Journal of Integer Sequences, Vol. 25 (2022), Article 22.8.5

Representation of Integers of the Form

$$
x^{2}+k y^{2}-l z^{2}
$$

Supawadee Prugsapitak and Nattaporn Thongngam
Algebra and Applications Research Unit
Division of Computational Science
Faculty of Science
Prince of Songkla University
Hatyai, Songkhla 90110
Thailand
supawadee.p@psu.ac.th
6310220031@psu.ac.th

Abstract

A positive integer l is k-special if for every integer n there exist non-zero integers x, y, and z such that $n=x^{2}+k y^{2}-l z^{2}$. For all odd integers k, we find infinite classes of k-special numbers and $2 k$-special numbers.

1 Introduction

The representations of a natural number as a sum of squares have been widely studied by many mathematicians. Nowicki [3] and Lam [2] proved that all natural numbers can be written in the form $x^{2}+y^{2}-c z^{2}$ where $x y z \neq 0$ if and only if c is of the form q or $2 q$, where either $q=1$ or q is a product of primes of the form $4 m+1$. Later, Prugsapitak and Thongngam [4] defined a k-special number. A positive integer l is k-special if every integer n can be expressed as $n=x^{2}+k y^{2}-l z^{2}$ for some non-zero integers x, y, and z. They proved that 1 is k-special if and only if k is not divisible by 4 .

In this article, we will be interested in representing natural numbers in the form $x^{2}+$ $k y^{2}-l z^{2}$ where $x y z \neq 0$ for given positive integers k and l. For all odd integers k, we apply

Lam's method [2] to identify k-special numbers and $2 k$-special numbers and additionally we show that there are infinitely many k-special numbers and $2 k$-special numbers.

2 Main results

In this section, we present k-special and $2 k$-special number for an odd integer k. We can show that $x^{2}+2 k y^{2}$ where $\operatorname{gcd}(x, 2 k y)=1$ and $x^{2}+k y^{2}$ where $\operatorname{gcd}(x, k y)=1$ are $2 k$-special and k-special respectively by modifying Lam's approach [2].

Theorem 1. Let k and l be odd integers. If l can be written as $x^{2}+2 k y^{2}$ for some positive integers x and y where $\operatorname{gcd}(x, 2 k y)=1$, then l is $2 k$-special.

Proof. Let l be an odd integer and $l=x^{2}+2 k y^{2}$ for some positive integers x and y where $\operatorname{gcd}(x, 2 k y)=1$. We first find the representation of odd numbers of the form $a^{2}+2 k b^{2}-l c^{2}$ where $a b c \neq 0$. Since $\operatorname{gcd}(x, 2 k y)=1$, there exist integers α_{0} and β_{0} such that

$$
x \alpha_{0}+2 k y \beta_{0}=1 .
$$

For a positive integer n, let $\alpha_{n}=\alpha_{0}+2 n k y$ and $\beta_{n}=\beta_{0}-n x$. It is easy to see that

$$
x \alpha_{n}+2 k y \beta_{n}=x\left(\alpha_{0}+2 n k y\right)+2 k y\left(\beta_{0}-n x\right)=x \alpha_{0}+2 k y \beta_{0}=1 .
$$

Next, let $a_{n}=x j+\alpha_{n}, b_{n}=y j+\beta_{n}$ and $c_{n}=j$, where j is an integer which will be chosen later. Thus

$$
\begin{aligned}
a_{n}^{2}+2 k b_{n}^{2}-l c_{n}^{2} & =\left(x j+\alpha_{n}\right)^{2}+2 k\left(y j+\beta_{n}\right)^{2}-\left(x^{2}+2 k y^{2}\right) j^{2} \\
& =x^{2} j^{2}+2 x j \alpha_{n}+\alpha_{n}^{2}+2 k y^{2} j^{2}+4 y k j \beta_{n}+2 k \beta_{n}^{2}-x^{2} j^{2}-2 k y^{2} j^{2} \\
& =2 x j \alpha_{n}+4 y k j \beta_{n}+\alpha_{n}^{2}+2 k \beta_{n}^{2} \\
& =2 j\left(x \alpha_{n}+2 k y \beta_{n}\right)+\alpha_{n}^{2}+2 k \beta_{n}^{2} .
\end{aligned}
$$

Since x is odd and $x \alpha_{n}+2 k y \beta_{n}=1$, we can see that α_{n} is odd. Thus

$$
a_{i}^{2}+2 k b_{i}^{2}-l c_{i}^{2}=2 j+\alpha_{i}^{2}+2 k \beta_{i}^{2}
$$

for non-negative integers i. Let m be an odd integer. For a non-negative integer n, we choose a suitable value of an integer j_{n} such that

$$
m=2 j_{n}+\alpha_{n}^{2}+2 k \beta_{n}^{2}=a_{n}^{2}+2 k b_{n}^{2}-l c_{n}^{2}
$$

where $a_{n}=x j_{n}+\alpha_{n}, b_{n}=y j_{n}+\beta_{n}$ and $c_{n}=j_{n}$. We can see that $a_{n} b_{n} c_{n}=0$ if and only if m is one of the following values; $\alpha_{n}^{2}+2 k \beta_{n}^{2}, \alpha_{n}^{2}+2 k \beta_{n}^{2}-2 \alpha_{n} / x$ or $\alpha_{n}^{2}+2 k \beta_{n}^{2}-2 \beta_{n} / y$. Since

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty}-\beta_{n}=\infty
$$

there exists a non-negative integer n such that $\alpha_{n}^{2}+2 k \beta_{n}^{2}-2 \alpha_{n} / x>m$ and $\beta_{n}<0$. Therefore we obtain a representation for m, namely $m=a_{n}^{2}+2 k b_{n}^{2}-l c_{n}^{2}$ where $a_{n} b_{n} c_{n} \neq 0$.

We next find the representation of even integers. Since $\operatorname{gcd}(x, 2 k y)=1$, we have $\operatorname{gcd}(x, k y)=1$. Then there exist integers α_{0} and β_{0} such that

$$
x \alpha_{0}+k y \beta_{0}=1
$$

For a positive integer n, let $\alpha_{n}=\alpha_{0}+k n y$ and $\beta_{n}=\beta_{0}-n x$. Then
$x \alpha_{n}+k y \beta_{n}=x\left(\alpha_{0}+k n y\right)+k y\left(\beta_{0}-n x\right)=x \alpha_{0}+k x n y+k y \beta_{0}-k y n x=x \alpha_{0}+k y \beta_{0}=1$.
Now let $a_{n}=x j+2 \alpha_{n}, b_{n}=y j+\beta_{n}$ and $c_{n}=j$ where j is an integer which will be determined later. Then

$$
\begin{aligned}
a_{n}^{2}+2 k b_{n}^{2}-l c_{n}^{2} & =\left(x j+2 \alpha_{n}\right)^{2}+2 k\left(y j+\beta_{n}\right)^{2}-\left(x^{2}+2 k y^{2}\right) j^{2} \\
& =x^{2} j^{2}+4 x j \alpha_{n}+4 \alpha_{n}^{2}+2 k y^{2} j^{2}+4 y k j \beta_{n}+2 k \beta_{n}^{2}-x^{2} j^{2}-2 k y^{2} j^{2} \\
& =4 j\left(x \alpha_{n}+k y \beta_{n}\right)+4 \alpha_{n}^{2}+2 k \beta_{n}^{2} .
\end{aligned}
$$

Since x is odd, we have

$$
\begin{aligned}
4 \alpha_{n}^{2}+2 k \beta_{n}^{2} & =4\left(\alpha_{0}+k n y\right)^{2}+2 k\left(\beta_{0}-n x\right)^{2} \\
& =4 \alpha_{0}^{2}+8 k n y \alpha_{0}+4 k^{2} n^{2} y^{2}+2 k \beta_{0}^{2}-4 k n x \beta_{0}+2 k n^{2} x^{2} \\
& \equiv 2 k \beta_{0}^{2}+2 k n^{2} x^{2} \quad(\bmod 4) \\
& \equiv 2 k \beta_{0}^{2}+2 k n^{2} \quad(\bmod 4)
\end{aligned}
$$

Thus,

$$
4 \alpha_{n}^{2}+2 k \beta_{n}^{2} \equiv \begin{cases}2 k \beta_{0}^{2} \quad(\bmod 4), & \text { if } n \text { is even } \\ 2 k\left(\beta_{0}^{2}+1\right) \quad(\bmod 4), & \text { if } n \text { is odd }\end{cases}
$$

For every non-negative integer r, we obtain two identities for representing even integers given by

$$
a_{2 r}^{2}+2 k b_{2 r}^{2}-l c_{2 r}^{2}=\left(x j+2 \alpha_{2 r}\right)^{2}+2 k\left(y j+\beta_{2 r}\right)^{2}-\left(x^{2}+2 y^{2}\right) j^{2}=4 j+4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}
$$

and

$$
\begin{aligned}
a_{2 r+1}^{2}+2 k b_{2 r+1}^{2}-l c_{2 r+1}^{2} & =\left(x j+2 \alpha_{2 r+1}\right)^{2}+2\left(y j+\beta_{2 r+1}\right)^{2}-\left(x^{2}+2 y^{2}\right) j^{2} \\
& =4 j+4 \alpha_{2 r+1}^{2}+2 k \beta_{2 r+1}^{2}
\end{aligned}
$$

Let m be an even integer. There are four cases to consider; namely,

- Case 1: $m \equiv 0(\bmod 4)$ and $\beta_{0}^{2} \equiv 0(\bmod 4)$,
- Case 2: $m \equiv 2(\bmod 4)$ and $\beta_{0}^{2} \equiv 0(\bmod 4)$,
- Case 3: $m \equiv 0(\bmod 4)$ and $\beta_{0}^{2} \equiv 1(\bmod 4)$,
- Case 4: $m \equiv 2(\bmod 4)$ and $\beta_{0}^{2} \equiv 1(\bmod 4)$.

Since all cases can be handled similarly, we provide the proof for Case 1 as follows. We choose a suitable value of an integer $j_{2 r}$ such that

$$
m=4 j_{2 r}+4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}=a_{2 r}^{2}+2 k b_{2 r}^{2}-l c_{2 r}^{2}
$$

where $a_{2 r}=x j_{2 r}+2 \alpha_{2 r}, b_{2 r}=y j_{2 r}+\beta_{2 r}$ and $c_{2 r}=j_{2 r}$. We can see that $a_{2 r} b_{2 r} c_{2 r}=0$ if and only if m is one of the following values: $4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}, 4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}-8 \alpha_{2 r} / x$ or $4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}-4 \beta_{2 r} / y$. Since

$$
\lim _{r \rightarrow \infty} \alpha_{2 r}=\lim _{r \rightarrow \infty}-\beta_{2 r}=\infty
$$

there exists a non-negative integer r such that $4 \alpha_{2 r}^{2}+2 k \beta_{2 r}^{2}-8 \alpha_{2 r} / x>m$ and $\beta_{2 r}<0$. Therefore we obtain a representation for m, namely $m=a_{2 r}^{2}+2 k b_{2 r}^{2}-l c_{2 r}^{2}$ where $a_{2 r} b_{2 r} c_{2 r} \neq$ 0 .

For an odd integer k, we obtain a sufficient condition for an odd integer to be $2 k$-special. The necessary condition is unknown to us. However we can provide a necessary condition for the 2 -special number. That is, if d is 2 -special, then $d=m^{2}+2 n^{2}$ for some integers m and n. We first recall a well-known lemma (see, for example, [1]) before proving our mentioned conclusion.
Lemma 2. Let p be a prime. Then $p=x^{2}+2 y^{2}$ for some integers x and y if and only if $p=2$ or $p \equiv 1,3(\bmod 8)$.

Using the above lemma, we have the following.
Lemma 3. A positive integer n can be written as $x^{2}+2 y^{2}$ for some integers x and y if and only if all primes of the form $8 k+5$ or $8 k+7$ have an even exponent in the prime factorization of n.
Proof. If $n=x^{2}+2 y^{2}$ for some integers x and y, then

$$
n=x^{2}+2 y^{2}=(x+y \sqrt{-2})(x-y \sqrt{-2})
$$

Let p be a prime of the form $8 k+5$ or $8 k+7$ and p divides n. Since -2 is a quadratic non-residue modulo p, we see that p is a prime in $\mathbb{Z}[\sqrt{-2}]$. Thus p divides $x+y \sqrt{-2}$ or p divides $x-y \sqrt{-2}$. If p divides $x+y \sqrt{-2}$, then p divides $x-y \sqrt{-2}$. Hence p divides $2 x$ and p divides $2 y$. Since p is odd, we have that p divides both x and y. Similarly, we can show that if p divides $x-y \sqrt{-2}$, then p divides both x and y. Write $x=p x_{1}$ and $y=p y_{1}$ for some integers x_{1} and y_{1}. Therefore $n=p^{2} x_{1}^{2}+2 p^{2} y_{1}^{2}=p^{2}\left(x_{1}^{2}+2 y_{1}^{2}\right)$. If $p \nmid x_{1}^{2}+2 y_{1}^{2}$, then $p^{2} \| n$. If p divides $x_{1}^{2}+2 y_{1}^{2}$, then p^{2} divides $x_{1}^{2}+2 y_{1}^{2}$. We can repeat the process until we arrive at the conclusion that p has even multiplicity in the prime factorization of n. Conversely, we know that 2 and all primes p where $p \equiv 1,3(\bmod 8)$ can be written as $a^{2}+2 b^{2}$ for some integers a and b and a product of integers of the form $a^{2}+2 b^{2}$ is still an integer of the form $a^{2}+2 b^{2}$. Therefore the result follows.

Theorem 4. If d is 2-special, then $d=m^{2}+2 n^{2}$ for some integers m and n.
Proof. Let d be 2 -special. For all integers c there exist non-zero integers x, y, and z such that $x^{2}+2 y^{2}-d z^{2}=2 d c^{2}$. So $x^{2}+2 y^{2}=d\left(z^{2}+2 c^{2}\right)$. By Lemma 3, all primes of the form $8 k+5$ or $8 k+7$ have even exponent in the prime factorization of $x^{2}+2 y^{2}$ and $2 c^{2}+z^{2}$. Thus all primes of the form $8 k+5$ or $8 k+7$ have even exponent in the prime factorization of d. Hence again by Lemma 3, we have that d is of the form $m^{2}+2 n^{2}$ for some integers m and n.

The converse of the above theorem is not true, as we will discover in the next theorem that 8 is not 2 -special.

Theorem 5. Let k be an odd integer. If d is divisible by 8 , then d is not $2 k$-special.
Proof. Let d be divisible by 8 . Suppose on the contrary that d is $2 k$-special. Then

$$
x^{2}+2 k y^{2}-d z^{2}=5
$$

for some non-zero integers x, y, and z. So $x^{2}+2 k y^{2} \equiv 5(\bmod 8)$. Since $x^{2} \equiv 0,1,4(\bmod 8)$ and $2 k y^{2} \equiv 0,2 k(\bmod 8)$, it is easy to see that $x^{2}+2 k y^{2} \equiv 0,1,4,2 k, 2 k+1,2 k+4(\bmod$ $8)$. Since k is odd, we can see that $x^{2}+2 k y^{2} \not \equiv 5(\bmod 8)$. This is a contradiction.

Next, we consider k-special numbers where k is odd.
Theorem 6. Let l and k be odd integers. If $l=x^{2}+k y^{2}$ for some positive integers x and y and $\operatorname{gcd}(x, k y)=1$, then l is k-special.

Proof. Suppose $l=x^{2}+k y^{2}$ for some positive integers x and y where $\operatorname{gcd}(x, k y)=1$. Since $\operatorname{gcd}(x, k y)=1$, there exist integers α_{0} and β_{0} such that $x \alpha_{0}+k y \beta_{0}=1$.

For a positive integer n, we define $\alpha_{n}=\alpha_{0}+n k y$ and $\beta_{n}=\beta_{0}-n x$. Then

$$
\begin{aligned}
x \alpha_{n}+k y \beta_{n} & =x\left(\alpha_{0}+n k y\right)+k y\left(\beta_{0}-n x\right) \\
& =x \alpha_{0}+x n k y+k y \beta_{0}-n k y x \\
& =x \alpha_{0}+k y \beta_{0}=1 .
\end{aligned}
$$

Let $a_{n}=x j+\alpha_{n}, b_{n}=y j+\beta_{n}$ and $c_{n}=j$, where j is an integer which will be selected later. Thus

$$
\begin{aligned}
a_{n}^{2}+k b_{n}^{2}-l c_{n}^{2} & =\left(x j+\alpha_{n}\right)^{2}+k\left(y j+\beta_{n}\right)^{2}-\left(x^{2}+k y^{2}\right) j^{2} \\
& =x^{2} j^{2}+2 x j \alpha_{n}+\alpha_{n}^{2}+k y^{2} j^{2}+2 k y j \beta_{n}+k \beta_{n}^{2}-x^{2} j^{2}-k y^{2} j^{2} \\
& =2 x j \alpha_{n}+\alpha_{n}^{2}+2 k y j \beta_{n}+k \beta_{n}^{2} \\
& =2 j\left(x \alpha_{n}+k y \beta_{n}\right)+\alpha_{n}^{2}+k \beta_{n}^{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\alpha_{n}^{2}+k \beta_{n}^{2} & =\left(\alpha_{0}+n k y\right)^{2}+k\left(\beta_{0}-n x\right)^{2} \\
& =\alpha_{0}^{2}+2 k n \alpha_{0} y+n^{2} k^{2} y^{2}+k \beta_{0}^{2}-2 n k \beta_{0} x+k n^{2} x^{2} \\
& \equiv \alpha_{0}^{2}+k \beta_{0}^{2}+n^{2} k^{2} y^{2}+k n^{2} x^{2} \quad(\bmod 2) .
\end{aligned}
$$

Therefore,

$$
\alpha_{n}^{2}+k \beta_{n}^{2} \equiv\left\{\begin{array}{ll}
\alpha_{0}^{2}+k \beta_{0}^{2} \quad(\bmod 2), & \text { if } n \text { is even } \\
\alpha_{0}^{2}+k \beta_{0}^{2}+y^{2}+x^{2}
\end{array}(\bmod 2), \quad \text { if } n\right. \text { is odd }
$$

Since l and k are odd, we can see that x and y have different parities. Thus

$$
\alpha_{n}^{2}+k \beta_{n}^{2} \equiv \begin{cases}\alpha_{0}^{2}+k \beta_{0}^{2} \quad(\bmod 2), & \text { if } n \text { is even } \\ \alpha_{0}^{2}+k \beta_{0}^{2}+1 \quad(\bmod 2), & \text { if } n \text { is odd }\end{cases}
$$

For all non-negative integers r, we obtain the following identities

$$
\begin{aligned}
a_{2 r}^{2}+k b_{2 r}^{2}-l c_{2 r}^{2} & =2 j+\alpha_{2 r}^{2}+k \beta_{2 r}^{2} \equiv 2 j+\alpha_{0}^{2}+k \beta_{0}^{2} \quad(\bmod 2) \\
a_{2 r+1}^{2}+k b_{2 r+1}^{2}-l c_{2 r+1}^{2} & =2 j+\alpha_{2 r+1}^{2}+k \beta_{2 r+1}^{2} \equiv 2 j+\alpha_{0}^{2}+k \beta_{0}^{2}+1 \quad(\bmod 2)
\end{aligned}
$$

By using both identities, we can demonstrate that all integers can be expressed in the form $a^{2}+k b^{2}-l c^{2}$. Next, we will illustrate how to choose a, b, and c so that $a b c \neq 0$.

Case 1: $\alpha_{0}^{2}+k \beta_{0}^{2} \equiv 0(\bmod 2)$.
We first consider how to represent an even integer m. We select an appropriate value for $j_{2 r}$ such that

$$
m=2 j_{2 r}+\alpha_{2 r}^{2}+k \beta_{2 r}^{2}=a_{2 r}^{2}+k b_{2 r}^{2}-l c_{2 r}^{2}
$$

where $a_{2 r}=x j_{2 r}+\alpha_{2 r}, b_{2 r}=y j_{2 r}+\beta_{2 r}$ and $c_{2 r}=j_{2 r}$. We can see that $a_{2 r} b_{2 r} c_{2 r}=0$ if and only if m is one of the following values: $\alpha_{2 r}^{2}+k \beta_{2 r}^{2}, \alpha_{2 r}^{2}+k \beta_{2 r}^{2}-2 \alpha_{2 r} / x$ or $\alpha_{2 r}^{2}+k \beta_{2 r}^{2}-2 \beta_{2 r} / y$. Since

$$
\lim _{r \rightarrow \infty} \alpha_{2 r}=\lim _{r \rightarrow \infty}-\beta_{2 r}=\infty,
$$

there exists a non-negative integer r for which $\alpha_{2 r}^{2}+k \beta_{2 r}^{2}-2 \alpha_{2 r} / x>m$ and $\beta_{2 r}<0$. As a result, we have a representation for m, namely $m=a_{2 r}^{2}+k b_{2 r}^{2}-l c_{2 r}^{2}$ where $a_{2 r} b_{2 r} c_{2 r} \neq 0$.

Next, we consider a representation for an odd integer m. Let m be an odd integer. We select an appropriate value for $j_{2 r+1}$ such that

$$
m=2 j_{2 r+1}+\alpha_{2 r+1}^{2}+k \beta_{2 r+1}^{2}=a_{2 r+1}^{2}+k b_{2 r+1}^{2}-l c_{2 r+1}^{2}
$$

where $a_{2 r+1}=x j_{2 r+1}+\alpha_{2 r+1}, b_{2 r+1}=y j_{2 r+1}+\beta_{2 r+1}$ and $c_{2 r+1}=j_{2 r+1}$. It is easy to see that $a_{2 r+1} b_{2 r+1} c_{2 r+1}=0$ if and only if m is one of the values listed below: $\alpha_{2 r+1}^{2}+k \beta_{2 r+1}^{2}, \alpha_{2 r+1}^{2}+$ $k \beta_{2 r+1}^{2}-2 \alpha_{2 r+1} / x$ or $\alpha_{2 r+1}^{2}+k \beta_{2 r+1}^{2}-2 \beta_{2 r+1} / y$. Since

$$
\lim _{r \rightarrow \infty} \alpha_{2 r+1}=\lim _{r \rightarrow \infty}-\beta_{2 r+1}=\infty
$$

there exists a non-negative integer r such that $\alpha_{2 r+1}^{2}+k \beta_{2 r+1}^{2}-2 \alpha_{2 r+1} / x>m$ and $\beta_{2 r+1}<0$. As a consequence, a representation for m is obtained as follows: $m=a_{2 r+1}^{2}+k b_{2 r+1}^{2}-l c_{2 r+1}^{2}$ where $a_{2 r+1} b_{2 r+1} c_{2 r+1} \neq 0$.

Case 2: $\alpha_{0}^{2}+k \beta_{0}^{2} \equiv 1(\bmod 2)$. This case can be handled similarly as in Case 1 . Thus l is k-special as desired.

Finally, we obtain the following consequence of Theorem 1 and Theorem 6.
Corollary 7. Let k be an odd integer. There are infinitely many k-special numbers and $2 k$-special numbers.

3 Acknowledgments

We would like to express our gratitude to the reviewers for their comments and suggestions on how to improve our manuscript.

References

[1] S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University Press, 2004.
[2] P. C. H. Lam, Representation of integers using $a^{2}+b^{2}-d c^{2}$, J. Integer Sequences 18 (2015), Article 15.8.6.
[3] A. Nowicki, The numbers $a^{2}+b^{2}-d c^{2}$, J. Integer Sequences 18 (2015), Article 15.2.3.
[4] S. Prugsapitak and N. Thongngam, The numbers $a^{2}+m b^{2}-c^{2}$, J. Integer Sequences 24 (2021), Article 21.7.7.

2010 Mathematics Subject Classification: Primary 11E25.
Keywords: sum of squares.

Received November 10 2021; revised versions received December 21 2021; April 15 2022; April 24 2022; October 18 2022; October 24 2022. Published in Journal of Integer Sequences, October 252022.

Return to Journal of Integer Sequences home page.

