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Abstract

In this paper, we present algorithms for determining the number of fixed points in

the set of monotone Boolean functions under a given permutation of input variables.

Then, using Burnside’s lemma, we determine the number of inequivalent monotone

Boolean functions of 8 variables. The number obtained is 1,392,195,548,889,993,358.

1 Introduction

A monotone Boolean function (MBF) is any Boolean function that can be implemented using
only conjunctions and disjunctions [10]. Let Dn be the set of all monotone Boolean functions
of n variables, and dn the cardinality of this set; dn is also known as the n-th Dedekind number
(sequence A000372 in the OEIS (On-Line Encyclopedia of Integer Sequences)).

Two Boolean functions are equivalent if the first function can be transformed into the
second function by any permutation of input variables. Let In be the set of all n input
variables of a Boolean function. There are n! possible permutations of In—therefore there
are at most n! MBFs in one equivalence class. Let Rn denote the set of all equivalence
classes of Dn and let rn denote the cardinality of this set; rn is described by OEIS sequence
A003182.

In 1985, Chuchang and Shoben [4] came up with the idea to calculate the rn using
Burnside’s lemma. In the following year they calculated r7 [5]. Their result was confirmed
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by Stephen and Yusun in 2012 [10]. In 2018, Assarpour [1] gave lower bound of r8: namely,
1,392,123,939,633,987,512.

In 1990, Wiedemann calculated d8 [11]. His result was confirmed in 2001 by Fidytek,
Mostowski, Somla, and Szepietowski [8].

In this paper we develop algorithms for counting fixed points in Dn under a given permu-
tation of In. Then, we use Burnside’s lemma to calculate r8 = 1, 392, 195, 548, 889, 993, 358.

n dn rn
0 2 2

1 3 3

2 6 5

3 20 10

4 168 30

5 7,581 210

6 7,828,354 16,353

7 2,414,682,040,998 490,013,148

8 56,130,437,228,687,557,907,788 1,392,195,548,889,993,358

Table 1: Known values of dn and rn.

2 Idea of calculating rn using Burnside’s lemma

Burnside’s lemma is a standard combinatorial tool for counting the orbits of set under group
action. Let G denote a finite group that acts upon a set X. Burnside’s lemma asserts that
the number of orbits |X/G| with respect to the action equals the average size of the sets
Xg = {x ∈ X | gx = x} when ranging over each g ∈ G [6, 7]:

|X/G| =
1

|G|

∑

g∈G

|Xg|. (1)

Define Sn to be the symmetric group of In. Each permutation π ∈ Sn can be written as a
product of disjoint cycles. Define the cycle type of π to be the tuple of lengths of its disjoint
cycles in increasing order. For example, the cycle type of permutation π = (1 2)(3 4 5) is
(2, 3), and its total length is 5. The number of different cycle types in Sn for the appropriate
value of n is described by the OEIS sequence A000041. For n = 7 there are 15 cycle types,
and for n = 8 there are 22 cycle types (see the detailed list in Table 6 and Table 7).

In 1985, Chuchang and Shoben [4] presented the following application of Burnside’s
lemma to calculate rn:

rn =
1

n!

∑

π∈Sn

|φn(π)|, (2)

where
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• rn = number of equivalence classes in Dn

• φn(π) = set of all fixed points in Dn under permutation π ∈ Sn.

They also used the fact that |φn(π)| is invariant under permutations with the same cycle
type (also see [7, Remark 287]). We have

rn =
1

n!

k∑

i=1

µiφ(πi), (3)

where

• k = number of different cycle types in Sn

• i = index of the cycle type

• µi = number of permutations π ∈ Sn with cycle type i

• πi = representative permutation π ∈ Sn with cycle type i.

The formula for determining µ for each cycle type is as follows:

µi =
n!

(lk11 · lk22 · · · lkrr )(k1! · k2! · · · kr!)
(4)

with cycle type of r various lengths of cycles, and k1 cycles of length l1, k2 cycles of length
l2, . . . , kr cycles of length lr [7, Proposition 69]. Note that in this formula 1-cycles are not
suppressed. Precomputed values of µ can be found in the OEIS sequence A181897.

3 Algorithms counting fixed points in Dn under a given

permutation of In

The most difficult subproblem to compute rn using Burnside’s lemma is fast counting the
fixed points of Dn under a given permutation of In.

Let Bn denote the power set of In. Each element in Bn represents one of 2n possible
inputs of the Boolean function. Every permutation acting on In regroups elements in Bn and
Dn. We use the notation ∅, x1, x2, x1x2, x3, . . . , x1x2x3 · · · xn to describe elements in Bn. We
represent each Boolean function of n variables by the binary string of length 2n. Each i-th
bit of function in this representation is Boolean output where the argument is an element
from Bn standing in the same position.

For example, consider the following truth table:

3

https://oeis.org/A181897


∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

0 0 0 0 1 1 1 1

Table 2: MBF of three variables that returns true iff x3 is true.

MBF from Table 2 can be represented as integer 15 for more convenient computer pro-
cessing. All 6 MBFs in D2 written as integers are: 0, 1, 3, 5, 7 and 15.

For counting fixed points in Dn after acting with a specific permutation π ∈ Sn it is
necessary to lift π ∈ Sn to π′ ∈ SBn . For example, consider permutation π = (1 2 3) and
look at how it regroups elements in B3:

0 1 2 3 4 5 6 7

(1) ∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

(1 2 3) ∅ x3 x1 x1x3 x2 x2x3 x1x2 x1x2x3

Table 3: Regrouping elements in B3 under π = (1 2 3).

Therefore π = (1 2 3) lifts to π′(0)(1 2 4)(3 6 5)(7). Each cycle designates points
belonging to the same orbit. Points in each orbit are set to the same value in each x ∈ φn(π).

In this case, two conditions must be met: each function in φn(π) under π = (1 2 3) has
to have:

• 1-st, 2-nd and 4-th bit set on the same value

• 3-rd, 5-th and 6-th bit set on the same value

Hence, all members of φ3(π) under π = (1 2 3) can be simply found by iteration through
all 20 elements in D3 and checking which are satisfying the above conditions:

n-th bit of MBF

MBF written as integer 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

23 0 0 0 1 0 1 1 1

127 0 1 1 1 1 1 1 1

255 1 1 1 1 1 1 1 1

Table 4: List of five fixed points in D3 under π = (1 2 3).
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3.1 Generating the set of all fixed points in Dn under permutation

of cycle type of total length n

Instead of doing a naive lookup in Dn for functions satisfying given conditions, we can
generate φn(π) directly.

Given a poset P = (X,≤), downset of P is such a subset S ⊆ X that for each x ∈ S all
elements from X ≤ x ∈ S. Dn is equivalent to the set of all downsets of Bn—therefore each
element in Dn is equivalent to some downset of Bn [3].

Two conditions must be met to generate MBF which is the fixed point in Dn under the
given permutation π:

• All points in the same orbit of π′ should be set to the same value—0 or 1.

• Value of points must respect the order of set inclusion.

For example, consider permutation π = (1 2)(3 4). After lifting it into permutation of
B4, we get π′ = (0)(1 2)(3)(4 8)(5 10)(6 9)(7 11)(12)(13 14)(15).

Now, let us transform this permutation into a binary poset of orbits ordered by set
inclusion. Orbits in the following example are represented by their smallest representative:

0

1

3

4

5 6

7

12

13

15

Figure 1: Poset of orbits of B4 under π = (1 2)(3 4) ordered by set inclusion.

Now it is only necessary to generate all downsets of this poset. In this case, the number
of all downsets is 28:
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The set of structures thus obtained is equivalent to φ4(π) under π = (1 2)(3 4). One can
unpack the downsets obtained thereby to the integer representation of MBF of 2n length.

This algorithm is being used only to generate φn(π) when π has a cycle type of total
length n—for example, we use Algorithm 1 to generate φ4(π) under π = (1 2)(3 4), but to
generate φ5(π) under the same permutation it is cheaper computationally to use Algorithm
2.

Algorithm 1 Generate φn(π) under permutation of cycle type of total length n

Input: Cycle type i of total length n
Output: Set S = φn(π)

1: Determine representative π ∈ Sn of cycle type i
2: Lift π into π′ ∈ SBn

3: Generate set Orbi containing all orbits in π′

4: Order Orbi into poset P by set inclusion
5: Initialize set S of downsets of P
6: Add two downsets: {} and {0} to S
7: for all elements a ∈ P do

8: for all elements b ∈ S do

9: if (b ∪ a) is downset of P then

10: Add downset (b ∪ a) to S
11: end if

12: end for

13: end for

3.2 Generating the set of all fixed points in Dn+1 under permuta-

tion of cycle type of total length n

Each ω in Dn+1 can be split into two functions (α, β) from Dn. Moreover, there is a relation
α � β, which means that for every i-th bit αi ≤ βi [2, 8]. For all π ∈ Sn, as φn+1(π) is subset
of Dn+1, each ω in φn+1(π) can be split into two functions (α, β).

Constructing ω from α is simply adding new variable (xn+1) to α. β contains data about
each possible intersection of α with (xn+1). Hence, α clearly belongs to φn(π)—same as β,
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as its variables are regrouped in the same way. Only difference between them is additional
variable (xn+1) which is fixed point of π, added to each element in β.

0 1 2 3 4 5 6 7
(1) ∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

(1 2) ∅ x2 x1 x1x2 x3 x2x3 x1x3 x1x2x3

Table 5: Regrouping of elements in B3 under π = (1 2).

Hence, we can take advantage of well-known algorithms for determining Dedekind num-
bers (for example [8, 11]), but instead of giving Dn on input, φn(π) will be given.

To construct Algorithm 2 we use a similar approach that was used by Fidytek et al. [8,
Algorithm 1]. Note that any algorithm from [8] will do the job, however, other algorithms
don’t return a set, but its cardinality.

Algorithm 2 Generating φn+1(π) under permutation π of cycle type of total length n

Input: Cycle type i of total length n
Output: Set S = φn+1(π)

1: Use Algorithm 1 to generate S ′ = φn(π)
2: Convert all elements in S ′ to integers of length 2n bits
3: Initialize set S of integers of length 2n+1 bits
4: for all elements a ∈ S ′ do

5: for all elements b ∈ S ′ do

6: if (a | b) = b then ⊲ “|” is bitwise “OR”
7: Add integer ((a << 2n) | b) to S ⊲ “<<” is logical shift
8: end if

9: end for

10: end for

3.3 Determining |φ8(π)| under π = (1 2)(3 4)(5 6)(7 8)

Determining |φ8(π)| under π = (1 2)(3 4)(5 6)(7 8) is too memory-intensive for Algorithm
1 considering the resources at hand. The width of the poset of orbits of the superset of
π = (1 2)(3 4)(5 6)(7 8) is 38, so the weak lower bound of |φ8(π)| is 238 = 274877906944.
In practice, even the machine with 128GB RAM is insufficient to store such a number of
downsets—so there was a need to develop a better algorithm for this particular case.

The idea of a cheaper calculation of this number was based on Wiedemann’s approach
[11]. He used the fact that each function from Dn+2 can be split into 4 functions from Dn:
αw, βw, γw, δw, and there are following dependencies: αw � βw � δw, αw � γw � δw.

We use a similar approach based on splitting each function from φn+2(π) into 4 parts.
We focus on a special case—when π ∈ Sn+2 is the product of disjoint 1-cycles and at least
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one 2-cycle. Let τ denote such the permutation. In other words, τ = τ1 · · · τx, and τx is
2-cycle: (n+1 n+2). Let σ denote permutation such that σ ◦ τx = τ .

We can split each function from φn+2(π) into the following functions: α, δ ∈ φn(σ) and
β, γ ∈ Dn. Moreover, α � β � δ, α � γ � δ, and γ = β((1 2)).

For example, τ = (1 2)(3 4) lifts to τ ′(0)(1 2)(3)(4 8)(5 10)(6 9)(7 11)(12)(13 14)(15).
σ = (1 2). Using the above approach we break it down into three parts:

• α as (0)(1 2)(3); being function from φ2(σ)

• βγ as (4 8)(5 10)(6 9)(7 11) being pairs of functions from Dn such that γ = β((1 2))

• δ as (12)(13 14)(15), being function from φ2(σ).

Knowing how each function in φn+2(τ) can be split into two functions from Dn and two
functions from φn(σ), we can derive Algorithm 3:

Algorithm 3 Determining |φn+2(τ)|

Input: Dn and φn(σ)
Output: |φn+2(τ)|

1: Initialize k = 0,
2: for all β ∈ Dn do

3: Determine γ = β((1 2))
4: Initialize down = 0, up = 0
5: for all α ∈ φn(σ) do

6: if (α � (β | γ)) then ⊲ “|” is bitwise “OR”
7: down = down + 1
8: end if

9: end for

10: for all δ ∈ φn(σ) do

11: if ((β & γ) � δ) then ⊲ “&” is bitwise “AND”
12: up = up + 1
13: end if

14: end for

15: k = k + up · down
16: end for

As all above-described algorithms are sufficient to count |φ8(π)| for all π ∈ S8, we do not
explore a more generalized case of Algorithm 3—when π has at least one disjoint 2-cycle.
Performing calculations using a similar approach should speed-up counting, but the relation
between β and γ is more complex than in above-described special case. However, derivation
of such a generalized algorithm seems essential in the future computation of r9–but it will
only be countable after computation of d9.
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4 Implementation and results

The algorithms were implemented in Java and run on a computer with an Intel Core i7-
9750H processor. The results were tested and compared with the results of Chuchang and
Shoben [5] for r7. We found two misprints in their paper, clearly made during the typing
process. Namely, it says that µ11 is 540 (instead of 504), and φ7(π3) is 20688224 (instead of
2068224). We give therefore a complete, correct table of detailed calculation results for r7.
The total computation time of r8 was approximately a few minutes (with d8 precomputed).

i πi µi φ7(πi)

1 (1) 1 2414682040998

2 (12) 21 2208001624

3 (123) 70 2068224

4 (1234) 210 60312

5 (12345) 504 1548

6 (123456) 840 766

7 (1234567) 720 101

8 (12)(34) 105 67922470

9 (12)(345) 420 59542

10 (12)(3456) 630 26878

11 (12)(34567) 504 264

12 (123)(456) 280 69264

13 (123)(4567) 420 294

14 (12)(34)(56) 105 12015832

15 (12)(34)(567) 210 10192

r7 =
1

5040

k=15∑

i=1

µiφ7(πi) = 490013148

Table 6: Detailed calculation results for r7.
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i πi µi φ8(πi)

1 (1) 1 56130437228687557907788

2 (12) 28 101627867809333596

3 (123) 112 262808891710

4 (1234) 420 424234996

5 (12345) 1344 531708

6 (123456) 3360 144320

7 (1234567) 5760 3858

8 (12345678) 5040 2364

9 (12)(34) 210 182755441509724

10 (12)(345) 1120 401622018

11 (12)(3456) 2520 93994196

12 (12)(34567) 4032 21216

13 (12)(345678) 3360 70096

14 (123)(456) 1120 535426780

15 (123)(4567) 3360 25168

16 (123)(45678) 2688 870

17 (1234)(5678) 1260 3211276

18 (12)(34)(56) 420 7377670895900

19 (12)(34)(567) 1680 16380370

20 (12)(34)(5678) 1260 37834164

21 (12)(345)(678) 1120 3607596

22 (12)(34)(56)(78) 105 2038188253420

r8 =
1

40320

k=22∑

i=1

µiφ8(πi) = 1392195548889993358

Table 7: Detailed calculation results for r8.
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