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Abstract

In the present paper, we generalize an identity for some Appell polynomials, from

which we deduce many explicit formulas for generalized Bernoulli and Euler numbers

and polynomials.

1 Introduction and main result

The classical and generalized Bernoulli numbers and polynomials as well as the classical
and generalized Euler numbers and polynomials have been extensively studied [4, 8]. In the
present paper, we attempt to improve some results related to Bernoulli and Euler polynomials
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and extend a generalization of the Appell polynomials identity published in [2]. Let Z, N
and C denote the set of integers, non-negative integers and complex numbers respectively.
A polynomial sequence (An(x))n∈N of C[x] is an Appell polynomial sequence [1] if A0(x) is a
non-zero constant polynomial and A′

n(x) = nAn−1(x) for n ≥ 1. The exponential generating
series of the sequence (An(x))n∈N can be formulated as follows:

∞∑

n=0

An(x)
zn

n!
= S(z)exz,

where S(z) is a formal power series of C[[z]] with non-zero constant term. We focus now on
the following theorem which generalizes [2, Theorem 1.1] and adds other properties.

Theorem 1. Let S(z) =
∞∑

n=0

an
zn

n!
be a formal series of C[[z]] with a0 = 1. For every α ∈ C

and (A
(α)
n (x))n∈N consider the Appell polynomial sequence defined by

∞∑

n=0

A(α)
n (x)

zn

n!
= Sα(z)exz. (1)

Then for all λ, α ∈ C, ℓ ∈ Z, and non-negative integers n, m, with m ≥ n, we have

A(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
A(−kℓ)

n (x+ λℓ(α + k)) (2)

and for m ≥ ⌊n
2
⌋, we have

A(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
A(−kℓ)

n (x+ a1ℓ(α + k)). (3)

By using Relation (2) for λ = 0 and ℓ = 1, we obtain [2, Theorem 1.1].

2 Applications

In this section, we give some applications of Theorem 1. Let us first recall that several
sequences of remarkable polynomials in C[x] are Appell polynomial sequences. Indeed, it is

clear that for α ∈ C, the sequences of generalized Bernoulli polynomials (B
(α)
n (x))n∈N and

generalized Euler polynomials (E
(α)
n (x))n∈N defined by (see [9, 14])

∞∑

n=0

B(α)
n (x)

zn

n!
=

(
z

ez − 1

)α

exz (4)
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and
∞∑

n=0

E(α)
n (x)

zn

n!
=

(
2

ez + 1

)α

exz (5)

are Appell polynomial sequences, associated with the formal series
(

z
ez−1

)α
,
(

2
ez+1

)α
respec-

tively. The classical Bernoulli polynomials Bn(x) and classical Euler polynomials En(x) are

defined by Bn(x) = B
(1)
n (x) and En(x) = E

(1)
n (x).

For k ∈ N, from (4) and (5) we deduce the explicit expressions for B
(−k)
n (x) and E

(−k)
n (x):

B(−k)
n (x) =

1

k!

(
n+ k

k

)−1 k∑

j=0

(−1)k−j

(
k

j

)
(x+ j)n+k

and

E(−k)
n (x) =

1

2k

k∑

j=0

(
k

j

)
(x+ j)n.

The Stirling numbers of second kind S(n, k) (see sequence A008277 in the On-Line En-

cyclopedia of Integer Sequences (OEIS) [13]) are defined by

∞∑

n=0

S(n, k)
zn

n!
=

1

k!
(ez − 1)k.

The generalized Stirling numbers of second kind S(n, k, x) [3, Eq. (3.9), p. 152] are defined
by

∞∑

n=0

S(n, k, x)
zn

n!
=

1

k!
exz(ez − 1)k.

We have
∞∑

n=0

S(n, k, x) =
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(x+ j)n.

and

S(n, k) = S(n, k, 0) =
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
jn.

by using the generalized Stirling numbers of second kind, we can express B
(−k)
n (x) as follows:

B(−k)
n (x) =

(
n+ k

k

)−1

S(n+ k, k, x). (6)

Corollary 2. Let α, λ ∈ C, ℓ ∈ Z and n,m ∈ N. For m ≥ n, we have

B(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
B(−kℓ)

n (x+ λℓ(α + k)), (7)
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and for m ≥
⌊
n
2

⌋
, we have

B(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
B(−kℓ)

n (x−
ℓ

2
(α + k)). (8)

Corollary 3. Let α, λ ∈ C, ℓ ∈ Z, n,m ∈ N. For m ≥ n, we have

E(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
E(−kℓ)

n (x+ λℓ(α + k)),

and for m ≥
⌊
n
2

⌋
, we have

E(αℓ)
n (x) =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
E(−kℓ)

n (x−
ℓ

2
(α + k)). (9)

Corollaries 2 and 3 are deduced from Theorem 1 by choosing successively S(z) = z
ez−1

then S(z) = 2
ez+1

and using Definitions (4) and (5). The generalized Bernoulli numbers

B
(α)
n and Euler numbers E

(α)
n are defined by B

(α)
n = B

(α)
n (0) and E

(α)
n = 2nE

(α)
n (α

2
). The

classical Bernoulli numbers Bn and classical Euler numbers En A122045 are defined by

Bn = B
(1)
n = B

(1)
n (0) and En = E

(1)
n = 2nEn(

1
2
). We also define the polynomials B̂

(α)
n by

B̂
(α)
n = B

(α)
n (α/2) [15, p. 259].

Corollary 4. Let ℓ, n,m ∈ N. For m ≥ n, we have

B(ℓ)
n (x) =

m∑

k=0

(−1)k

(
m+ 1

k + 1

)

(
n+ kℓ

n

) S(n+ kℓ, kℓ, x). (10)

This follows by using Relations (6) and (7) for α = 1.
Replacing x = 0 and m = n in Relation (10) we obtain the following relation which can

be found in [6, p. 60]:

B(ℓ)
n =

n∑

k=0

(−1)k

(
n+ 1

k + 1

)

(
n+ kℓ

n

)S(n+ kℓ, kℓ).

Replacing x = 0, m = n, and ℓ = 1 in Relation (10) it follows that

Bn =
n∑

k=0

(−1)k

(
n+ 1

k + 1

)

(
n+ k

n

)S(n+ k, k).

Note that this formula has been proven by numerous authors: see, for example, [4, Eq. (11),
p. 48], [5, Eq. (6), p. 27], [6, p. 59], [7, p. 219 ], [10, Eq. (1.3), p. 91], [12, p. 140].
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Corollary 5. Let α ∈ C, ℓ ∈ Z and n,m ∈ N. For m ≥
⌊
n
2

⌋
, the following hold:

B̂(ℓα)
n =

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
B̂(−kℓ)

n , (11)

and

B̂
(ℓα)
2n =

n∑

k=0

(−1)k
(
α + n

n− k

)(
α + k − 1

k

)
B̂

(−kℓ)
2n .

This follows immediately from Relation (8) for x = 1
2
αℓ. For ℓ = 1 and m = n, Relation

(11) can be written as

B̂(α)
n =

n∑

k=0

(−1)k
(
α + n

n− k

)(
α + k − 1

k

)
B̂(−k)

n . (12)

Note that (12) is exactly Relation (6.12) of [15, Theorem 6.3].

Corollary 6. For α ∈ C , ℓ ∈ N, n, m ∈ N, with m ≥
⌊
n
2

⌋
, we have

E(αℓ)
n =

m∑

k=0

(−1)k

2kℓ

(
α +m

m− k

)(
α + k − 1

k

) kℓ∑

j=0

(
kℓ

j

)
(kℓ− 2j)n, (13)

E
(αℓ)
2n =

n∑

k=0

(−1)k

2kℓ

(
α + n

n− k

)(
α + k − 1

k

) kℓ∑

j=0

(
kℓ

j

)
(kℓ− 2j)2n,

E
(ℓ)
2n =

n∑

k=0

(−1)k

2kℓ

(
n+ 1

k + 1

) kℓ∑

j=0

(
kℓ

j

)
(kℓ− 2j)2n.

This follows immediately from Relation (9) for x = 1
2
αℓ, and by noticing that E

(αℓ)
n = 0

for n odd. For m = n and ℓ = 1 the relation (13) can be written as follows:

E(α)
n =

n∑

k=0

(−1)k

2k

(
α + n

n− k

)(
α + k − 1

k

) k∑

j=0

(
k

j

)
(k − 2j)n. (14)

We notice that (14) is nothing else than the relation obtained by Luo [8].

3 Proof of Theorem 1

The following lemma, proved in [2], will be useful for the proof of the main result.
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Lemma 7. For m, q ∈ N, we have

1 =
m∑

k=0

(−1)k
(
q +m

m− k

)(
q + k − 1

k

)
xq+k − (−1)m

(
q +m

q

) q∑

k=1

k

m+ k

(
q

k

)
(x− 1)m+k.

Let us consider the formal series S(z) = 1+
∑∞

n=1 an
zn

n!
. For every α ∈ C, let (A

(α)
n (x))n∈N

be the Appell polynomial sequence defined by (1). For non-negative integers n, m, a given
integer ℓ and for every λ ∈ C, we consider the polynomial

Pλ(x, α) = A(αℓ)
n (x)−

m∑

k=0

(−1)k
(
α +m

m− k

)(
α + k − 1

k

)
A(−kℓ)

n (x+ λℓ(α + k)).

Let nλ = n if λ 6= a1 and nλ = ⌊n
2
⌋ if λ = a1. To prove our theorem it is equivalent to

show that Pλ(x, α) = 0 for m ≥ nλ. For this, since Pλ(x, α) is a polynomial in x and α,
this amounts to proving that Pλ(x, q) = 0 for every non-negative integer q, provided that
m ≥ nλ.

Let D denote the derivation operator of C[x]. In the commutative C-algebra C[[D]] of
operators of composition of C[x], consider the operator of translation Tβ = exp(βD) =∑∞

n=0 β
nDn

n!
for β ∈ C and the automorphism Ω = S(D) = 1 +

∑∞

n=1 an
Dn

n!
[11, p. 200], we

can write Tβ(x
n) = (x + β)n and Ωq(xn) = A

(q)
n (x). We remark that for all non-negative

integer n, Pλ(x, q) = Λλ(x
n) with

Λλ = Ωqℓ −
m∑

k=0

(−1)k
(
q +m

m− k

)(
q + k − 1

k

)
Ω−kℓ ◦ Tλℓ(q+k).

Then, to get the desired result we must show that Λλ(x
n) = 0 for m ≥ nλ. We can write

Λλ = Ωqℓ ◦Ψλ (15)

with

Ψλ = 1−
m∑

k=0

(−1)k
(
q +m

m− k

)(
q + k − 1

k

)
(Ω−ℓ ◦ T ℓ

λ)
q+k.

Lemma 7 allows us to express Ψλ as follows:

Ψλ = (−1)m+1

(
q +m

q

) q∑

k=1

k

m+ k

(
q

k

)
(Ω−ℓ ◦ T ℓ

λ − 1)m+k.

Let T be a nonzero composition operator. We can write T =
∑

j≥i ajD
j with a first

nonzero coefficient ai 6= 0. In this case, we say that the composition operator T has order
i. Noting then that for every λ, ord(Ω−ℓ ◦ T ℓ

λ − 1) ≥ 1, and for the particular case λ = a1,
we have ord(Ω−ℓ ◦ T ℓ

λ − 1) ≥ 2, we deduce (for k ≥ 1) that ord(Ω−ℓ ◦ T ℓ
λ − 1)m+k > m and

ord(Ω−ℓ ◦T ℓ
λ− 1)m+k > 2m in the special case where λ = a1. Thus for every integer m ≥ nλ,

we have Ψλ(x
n) = 0. Using (15), we obtain the equality Λλ(x

n) = 0 for m ≥ nλ, which
completes the proof.

6



References
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