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Abstract

By applying an existing characterization for a positive integer to be represented
as a sum of two cubes of positive integers, we construct an elementary proof of Ra-
manujan’s famous result—namely, that the number 1729 is the smallest positive integer
represented as a sum of two cubes in two different ways. Similarly, by applying an ex-
isting characterization for a positive integer to be represented as a difference of cubes
of two positive integers, we also apply this characterization to construct the gener-
ating function for a sequence of integer ordered pairs (an, bn) 6= (a′n, b

′

n) satisfying
a3n + b3n = a′ 3n + b′ 3n , which are distinct from Ramanujan’s “near integer” solutions to
Fermat’s equation—namely, those satisfying a3n + b3n = c3n + (−1)n.

1 Introduction

Anyone familiar with the mathematical collaboration between Hardy and Ramanujan, is
probably aware of the so-called Hardy-Ramanujan number 1729. As legend would have it,
while visiting Ramanujan in hospital, Hardy remembered that he had ridden in a taxi cab
numbered 1729 and remarked that the number seemed a rather dull one. “No,” Ramanujan
replied, “it is a very interesting number, it is the smallest number expressible as the sum
of two cubes in two different ways.” In particular, Ramanujan was stating the fact that
1729 = 103 + 93 = 123 + 13.
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Given Ramanujan’s prodigious calculating ability, one may wonder whether he deduced
this arithmetic property of the number 1729 after a short reflection, or knew of the result
from his earlier research work. It would seem that the later is most likely the case. The
mathematician Ken Ono and his graduate student Sarah Trebal-Leder discovered within one
of Ramanujan’s notebooks his work on “near integer” solutions to the Diophantine equation
a3+ b3 = c3 [3]. These are defined as the integer triples (an, bn, cn), that satisfy the equation
a3
n
+b3

n
= c3

n
+(−1)n. Indeed, Ramanujan showed that infinitely many such triples (an, bn, cn)

exist, and encapsulated this result by producing the generating functions for the sequences
an, bn and cn as follows:

x2 + 53x+ 9

x3 − 82x2 − 82x+ 1
= a0 + a1x+ a2x

2 + · · ·

2x2 − 26x− 12

x3 − 82x2 − 82x+ 1
= b0 + b1x+ b2x

2 + · · ·

2x2 + 8x− 10

x3 − 82x2 − 82x+ 1
= c0 + c1x+ c2x

2 + · · · .

Setting x = 0 in the above generating functions produces the triple

(a0, b0, c0) = (9,−12,−10),

from which one can deduce that 93+(−12)3 = (−10)3+(−1)0; that is, 93+103 = 13+123 =
1729. Thus, as all triples (ai, bi, ci), for i = 2, 4, . . ., are such that ai > 9, |bi| > 12 and
|ci| > 10, Ramanujan was able to uncover the now famous arithmetic property of the number
1729.

In this paper, we shall provide an alternate but elementary proof of this property of the
so-called Hardy-Ramanujan number 1729. We do this by first noting both a necessary and
sufficient condition for a positive integer to be represented as a sum of two positive integer
cubes, obtained by Broughan [1]. Applying this characterization, one can then determine
a closed-form expression for those integers of the form N = a3 + b3, for some a, b ∈ N,
with a ≥ b and having a prescribed divisor d. As the set of such integers, denoted N(d), is
finite, we can then determine the largest divisor d, such that the minimum element of N(d)
exceeds the number 1729. Thus, by considering the pairwise intersections between these
finite collection of sets having distinct sums of cubes representations, one can deduce the
arithmetic property of the Hardy-Ramanujan number.

By noting an analogous characterization for a positive integer N to be represented as a
difference of two positive integer cubes due to Broughan [1], we can show that the closed-form
expression for such N , having a prescribed odd divisor d, is identical to the formula given in
the above case for sums of cubes. Equating the two closed-form expressions generating the
elements in the sets N(1) and N(7), which are now countably infinite, we can determine those
integers N that can be represented as a difference of two cubes in two different ways, via
the solution of the Pell-like equation X2 − 7Y 2 = 114. As the solutions of such Diophantine
equations can be recursively generated, one can then easily construct the generating functions
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for the sequence terms an, a
′

n
, bn, b

′

n
such that N = a3

n
− a′ 3

n
= b′ 3

n
− b3

n
. This yields ordered

pairs of positive integers (an, bn) 6= (a′
n
, b′

n
), satisfying a3

n
+ b3

n
= a′ 3

n
+ b′ 3

n
, which are distinct

from Ramanujan’s “near integer” solutions to the Fermat equation a3 + b3 = c3.

2 Main result

We begin by noting two similar characterizations, one for the representation of an integer
N as a difference of two positive integer cubes, and the other for the representation of an
integer N as a sum of two positive integer cubes, by Broughan [1]. This characterizations
follows from an application of the standard algebraic identities for sums and differences of
two cubes—namely, a3 + b3 = (a+ b)(a2 − ab+ b2) and a3 − b3 = (a− b)(a2 + ab+ b2), where
the divisor d of the integer N is either d = a+ b or d = a− b, respectively.

Theorem 1. An integer N > 1 is expressible as a difference of cubes of two positive integers,
that is, N = a3 − b3 for some a, b,∈ N, if and only if there exists a divisor d of N with
1 ≤ d <

3
√
N such that N

d
− d2 = 3q, for some q ∈ N and d2 + 4q a perfect square.

Similarly, an integer N > 1 is expressible as a sum of cubes of two positive integers,
that is, N = a3 + b3 for some a, b,∈ N, if and only if there exists a divisor d of N with
3
√
N < d ≤ N such that d2 − N

d
= 3q, for some q ∈ N and d2 − 4q a perfect square.

Before establishing the main result, we shall first deduce an unusual property of a par-
ticular elliptic curve as follows:

Corollary 2. Apart from (0,±1), the elliptic curve

y2 = 36x3 + 36x2 + 12x+ 1, (1)

passes through no other lattice point of Z× Z.

Proof. We first note, as 36x2 + 36x + 12 > 0 for all x, that 36x3 + 36x2 + 12x + 1 < 0 for
x ≤ −1. Thus, if one assumes the elliptic curve in (1) passes through another lattice point
(k,m) other than (0,±1), then k must be an integer greater than or equal to one. Setting
d = 1 and q = 9k3 + 9k2 + 3k, observe from our assumption and (1) that d2 + 4q = m2;
that is, that d2 + 4q is a perfect square. Moreover, if one defines the integer N > 1 via
the equation N

d
− d2 = 3q, then N = (3k + 1)3, and from Theorem 1 N can be represented

as N = a3 − b3, where a, b ∈ N. Thus (3k + 1)3 + b3 = a3, a contradiction to Fermat’s
last theorem. Consequently the elliptic curve in (1) can only pass through the lattice points
(0,±1) in Z× Z.

We now establish the main result, where we give a closed-form expression for those
integers N that can be represented as a sum or difference of two cubes, having a prescribed
divisor.
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Theorem 3. Suppose an integer N > 1 can be represented as N = a3+b3, for some a, b ∈ N,
where a ≥ b, with a prescribed divisor d satisfying the criterion of Theorem 1. Then for d

odd we have

N =
d

12
(9(2r + 1)2 + 3d2), (2)

with 0 ≤ r < d−1
2
, while for d even we have

N =
d

12
(9(2r)2 + 3d2), (3)

with 0 ≤ r < d

2
.

Alternatively, if an integer N > 1 can be represented as N = a3 − b3, for some a, b ∈ N,
where a > b with a prescribed divisor d, satisfying the criterion of Theorem 1, then for d odd,
N is of the form in (2) with r > d−1

2
, and for d even, N is of the form in (3) with r > d

2
.

Proof. Suppose an integer N > 1 can be represented as N = a3+ b3 for some a, b ∈ N, where
a ≥ b with a prescribed divisor d of N satisfying the criteria of Theorem 1. Consider the
resulting pair of simultaneous equations

a+ b = d

a2 − ab+ b2 =
N

d
.

Upon solving for a > 0, this yields

a =
3d+

√

12N

d
− 3d2

6
, (4)

where we may choose the positive root as
√

12N

d
− 3d2 =

√

9(a− b)2 < 3d, while 3d−3(a−b)
6

=

b. Furthermore, the expression in (4) results in a positive integer, as 3(a − b) = 3(d − 2b)
and 3d have the same parity. Thus for d odd, setting 12N

d
− 3d2 = 9(2r + 1)2 for some

r ∈ N ∪ {0}, one finds N is given by (2). However, as a = 3d+3(2r+1)
6

< d, the values of r
must be restricted to 0 ≤ r < d−1

2
.

Similarly for d even, setting 12N

d
− d2 = 9(2r)2, for some r ∈ N ∪ {0}, one finds N is

given by (3). However, as a = 3d+3(2r)
6

< d, the values of r must be restricted to 0 ≤ r < d

2
.

Now suppose an integer N > 1 can be represented as N = a3 − b3, for some a, b ∈ N,
where a > b and having an odd divisor d of N , satisfying the criterion of Theorem 1. Then
a− b = d and a2 + ab+ b2 = N

d
. By employing an analogous argument to the one above, we

can show that a is again given by (4) as
√

12N

d
− 3d2 =

√

9(a+ b)2 > 3d, with N given by

(2), but now for values of r > d−1
2
. Similarly, for the case of d even, we can show that N is

again given by (3), but now for values of r > d

2
.

4



In what follows, we shall use the first result of Theorem 3 to determine those positive
integers less than or equal to 1729 that can be represented as a sum of cubes of two positive
integers in two different ways. As a result we can deduce the following result of Ramanujan:

Corollary 4. The smallest positive integer that can be represented as a sum of two cubes of
two positive integers in two different ways is 1729.

Proof. From the equality N = a3+b3 = (a+b)(a2−ab+b2), if a number N can be represented
as a sum of two positive cubes, with d = a+ b odd, then N = d((d− b)2+ b(d− b)+ b2) must
be odd, irrespective of the parity of b, while clearly N is even when d is even. In addition
from equation (2), observe for all d ≥ 19 and odd, N ≥ 1843 > 1729 for all r ≥ 0, while
from equation (3) for d ≥ 20 and even N ≥ 2000 > 1729 for all r ≥ 0. Now as d = 1 = a+ b

has no solutions in positive integers a, b, we need only for d odd, examine the possibility of
equality between the following algebraic expressions for N :

d = 3, N = 9r2 + 9r + 9 ≡ 0 (mod 3) (5)

d = 5, N = 15r2 + 15r + 35 ≡ 2 (mod 3) (6)

d = 7, N = 21r2 + 21r + 91 ≡ 1 (mod 3) (7)

d = 9, N = 27r2 + 27r + 189 ≡ 0 (mod 3) (8)

d = 11, N = 33r2 + 33r + 341 ≡ 2 (mod 3) (9)

d = 13, N = 39r2 + 39r + 559 ≡ 1 (mod 3) (10)

d = 15, N = 45r2 + 45r + 855 ≡ 0 (mod 3) (11)

d = 17, N = 51r2 + 51r + 1241 ≡ 2 (mod 3) (12)

d = 19, N = 57r2 + 57r + 1729 ≡ 1 (mod 3), (13)

and for d even, examine the possibility of equality between the following expressions for N :

d = 2, N = 6r2 + 2 ≡ 2 (mod 6) (14)

d = 4, N = 12r2 + 16 ≡ 4 (mod 6) (15)

d = 6, N = 18r2 + 54 ≡ 0 (mod 6) (16)

d = 8, N = 24r2 + 128 ≡ 2 (mod 6) (17)

d = 10, N = 30r2 + 250 ≡ 4 (mod 6) (18)

d = 12, N = 36r2 + 432 ≡ 0 (mod 6) (19)

d = 14, N = 42r2 + 686 ≡ 2 (mod 6) (20)

d = 16, N = 48r2 + 1024 ≡ 4 (mod 6) (21)

d = 18, N = 54r2 + 1458 ≡ 0 (mod 6). (22)

Let N(d) denote the finite set of positive integers generated either by equation (2) or
(3), for the restricted values of r given by 0 ≤ r < d−1

2
or 0 ≤ r < d

2
, respectively. Clearly

one needs only compare those sets N(d), where N satisfies the same congruence modulo 3
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or 6. Moreover, as each of the expressions for N are clearly monotone increasing for r ≥ 0,
it will suffice for each of the three divisors d1 < d2 < d3, corresponding to the same residue
class, to compare the maximum element of N(d1) with the minimum element of N(d2),
and the maximum element of N(d2) with the minimum element of N(d3), to ascertain any
pairwise intersections between the sets N(d1), N(d2), and N(d3). To this end, if one denotes
the minimum and maximum elements of N(d) by Nmin(d) and Nmax(d), respectively, then
Nmin(d) occurs when r = 0, while Nmax(d) occurs when r = d−1

2
− 1 and r = d

2
− 1, for d odd

and even, respectively. We now need only consider the following two cases:

Case 1: d odd: Considering equations (5), (8), and (11) one finds Nmax(3) = 9 < Nmin(9) =
189 and Nmax(9) = 513 < Nmin(15) = 855, so there are no pairwise intersection between the
sets N(3), N(9) and N(15). Considering equations (7), (10), and (13) one finds Nmax(7) =
217 < Nmin(13) = 559, while Nmax(13) = Nmin(19) = 1729 and so N(13) ∩N(19) = {1729}.
Moreover, from (4) one finds that for 1729 ∈ N(13), 1729 = 13+123, while for 1729 ∈ N(19)
one has 1729 = 93+103. Finally considering equations (6), (9), and (12) one finds Nmax(5) =
65 < Nmin(11) = 341 and Nmax(11) = 1001 < Nmin(17) = 1241, so there are no pairwise
intersection between the sets N(5),N(11) and N(17).

Case 2: d even: Considering equations (16), (19), and (22), one finds Nmax(6) = 126 <

Nmin(12) = 432 and Nmax(12) = 1332 < Nmin(18) = 1458, so there are no pairwise inter-
section between the sets N(6), N(12), and N(18). Considering equations (14), (17), and
(20), one finds Nmax(2) = 2 < Nmin(8) = 128 and Nmax(8) = 344 < Nmin(14) = 686, so
there are no pairwise intersection between the sets N(2), N(8), and N(14). Finally con-
sidering equations (15), (18), and (21), one finds Nmax(4) = 28 < Nmin(10) = 250 and
Nmax(10) = 730 < Nmin(16) = 1024, so there are no pairwise intersection between the sets
N(4), N(10), and N(16).

Thus N = 1729 is the positive integer with the desired arithmetic property.

In what follows, we shall use the second result of Theorem 3, to derive the generating
functions for an infinite subset of those pairs of positive integers (An, Bn) 6= (A′

n
, B′

n
) satis-

fying A3
n
+ B3

n
= A′

n

3 + B′

n

3, which are distinct from Ramanujan’s “near integer” solutions
to a3

n
+ b3

n
= c3

n
+ (−1)n.

Corollary 5. There are infinitely many pairs of positive integers (An, Bn) and (A′

n
, B′

n
) with

(An, Bn) 6= (A′

n
, B′

n
) and such that A3

n
+ B3

n
= A′ 3

n
+ B′ 3

n
. Moreover, an infinite subset of

these pairs of positive integers denoted (an, bn), (a
′

n
, b′

n
), respectively, are the coefficients of

xn for n ≥ 1, in the following generating functions:

∞
∑

n=0

anx
n =

34x2 − 47x+ 6

(1− x)(x2 − 16x+ 1)

∞
∑

n=0

bnx
n =

−16x2 + 68x− 3

(1− x)(x2 − 16x+ 1)
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∞
∑

n=0

a′
n
xn =

−9x2 − 44x+ 4

(1− x)(x2 − 16x+ 1)

∞
∑

n=0

b′
n
xn =

33x2 − 31x+ 5

(1− x)(x2 − 16x+ 1)
.

Proof. Recall that the infinite set of positive integers N(d) that can be represented as a
difference of two cubes of two positive integers, having a prescribed odd divisor d, is given
by

N =
d

12
(9(2r + 1)2 + 3d2),

where r > d−1
2
. Setting d = 1 and d = 7, one finds the elements of N(1) and N(7) are given

by N = 3r2 + 3r + 1 ≡ 1 (mod 3) and N = 21s2 + 21s + 91 ≡ 1 (mod 3), with r > 0 and
s > 3, respectively. Upon equating these two quadratic forms and completing the square,
yields the Diophantine equation X2−7Y 2 = 114, where X = 2r+1 > 1 and Y = 2s+1 > 7.

To help generate an infinite subset of integer solutions to X2 − 7Y 2 = 114, we first
examine the elements of the real quadratic field Q(

√
7) = {a + b

√
7 : a, b ∈ Q}. The norm

of an element a+ b
√
7 ∈ Q(

√
7) is defined as

N(a+ b
√
7) = (a+ b

√
7)(a− b

√
7) = a2 − 7b2,

and a specific element u+ v
√
7 ∈ Q(

√
7), is called a unit if N(u+ v

√
7) = 1. Thus it suffices

to find an infinite subset of elements X + Y
√
7 ∈ Q(

√
7), whose norm N(X + Y

√
7) = 114.

Now in general, a unit u + v
√
d ∈ Q(

√
d), where d is a positive non-square integer, can act

on an element X + Y
√
d ∈ Q(

√
d), having a norm N(X + Y

√
d) = k, for some k ∈ Z, to

produce another element in Q(
√
d), again having a norm equal to k. This action is defined

by the following algebraic identity

(uX + dvY )2 − d(vX + uY )2 = (u2 − dv2)(X2 − dY 2) = k, (23)

whereN(u+v
√
d) = 1 andN(X+Y

√
d) = k. This is known as the Brahmagupta identity [2].

Thus by fixing a unit u+ v
√
d ∈ Q(

√
d) and an element X + Y

√
d ∈ Q(

√
d), corresponding

to a minimal integer solution to u2 − dv2 = 1 and X2 − dY 2 = k, respectively, one can by
repeated application of (23), produce an infinite subset of integer solutions to X2−dY 2 = k.
Now in the case of d = 7, one finds that the minimal integer solutions to X2−7Y 2 = 114 and
u2 − 7v2 = 1, are (X, Y ) = (11, 1) and (u, v) = (8, 3), respectively. Setting d = 7, k = 114,
u = 8, v = 3, X = Xn and finally Y = Yn in (23), we can generate from the left hand side of
(23) another solution (Xn+1, Yn+1) to X2 − 7Y 2 = 114 via the coupled recurrence relations

Xn+1 = 8Xn + 21Yn (24)

Yn+1 = 3Xn + 8Yn, (25)

with (X0, Y0) = (11, 1). A simple parity check establishes that the integer solutions (Xn, Yn)
are an ordered pair of odd integers, with Xn > 1 and Yn > 7, for n ≥ 1. Setting F (x) =
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∑

∞

n=0 Xnx
n and G(x) =

∑

∞

n=0 Ynx
n, one finds after multiplying (24) and (25) by xn+1 and

summing the index variable n over all non-negative integers, that

11 = (1− 8x)F (x)− 21xG(x)

1 = −3xF (x) + (1− 8x)G(x).

Upon solving these pairs of simultaneous equations for F (x) and G(x), one deduces that

F (x) =
−67x+ 11

x2 − 16x+ 1
and G(x) =

25x+ 1

x2 − 16x+ 1
.

Now from definition and (4), the elements of the set N(1) are of the form a3 − b3, with
a = 1+Xn

2
and b = a− 1 = Xn−1

2
, while the elements of the set N(7) are of the form a3 − b3,

with a = 7+Yn

2
and b = a− 7 = Yn−7

2
. Moreover, recall that

(

1 +Xn

2

)3

−
(

Xn − 1

2

)3

=

(

7 + Yn

2

)3

−
(

Yn − 7

2

)3

. (26)

Clearly, the generating functions for the sequences Xn+1
2

and Xn−1
2

are given by

1

2

(

F (x) +
1

1− x

)

=
34x2 − 47x+ 6

(1− x)(x2 − 16x+ 1)

and
1

2

(

F (x)− 1

1− x

)

=
33x2 − 31x+ 5

(1− x)(x2 − 16x+ 1)
,

respectively. Similarly, the generating functions for the sequences Yn+7
2

and Yn−7
2

are given
by

1

2

(

G(x) +
7

1− x

)

=
−9x2 − 44x+ 4

(1− x)(x2 − 16x+ 1)

and
1

2

(

G(x)− 7

1− x

)

=
−16x2 + 68x− 3

(1− x)(x2 − 16x+ 1)
,

respectively. After setting an = Xn+1
2

, a′
n
= Yn+7

2
, bn = Yn−7

2
and b′

n
= Xn−1

2
one finds upon

rearranging (26) that the result is now established.

By repeated application of the coupled recurrence relations in (24) and (25), we can
produce examples of arithmetic identities, showing equal sums of two cubes as follows:

553 + 173 = 243 + 543

8673 + 3243 = 3313 + 8663

138103 + 52163 = 52233 + 138093.
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