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Abstract

A positive integer l is k-special if for every integer n there exist non-zero integers

x, y, and z such that n = x2 + ky2 − lz2. For all odd integers k, we find infinite classes

of k-special numbers and 2k-special numbers.

1 Introduction

The representations of a natural number as a sum of squares have been widely studied by
many mathematicians. Nowicki [3] and Lam [2] proved that all natural numbers can be
written in the form x2 + y2 − cz2 where xyz 6= 0 if and only if c is of the form q or 2q,
where either q = 1 or q is a product of primes of the form 4m + 1. Later, Prugsapitak and
Thongngam [4] defined a k-special number. A positive integer l is k-special if every integer
n can be expressed as n = x2+ky2− lz2 for some non-zero integers x, y, and z. They proved
that 1 is k-special if and only if k is not divisible by 4.

In this article, we will be interested in representing natural numbers in the form x2 +
ky2 − lz2 where xyz 6= 0 for given positive integers k and l. For all odd integers k, we apply
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Lam’s method [2] to identify k-special numbers and 2k-special numbers and additionally we
show that there are infinitely many k-special numbers and 2k-special numbers.

2 Main results

In this section, we present k-special and 2k-special number for an odd integer k. We can
show that x2 +2ky2 where gcd(x, 2ky) = 1 and x2 + ky2 where gcd(x, ky) = 1 are 2k-special
and k-special respectively by modifying Lam’s approach [2].

Theorem 1. Let k and l be odd integers. If l can be written as x2 + 2ky2 for some positive

integers x and y where gcd(x, 2ky) = 1, then l is 2k-special.

Proof. Let l be an odd integer and l = x2 + 2ky2 for some positive integers x and y where
gcd(x, 2ky) = 1. We first find the representation of odd numbers of the form a2 + 2kb2 − lc2

where abc 6= 0. Since gcd(x, 2ky) = 1, there exist integers α0 and β0 such that

xα0 + 2kyβ0 = 1.

For a positive integer n, let αn = α0 + 2nky and βn = β0 − nx. It is easy to see that

xαn + 2kyβn = x(α0 + 2nky) + 2ky(β0 − nx) = xα0 + 2kyβ0 = 1.

Next, let an = xj + αn, bn = yj + βn and cn = j, where j is an integer which will be chosen
later. Thus

a2
n
+ 2kb2

n
− lc2

n
= (xj + αn)

2 + 2k(yj + βn)
2 − (x2 + 2ky2)j2

= x2j2 + 2xjαn + α2

n
+ 2ky2j2 + 4ykjβn + 2kβ2

n
− x2j2 − 2ky2j2

= 2xjαn + 4ykjβn + α2

n
+ 2kβ2

n

= 2j(xαn + 2kyβn) + α2

n
+ 2kβ2

n
.

Since x is odd and xαn + 2kyβn = 1, we can see that αn is odd. Thus

a2
i
+ 2kb2

i
− lc2

i
= 2j + α2

i
+ 2kβ2

i

for non-negative integers i. Let m be an odd integer. For a non-negative integer n, we choose
a suitable value of an integer jn such that

m = 2jn + α2

n
+ 2kβ2

n
= a2

n
+ 2kb2

n
− lc2

n

where an = xjn + αn, bn = yjn + βn and cn = jn. We can see that anbncn = 0 if and only if
m is one of the following values; α2

n
+ 2kβ2

n
, α2

n
+ 2kβ2

n
− 2αn/x or α2

n
+ 2kβ2

n
− 2βn/y. Since

lim
n→∞

αn = lim
n→∞

−βn = ∞,
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there exists a non-negative integer n such that α2
n
+2kβ2

n
−2αn/x > m and βn < 0. Therefore

we obtain a representation for m, namely m = a2
n
+ 2kb2

n
− lc2

n
where anbncn 6= 0.

We next find the representation of even integers. Since gcd(x, 2ky) = 1, we have
gcd(x, ky) = 1. Then there exist integers α0 and β0 such that

xα0 + kyβ0 = 1.

For a positive integer n, let αn = α0 + kny and βn = β0 − nx. Then

xαn + kyβn = x(α0 + kny) + ky(β0 − nx) = xα0 + kxny + kyβ0 − kynx = xα0 + kyβ0 = 1.

Now let an = xj+2αn, bn = yj+βn and cn = j where j is an integer which will be determined
later. Then

a2
n
+ 2kb2

n
− lc2

n
= (xj + 2αn)

2 + 2k(yj + βn)
2 − (x2 + 2ky2)j2

= x2j2 + 4xjαn + 4α2

n
+ 2ky2j2 + 4ykjβn + 2kβ2

n
− x2j2 − 2ky2j2

= 4j(xαn + kyβn) + 4α2

n
+ 2kβ2

n
.

Since x is odd, we have

4α2

n
+ 2kβ2

n
= 4(α0 + kny)2 + 2k(β0 − nx)2

= 4α2

0 + 8knyα0 + 4k2n2y2 + 2kβ2

0 − 4knxβ0 + 2kn2x2

≡ 2kβ2

0 + 2kn2x2 (mod 4)

≡ 2kβ2

0 + 2kn2 (mod 4).

Thus,

4α2

n
+ 2kβ2

n
≡

{

2kβ2
0 (mod 4), if n is even;

2k(β2
0 + 1) (mod 4), if n is odd.

For every non-negative integer r, we obtain two identities for representing even integers
given by

a22r + 2kb22r − lc22r = (xj + 2α2r)
2 + 2k(yj + β2r)

2 − (x2 + 2y2)j2 = 4j + 4α2

2r + 2kβ2

2r

and

a22r+1 + 2kb22r+1 − lc22r+1 = (xj + 2α2r+1)
2 + 2(yj + β2r+1)

2 − (x2 + 2y2)j2

= 4j + 4α2

2r+1 + 2kβ2

2r+1.

Let m be an even integer. There are four cases to consider; namely,

• Case 1: m ≡ 0 (mod 4) and β2
0 ≡ 0 (mod 4),

• Case 2: m ≡ 2 (mod 4) and β2
0 ≡ 0 (mod 4),
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• Case 3: m ≡ 0 (mod 4) and β2
0 ≡ 1 (mod 4),

• Case 4: m ≡ 2 (mod 4) and β2
0 ≡ 1 (mod 4).

Since all cases can be handled similarly, we provide the proof for Case 1 as follows. We
choose a suitable value of an integer j2r such that

m = 4j2r + 4α2

2r + 2kβ2

2r = a22r + 2kb22r − lc22r

where a2r = xj2r + 2α2r, b2r = yj2r + β2r and c2r = j2r. We can see that a2rb2rc2r = 0
if and only if m is one of the following values: 4α2

2r + 2kβ2
2r, 4α

2
2r + 2kβ2

2r − 8α2r/x or
4α2

2r + 2kβ2
2r − 4β2r/y. Since

lim
r→∞

α2r = lim
r→∞

−β2r = ∞,

there exists a non-negative integer r such that 4α2
2r + 2kβ2

2r − 8α2r/x > m and β2r < 0.
Therefore we obtain a representation for m, namely m = a22r +2kb22r − lc22r where a2rb2rc2r 6=
0.

For an odd integer k, we obtain a sufficient condition for an odd integer to be 2k-special.
The necessary condition is unknown to us. However we can provide a necessary condition for
the 2-special number. That is, if d is 2-special, then d = m2 + 2n2 for some integers m and
n. We first recall a well-known lemma (see, for example, [1]) before proving our mentioned
conclusion.

Lemma 2. Let p be a prime. Then p = x2 + 2y2 for some integers x and y if and only if

p = 2 or p ≡ 1, 3 (mod 8).

Using the above lemma, we have the following.

Lemma 3. A positive integer n can be written as x2 + 2y2 for some integers x and y if

and only if all primes of the form 8k + 5 or 8k + 7 have an even exponent in the prime

factorization of n.

Proof. If n = x2 + 2y2 for some integers x and y, then

n = x2 + 2y2 = (x+ y
√
−2)(x− y

√
−2).

Let p be a prime of the form 8k + 5 or 8k + 7 and p divides n. Since −2 is a quadratic
non-residue modulo p, we see that p is a prime in Z[

√
−2]. Thus p divides x + y

√
−2 or p

divides x− y
√
−2. If p divides x+ y

√
−2, then p divides x− y

√
−2. Hence p divides 2x and

p divides 2y. Since p is odd, we have that p divides both x and y. Similarly, we can show
that if p divides x−y

√
−2, then p divides both x and y. Write x = px1 and y = py1 for some

integers x1 and y1. Therefore n = p2x2
1 + 2p2y21 = p2(x2

1 + 2y21). If p ∤ x2
1 + 2y21, then p2||n. If

p divides x2
1+2y21, then p2 divides x2

1+2y21. We can repeat the process until we arrive at the
conclusion that p has even multiplicity in the prime factorization of n. Conversely, we know
that 2 and all primes p where p ≡ 1, 3 (mod 8) can be written as a2 + 2b2 for some integers
a and b and a product of integers of the form a2 +2b2 is still an integer of the form a2 +2b2.
Therefore the result follows.
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Theorem 4. If d is 2-special, then d = m2 + 2n2 for some integers m and n.

Proof. Let d be 2-special. For all integers c there exist non-zero integers x, y, and z such
that x2 + 2y2 − dz2 = 2dc2. So x2 + 2y2 = d(z2 + 2c2). By Lemma 3, all primes of the form
8k+5 or 8k+7 have even exponent in the prime factorization of x2+2y2 and 2c2+z2. Thus
all primes of the form 8k + 5 or 8k + 7 have even exponent in the prime factorization of d.
Hence again by Lemma 3, we have that d is of the form m2 + 2n2 for some integers m and
n.

The converse of the above theorem is not true, as we will discover in the next theorem
that 8 is not 2-special.

Theorem 5. Let k be an odd integer. If d is divisible by 8, then d is not 2k-special.

Proof. Let d be divisible by 8. Suppose on the contrary that d is 2k-special. Then

x2 + 2ky2 − dz2 = 5

for some non-zero integers x, y, and z. So x2 +2ky2 ≡ 5 (mod 8). Since x2 ≡ 0, 1, 4 (mod 8)
and 2ky2 ≡ 0, 2k (mod 8), it is easy to see that x2 + 2ky2 ≡ 0, 1, 4, 2k, 2k + 1, 2k + 4 (mod
8). Since k is odd, we can see that x2 + 2ky2 6≡ 5 (mod 8). This is a contradiction.

Next, we consider k-special numbers where k is odd.

Theorem 6. Let l and k be odd integers. If l = x2 + ky2 for some positive integers x and y
and gcd(x, ky) = 1, then l is k-special.

Proof. Suppose l = x2 + ky2 for some positive integers x and y where gcd(x, ky) = 1. Since
gcd(x, ky) = 1, there exist integers α0 and β0 such that xα0 + kyβ0 = 1.

For a positive integer n, we define αn = α0 + nky and βn = β0 − nx. Then

xαn + kyβn = x(α0 + nky) + ky(β0 − nx)

= xα0 + xnky + kyβ0 − nkyx

= xα0 + kyβ0 = 1.

Let an = xj + αn, bn = yj + βn and cn = j, where j is an integer which will be selected
later. Thus

a2
n
+ kb2

n
− lc2

n
= (xj + αn)

2 + k(yj + βn)
2 − (x2 + ky2)j2

= x2j2 + 2xjαn + α2

n
+ ky2j2 + 2kyjβn + kβ2

n
− x2j2 − ky2j2

= 2xjαn + α2

n
+ 2kyjβn + kβ2

n

= 2j(xαn + kyβn) + α2

n
+ kβ2

n
.
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We have

α2

n
+ kβ2

n
= (α0 + nky)2 + k(β0 − nx)2

= α2

0 + 2knα0y + n2k2y2 + kβ2

0 − 2nkβ0x+ kn2x2

≡ α2

0 + kβ2

0 + n2k2y2 + kn2x2 (mod 2).

Therefore,

α2

n
+ kβ2

n
≡

{

α2
0 + kβ2

0 (mod 2), if n is even;

α2
0 + kβ2

0 + y2 + x2 (mod 2), if n is odd.

Since l and k are odd, we can see that x and y have different parities. Thus

α2

n
+ kβ2

n
≡

{

α2
0 + kβ2

0 (mod 2), if n is even;

α2
0 + kβ2

0 + 1 (mod 2), if n is odd.

For all non-negative integers r, we obtain the following identities

a22r + kb22r − lc22r = 2j + α2

2r + kβ2

2r ≡ 2j + α2

0 + kβ2

0 (mod 2),

a22r+1 + kb22r+1 − lc22r+1 = 2j + α2

2r+1 + kβ2

2r+1 ≡ 2j + α2

0 + kβ2

0 + 1 (mod 2).

By using both identities, we can demonstrate that all integers can be expressed in the
form a2 + kb2 − lc2. Next, we will illustrate how to choose a, b, and c so that abc 6= 0.

Case 1: α2
0 + kβ2

0 ≡ 0 (mod 2).
We first consider how to represent an even integer m. We select an appropriate value for

j2r such that
m = 2j2r + α2

2r + kβ2

2r = a22r + kb22r − lc22r

where a2r = xj2r + α2r, b2r = yj2r + β2r and c2r = j2r. We can see that a2rb2rc2r = 0 if and
only if m is one of the following values: α2

2r+kβ2
2r, α

2
2r+kβ2

2r−2α2r/x or α2
2r+kβ2

2r−2β2r/y.
Since

lim
r→∞

α2r = lim
r→∞

−β2r = ∞,

there exists a non-negative integer r for which α2
2r + kβ2

2r − 2α2r/x > m and β2r < 0. As a
result, we have a representation for m, namely m = a22r + kb22r − lc22r where a2rb2rc2r 6= 0.

Next, we consider a representation for an odd integer m. Let m be an odd integer. We
select an appropriate value for j2r+1 such that

m = 2j2r+1 + α2

2r+1 + kβ2

2r+1 = a22r+1 + kb22r+1 − lc22r+1

where a2r+1 = xj2r+1 + α2r+1, b2r+1 = yj2r+1 + β2r+1 and c2r+1 = j2r+1. It is easy to see that
a2r+1b2r+1c2r+1 = 0 if and only if m is one of the values listed below: α2

2r+1 + kβ2
2r+1, α

2
2r+1 +

kβ2
2r+1 − 2α2r+1/x or α2

2r+1 + kβ2
2r+1 − 2β2r+1/y. Since

lim
r→∞

α2r+1 = lim
r→∞

−β2r+1 = ∞,
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there exists a non-negative integer r such that α2
2r+1+kβ2

2r+1−2α2r+1/x > m and β2r+1 < 0.
As a consequence, a representation for m is obtained as follows: m = a22r+1 + kb22r+1 − lc22r+1

where a2r+1b2r+1c2r+1 6= 0.

Case 2: α2
0 + kβ2

0 ≡ 1 (mod 2). This case can be handled similarly as in Case 1. Thus l is
k-special as desired.

Finally, we obtain the following consequence of Theorem 1 and Theorem 6.

Corollary 7. Let k be an odd integer. There are infinitely many k-special numbers and

2k-special numbers.
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