write x = pz; and y = py; for some
integers r; and y;. Therefore n = p?z? + 2p*y? = p(2? + 2y3). If pt 23 + 2y, then p?||n. If
p divides x? +2y?, then p? divides 2% + 2y?. We can repeat the process until we arrive at the
conclusion that p has even multiplicity in the prime factorization of n. Conversely, we know
that 2 and all primes p where p = 1,3 (mod 8) can be written as a® + 2b? for some integers
a and b and a product of integers of the form a? + 20 is still an integer of the form a? + 2b°.
Therefore the result follows. O



Theorem 4. If d is 2-special, then d = m* + 2n® for some integers m and n.

Proof. Let d be 2-special. For all integers ¢ there exist non-zero integers z,y, and z such
that 22 + 2y? — dz? = 2dc®. So 22 + 2y* = d(2? + 2¢%). By Lemma 3, all primes of the form
8k +5 or 8k + 7 have even exponent in the prime factorization of 22 +2y? and 2¢* + 2z2. Thus
all primes of the form 8k + 5 or 8k + 7 have even exponent in the prime factorization of d.
Hence again by Lemma 3, we have that d is of the form m? + 2n? for some integers m and
n. [

The converse of the above theorem is not true, as we will discover in the next theorem
that 8 is not 2-special.

Theorem 5. Let k be an odd integer. If d is divisible by 8, then d is not 2k-special.

Proof. Let d be divisible by 8. Suppose on the contrary that d is 2k-special. Then
w? +2ky? —d2* =5

for some non-zero integers x,y, and z. So 2 + 2ky* =5 (mod 8). Since 2% =0, 1,4 (mod 8)
and 2ky? = 0,2k (mod 8), it is easy to see that x* + 2ky? = 0, 1,4, 2k, 2k + 1,2k + 4 (mod
8). Since k is odd, we can see that x? + 2ky? # 5 (mod 8). This is a contradiction. O

Next, we consider k-special numbers where k is odd.

Theorem 6. Let | and k be odd integers. If | = 2% + ky? for some positive integers x and y
and ged(z, ky) = 1, then [ is k-special.

Proof. Suppose | = 2% + ky? for some positive integers x and y where ged(z, ky) = 1. Since
ged(x, ky) = 1, there exist integers ag and 5y such that xag + kyfy = 1.
For a positive integer n, we define a,, = ag + nky and S, = By — nx. Then

zay, + kyBy = x(ag + nky) + ky(Bo — nx)
= xayg + anky + kyBy — nkyx
= zag + kyPy = 1.

Let a, = zj + o, b, = yj + B, and ¢, = j, where j is an integer which will be selected
later. Thus

an + kb2 — Ik = (xj + an)® + k(yj + Ba)? — (2% + ky?)5°
= 2°5% + 2wjon, + ol + ky®i7 + 2kyjB. + kB — 275 — ky?s?
= 2xja, + o2 + 2kyjB, + kB2
= 2j(zay, + kyBn) + a2 + kB2



We have

a2 + kB2 = (ag + nky)* + k(B — nx)?
= a2 + 2knagy + n2k>y? + kB2 — 2nkBox + kn’z’
= a2 + kB2 + n?k*y? + kn?2®  (mod 2).

Therefore,
o2 4 k2 = {a§ + kB2 (mod 2), ?f n %s even;
a2 +kBE+y*+2* (mod 2), ifnisodd.
Since [ and k are odd, we can see that x and y have different parities. Thus
o2 4R = {a§ + kB2 (mod 2), %f n %s even;
" " af + kG5 +1 (mod 2), ifnisodd.

For all non-negative integers r, we obtain the following identities

a3, + kb3, — 163, = 2j + a5, + k3, = 2j + af + kG5 (mod 2),
Uiy + KUy — 15, = 2] + a3, + kB3 = 2] + a5 +kGF + 1 (mod 2).
By using both identities, we can demonstrate that all integers can be expressed in the
form a? + kb? — Ic?. Next, we will illustrate how to choose a, b, and ¢ so that abe # 0.

Case 1: a3 + kB2 =0 (mod 2).
We first consider how to represent an even integer m. We select an appropriate value for
72 such that
m = 2o, + a5, + kB3, = a3, + kb, — lc3,

where as, = Tjo, + o, bay = yJor + Bop and co. = Jjo,.. We can see that ag.be.co. = 0 if and
only if m is one of the following values: o3, +kf33,, a3, + kB3, —2ag, /x or o, + kB3, — 282, /y.
Since

lim ag, = lim —f5, = oo,

r—00 r—00
there exists a non-negative integer r for which o3, + kB3, — 2o,/ > m and S, < 0. As a
result, we have a representation for m, namely m = a2, + kb3 — lc3, where as,.by.Co, # 0.

Next, we consider a representation for an odd integer m. Let m be an odd integer. We

select an appropriate value for js,..; such that

o 2 2 9 2 2
m = 2jor1 + 05,4 + kﬁ2r+l = Apq1 T kb?r—l—l - lc?’r—i—l

where ag,i 1 = TJor41 + Q2r i1, borp1 = YJorg1 + Borgr and copgy = Jorqq. It is easy to see that
Ay 1b2r 412041 = 0 if and only if m is one of the values listed below: a3, gt kB3 1) al, 1t

k3341 — 200,11 /% or a3,y + kB3 1 — 2Bar11/y. Since

lim g,y = lim —fs,41 = 00,
r—00 r—00
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there exists a non-negative integer r such that o3, + k33, | — 209,41/ > m and Ss41 < 0.
As a consequence, a representation for m is obtained as follows: m = a3, + kb3, ., — 13,
where az, 110241211 7 0.

Case 2: o} + kB2 =1 (mod 2). This case can be handled similarly as in Case 1. Thus [ is
k-special as desired. O

Finally, we obtain the following consequence of Theorem 1 and Theorem 6.

Corollary 7. Let k be an odd integer. There are infinitely many k-special numbers and
2k-special numbers.
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