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Abstract

In the present paper, we generalize an identity for some Appell polynomials, from
which we deduce many explicit formulas for generalized Bernoulli and Euler numbers

and polynomials.

1 Introduction and main result

The classical and generalized Bernoulli numbers and polynomials as well as the classical
and generalized Euler numbers and polynomials have been extensively studied [4, 8]. In the
present paper, we attempt to improve some results related to Bernoulli and Euler polynomials
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and extend a generalization of the Appell polynomials identity published in [2]. Let Z, N
and C denote the set of integers, non-negative integers and complex numbers respectively.
A polynomial sequence (A, (z))nen of Clx] is an Appell polynomial sequence [1] if Ag(z) is a
non-zero constant polynomial and A/, (x) = nA,_1(x) for n > 1. The exponential generating
series of the sequence (A, (z))nen can be formulated as follows:

- Zn xTrz
> )y = S(a)e

where S(z) is a formal power series of C[[z]] with non-zero constant term. We focus now on
the following theorem which generalizes [2, Theorem 1.1] and adds other properties.

Theorem 1. Let S(z Zan— be a formal series of C[[z]] with ag = 1. For every o € C

and (Agf)(a:))neN conszder the Appell polynomial sequence defined by
o0 zn
S AW (@) = So(z)e. 1)
— n!
Then for all \, o € C, { € Z, and non-negative integers n, m, with m > n, we have
- —1
a0 =3 () (M)A ey @)
k=0
and for m > |5 ], we have

A0 i (O‘ + m) (O‘ +Z - 1> AR (5 4 (e + k). (3)

=0

By using Relation (2) for A = 0 and ¢ = 1, we obtain [2, Theorem 1.1].

2 Applications

In this section, we give some applications of Theorem 1. Let us first recall that several
sequences of remarkable polynomials in Clz| are Appell polynomial sequences. Indeed, it is

clear that for o € C, the sequences of generalized Bernoulli polynomials (Bq(f) (2))nen and
generalized Euler polynomials (Efla)(x))neN defined by (see [9, 14])
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and

o0 n 2 «
E@ ()2 — vz 5
Y= () ¢ 0

are Appell polynomial sequences, associated with the formal series (ﬁ)a, (%)a respec-

tively. The classical Bernoulli polynomials B,,(x) and classical Euler polynomials E,(z) are
defined by B, (x) = B&l)(m) and E,(z) = Ey(Ll)(x).
For k € N, from (4) and (5) we deduce the explicit expressions for B,(fk)(x) and E; Y (x):
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k) (see sequence A008277 in the On-Line En-

The Stirling numbers of second kind S(n,
) are defined by

cyclopedia of Integer Sequences (OEILS) [13]

ZSnkJn‘ (6—1)

The generalized Stirling numbers of second kind S(n, k, z) [3, Eq. (3.9), p. 152] are defined
by

ZSnk‘Jzn!—k' eF — Dk

We have

and
1 : k—j k N
k! = J

by using the generalized Stirling numbers of second kind, we can express B,(fk) (x) as follows:

B¥(z) = <"Zk>_ls(n+ ko, 7). (6)

Corollary 2. Let a, A\ € C, ¢ € Z and n,m € N. For m > n, we have

B0 = S0 (8T (TR BE O+ A ) )

m—k
k=0
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and for m > L%J , we have

50w = S0 (4T (U T Br e - e b ©)

k=0
Corollary 3. Let o, A € C, { € Z, n,m € N. For m > n, we have

B0 = S0 (4T (U T B+ Ao+ )

m— k
k=0

and for m > L%J , we have

- +m\ (a+k—1 14
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Corollaries 2 and 3 are deduced from Theorem 1 by choosing successively S(z) = ==
then S(z) = Z%7 and using Definitions (4) and (5). The generalized Bernoulli numbers

BY) and Euler numbers E\* are defined by BY”) = B{”(0) and E = Q”Eﬁa)(%). The
classical Bernoulli numbers B, and classical Euler numbers FE, A122045 are deﬁned by
B, = BYY = szl)(()) and E, = BV = 2"E,(3). We also define the polynomials B by
B\ = B (a/2) [15, p. 259].

Corollary 4. Let {,n,m € N. For m > n, we have

(m + 1)

- k+1

f —

= Z; i St kG kL ). (10)
n

This follows by using Relations (6) and (7) for a = 1.

Replacing © = 0 and m = n in Relation (10) we obtain the following relation which can
be found in [6, p. 60]:

(n—i—l)
RO - L \k+1
k=0
n

Replacing 2 = 0, m = n, and ¢ = 1 in Relation (10) it follows that

i)
B, =) (-1)fo——£S(n+k,k).
p (njl—k)

Note that this formula has been proven by numerous authors: see, for example, [4, Eq. (11),
p. 48], [5, Eq. (6), p. 27|, [6, p. 59, [7, p. 219 |, [10, Eq. (1.3), p. 91], [12, p. 140].
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Corollary 5. Let o« € C, { € Z and n,m € N. For m > L%J) the following hold:

= “ +m\ [fa+k—1\ 4
Blea) _ Z 1)k o BkO 11
n kzo( ) m — kf k’ n Y ( )
and
fas - +n O{+-k‘—-1 Skt
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This follows immediately from Relation (8) for z = 1af. For ¢ = 1 and m = n, Relation
(11) can be written as

Sla = a+n\fa+k—1\5_
B@ — Z(—1)k<n_k>< . )B,(L 2 (12)
k=0

Note that (12) is exactly Relation (6.12) of [15, Theorem 6.3].

Corollary 6. Fora € C , (€N, n, m € N, with m > ng, we have

s =S GG (e
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This follows immediately from Relation (9) for z = %aé, and by noticing that ECD —
for n odd. For m = n and ¢ = 1 the relation (13) can be written as follows:

G o | G bl DI S

k=0 §=0

We notice that (14) is nothing else than the relation obtained by Luo [8].

3 Proof of Theorem 1

The following lemma, proved in [2], will be useful for the proof of the main result.



Lemma 7. Form, ¢ € N, we have

) () e

k=1

Let us consider the formal series S(z) = 1+ >, a,%;. For every a € C, let (A a)(x))neN
be the Appell polynomial sequence defined by (1). For non-negative integers n, m, a given
integer ¢ and for every A € C, we consider the polynomial

Py(z,a) = ALD(z) — ;(—1)'€ (:f_TZ) (0‘ ”]: - 1) ACHD (2 4+ M(a+ k).

Let ny = n if X # a; and ny = 5] if A = a;. To prove our theorem it is equivalent to
show that Py(z,a) = 0 for m > ny. For this, since P\(z,«a) is a polynomial in z and «,
this amounts to proving that Py(z,q) = 0 for every non-negative integer ¢, provided that
m > ny.

Let D denote the derivation operator of C[z]. In the commutative C-algebra C[[D]] of
operators of composition of Clz], consider the operator of translation Tﬂ = exp(fD) =
S, B"EE for B € C and the automorphism Q = S(D) = 1+ Y7 a, 25 [11, p. 200], w
can write Tp(2") = (x + B)" and QI(a™) = Aﬁf")(aj). We remark that for all non—negatlve
integer n, Py\(z,q) = A\(2™) with

o +m +E—1\
Ay = Qo — Z(—U’“(; - k) <q . )Q Ko Typigsny-

k=0

Then, to get the desired result we must show that Ay(z™) = 0 for m > ny,. We can write

A)\ = QqZO\I/)\ (15)
with .
o k q+m q+k—1 ) N
Ty=1-) (1) <m_k)< h (Q o T)ath,

k=0
Lemma 7 allows us to express V) as follows:

mi (AFMYx~ k(@Y - .
Uy, = (—1) +1( . )Zm(k)(gfon—1) *,

k=1

Let T" be a nonzero composition operator. We can write 7' = Z]>Z a;D? with a first
nonzero coefficient a; # 0. In this case, we say that the composition operator 7' has order
i. Noting then that for every A, ord(Q*oT§ — 1) > 1, and for the particular case A = ay,
we have ord(Q“oTY — 1) > 2, we deduce (for k > 1) that ord(Q2* o T§ — 1)™"* > m and
ord(Q2*oT{ —1)™*k > 2m in the special case where A = a;. Thus for every integer m > ny,
we have Wy (z") = 0. Using (15), we obtain the equality A\(z") = 0 for m > n,, which
completes the proof.
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