Journal of Integer Sequences, Vol. 25 (2022), Article 22.8.2

A New Identity for Appell Polynomials

Farid Bencherif
LA3C, Faculty of Mathematics
USTHB
Algiers
Algeria
fbencherif@usthb.dz
Nouara Mokhtari ${ }^{1}$ and Schehrazade Zerroukhat
LATN, Faculty of Mathematics
USTHB
Algiers
Algeria
nmokhtari1@usthb.dz
mokhtari.nouara@gmail.com
szerroukhat@usthb.dz

Abstract

In the present paper, we generalize an identity for some Appell polynomials, from which we deduce many explicit formulas for generalized Bernoulli and Euler numbers and polynomials.

1 Introduction and main result

The classical and generalized Bernoulli numbers and polynomials as well as the classical and generalized Euler numbers and polynomials have been extensively studied [4, 8]. In the present paper, we attempt to improve some results related to Bernoulli and Euler polynomials

[^0]and extend a generalization of the Appell polynomials identity published in [2]. Let \mathbb{Z}, \mathbb{N} and \mathbb{C} denote the set of integers, non-negative integers and complex numbers respectively. A polynomial sequence $\left(A_{n}(x)\right)_{n \in \mathbb{N}}$ of $\mathbb{C}[x]$ is an Appell polynomial sequence [1] if $A_{0}(x)$ is a non-zero constant polynomial and $A_{n}^{\prime}(x)=n A_{n-1}(x)$ for $n \geq 1$. The exponential generating series of the sequence $\left(A_{n}(x)\right)_{n \in \mathbb{N}}$ can be formulated as follows:
$$
\sum_{n=0}^{\infty} A_{n}(x) \frac{z^{n}}{n!}=S(z) e^{x z}
$$
where $S(z)$ is a formal power series of $\mathbb{C}[[z]]$ with non-zero constant term. We focus now on the following theorem which generalizes $[2$, Theorem 1.1] and adds other properties.

Theorem 1. Let $S(z)=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}$ be a formal series of $\mathbb{C}[[z]]$ with $a_{0}=1$. For every $\alpha \in \mathbb{C}$ and $\left(A_{n}^{(\alpha)}(x)\right)_{n \in \mathbb{N}}$ consider the Appell polynomial sequence defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{(\alpha)}(x) \frac{z^{n}}{n!}=S^{\alpha}(z) e^{x z} \tag{1}
\end{equation*}
$$

Then for all $\lambda, \alpha \in \mathbb{C}, \ell \in \mathbb{Z}$, and non-negative integers n, m, with $m \geq n$, we have

$$
\begin{equation*}
A_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} A_{n}^{(-k \ell)}(x+\lambda \ell(\alpha+k)) \tag{2}
\end{equation*}
$$

and for $m \geq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{equation*}
A_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} A_{n}^{(-k \ell)}\left(x+a_{1} \ell(\alpha+k)\right) . \tag{3}
\end{equation*}
$$

By using Relation (2) for $\lambda=0$ and $\ell=1$, we obtain [2, Theorem 1.1].

2 Applications

In this section, we give some applications of Theorem 1. Let us first recall that several sequences of remarkable polynomials in $\mathbb{C}[x]$ are Appell polynomial sequences. Indeed, it is clear that for $\alpha \in \mathbb{C}$, the sequences of generalized Bernoulli polynomials $\left(B_{n}^{(\alpha)}(x)\right)_{n \in \mathbb{N}}$ and generalized Euler polynomials $\left(E_{n}^{(\alpha)}(x)\right)_{n \in \mathbb{N}}$ defined by (see [9, 14])

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x) \frac{z^{n}}{n!}=\left(\frac{z}{e^{z}-1}\right)^{\alpha} e^{x z} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x) \frac{z^{n}}{n!}=\left(\frac{2}{e^{z}+1}\right)^{\alpha} e^{x z} \tag{5}
\end{equation*}
$$

are Appell polynomial sequences, associated with the formal series $\left(\frac{z}{e^{z}-1}\right)^{\alpha},\left(\frac{2}{e^{z}+1}\right)^{\alpha}$ respectively. The classical Bernoulli polynomials $B_{n}(x)$ and classical Euler polynomials $E_{n}(x)$ are defined by $B_{n}(x)=B_{n}^{(1)}(x)$ and $E_{n}(x)=E_{n}^{(1)}(x)$.

For $k \in \mathbb{N}$, from (4) and (5) we deduce the explicit expressions for $B_{n}^{(-k)}(x)$ and $E_{n}^{(-k)}(x)$:

$$
B_{n}^{(-k)}(x)=\frac{1}{k!}\binom{n+k}{k}^{-1} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(x+j)^{n+k}
$$

and

$$
E_{n}^{(-k)}(x)=\frac{1}{2^{k}} \sum_{j=0}^{k}\binom{k}{j}(x+j)^{n} .
$$

The Stirling numbers of second kind $S(n, k)$ (see sequence 1008277 in the On-Line Encyclopedia of Integer Sequences (OEIS) [13]) are defined by

$$
\sum_{n=0}^{\infty} S(n, k) \frac{z^{n}}{n!}=\frac{1}{k!}\left(e^{z}-1\right)^{k}
$$

The generalized Stirling numbers of second kind $S(n, k, x)$ [3, Eq. (3.9), p. 152] are defined by

$$
\sum_{n=0}^{\infty} S(n, k, x) \frac{z^{n}}{n!}=\frac{1}{k!} e^{x z}\left(e^{z}-1\right)^{k} .
$$

We have

$$
\sum_{n=0}^{\infty} S(n, k, x)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(x+j)^{n} .
$$

and

$$
S(n, k)=S(n, k, 0)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n} .
$$

by using the generalized Stirling numbers of second kind, we can express $B_{n}^{(-k)}(x)$ as follows:

$$
\begin{equation*}
B_{n}^{(-k)}(x)=\binom{n+k}{k}^{-1} S(n+k, k, x) \tag{6}
\end{equation*}
$$

Corollary 2. Let $\alpha, \lambda \in \mathbb{C}, \ell \in \mathbb{Z}$ and $n, m \in \mathbb{N}$. For $m \geq n$, we have

$$
\begin{equation*}
B_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} B_{n}^{(-k \ell)}(x+\lambda \ell(\alpha+k)) \tag{7}
\end{equation*}
$$

and for $m \geq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{equation*}
B_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} B_{n}^{(-k \ell)}\left(x-\frac{\ell}{2}(\alpha+k)\right) . \tag{8}
\end{equation*}
$$

Corollary 3. Let $\alpha, \lambda \in \mathbb{C}, \ell \in \mathbb{Z}, n, m \in \mathbb{N}$. For $m \geq n$, we have

$$
E_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} E_{n}^{(-k \ell)}(x+\lambda \ell(\alpha+k))
$$

and for $m \geq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{equation*}
E_{n}^{(\alpha \ell)}(x)=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} E_{n}^{(-k \ell)}\left(x-\frac{\ell}{2}(\alpha+k)\right) \tag{9}
\end{equation*}
$$

Corollaries 2 and 3 are deduced from Theorem 1 by choosing successively $S(z)=\frac{z}{e^{z}-1}$ then $S(z)=\frac{2}{e^{z}+1}$ and using Definitions (4) and (5). The generalized Bernoulli numbers $B_{n}^{(\alpha)}$ and Euler numbers $E_{n}^{(\alpha)}$ are defined by $B_{n}^{(\alpha)}=B_{n}^{(\alpha)}(0)$ and $E_{n}^{(\alpha)}=2^{n} E_{n}^{(\alpha)}\left(\frac{\alpha}{2}\right)$. The classical Bernoulli numbers B_{n} and classical Euler numbers $E_{n} \underline{\text { A122045 }}$ are defined by $B_{n}=B_{n}^{(1)}=B_{n}^{(1)}(0)$ and $E_{n}=E_{n}^{(1)}=2^{n} E_{n}\left(\frac{1}{2}\right)$. We also define the polynomials $\widehat{B}_{n}^{(\alpha)}$ by $\widehat{B}_{n}^{(\alpha)}=B_{n}^{(\alpha)}(\alpha / 2)[15$, p. 259].
Corollary 4. Let $\ell, n, m \in \mathbb{N}$. For $m \geq n$, we have

$$
\begin{equation*}
B_{n}^{(\ell)}(x)=\sum_{k=0}^{m}(-1)^{k} \frac{\binom{m+1}{k+1}}{\binom{n+k \ell}{n}} S(n+k \ell, k \ell, x) \tag{10}
\end{equation*}
$$

This follows by using Relations (6) and (7) for $\alpha=1$.
Replacing $x=0$ and $m=n$ in Relation (10) we obtain the following relation which can be found in [6, p. 60]:

$$
B_{n}^{(\ell)}=\sum_{k=0}^{n}(-1)^{k} \frac{\binom{n+1}{k+1}}{\binom{n+k \ell}{n}} S(n+k \ell, k \ell)
$$

Replacing $x=0, m=n$, and $\ell=1$ in Relation (10) it follows that

$$
B_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{\binom{n+1}{k+1}}{\binom{n+k}{n}} S(n+k, k)
$$

Note that this formula has been proven by numerous authors: see, for example, [4, Eq. (11), p. 48], [5, Eq. (6), p. 27], [6, p. 59], [7, p. 219], [10, Eq. (1.3), p. 91], [12, p. 140].

Corollary 5. Let $\alpha \in \mathbb{C}, \ell \in \mathbb{Z}$ and $n, m \in \mathbb{N}$. For $m \geq\left\lfloor\frac{n}{2}\right\rfloor$, the following hold:

$$
\begin{equation*}
\widehat{B}_{n}^{(\ell \alpha)}=\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} \widehat{B}_{n}^{(-k \ell)}, \tag{11}
\end{equation*}
$$

and

$$
\widehat{B}_{2 n}^{(\ell \alpha)}=\sum_{k=0}^{n}(-1)^{k}\binom{\alpha+n}{n-k}\binom{\alpha+k-1}{k} \widehat{B}_{2 n}^{(-k \ell)}
$$

This follows immediately from Relation (8) for $x=\frac{1}{2} \alpha \ell$. For $\ell=1$ and $m=n$, Relation (11) can be written as

$$
\begin{equation*}
\widehat{B}_{n}^{(\alpha)}=\sum_{k=0}^{n}(-1)^{k}\binom{\alpha+n}{n-k}\binom{\alpha+k-1}{k} \widehat{B}_{n}^{(-k)} \tag{12}
\end{equation*}
$$

Note that (12) is exactly Relation (6.12) of [15, Theorem 6.3].
Corollary 6. For $\alpha \in \mathbb{C}, \ell \in \mathbb{N}, n, m \in \mathbb{N}$, with $m \geq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{align*}
E_{n}^{(\alpha \ell)}= & \sum_{k=0}^{m} \frac{(-1)^{k}}{2^{k \ell}}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} \sum_{j=0}^{k \ell}\binom{k \ell}{j}(k \ell-2 j)^{n}, \tag{13}\\
E_{2 n}^{(\alpha \ell)}= & \sum_{k=0}^{n} \frac{(-1)^{k}}{2^{k \ell}}\binom{\alpha+n}{n-k}\binom{\alpha+k-1}{k} \sum_{j=0}^{k \ell}\binom{k \ell}{j}(k \ell-2 j)^{2 n}, \\
& E_{2 n}^{(\ell)}=\sum_{k=0}^{n} \frac{(-1)^{k}}{2^{k \ell}}\binom{n+1}{k+1} \sum_{j=0}^{k \ell}\binom{k \ell}{j}(k \ell-2 j)^{2 n} .
\end{align*}
$$

This follows immediately from Relation (9) for $x=\frac{1}{2} \alpha \ell$, and by noticing that $E_{n}^{(\alpha \ell)}=0$ for n odd. For $m=n$ and $\ell=1$ the relation (13) can be written as follows:

$$
\begin{equation*}
E_{n}^{(\alpha)}=\sum_{k=0}^{n} \frac{(-1)^{k}}{2^{k}}\binom{\alpha+n}{n-k}\binom{\alpha+k-1}{k} \sum_{j=0}^{k}\binom{k}{j}(k-2 j)^{n} . \tag{14}
\end{equation*}
$$

We notice that (14) is nothing else than the relation obtained by Luo [8].

3 Proof of Theorem 1

The following lemma, proved in [2], will be useful for the proof of the main result.

Lemma 7. For $m, q \in \mathbb{N}$, we have

$$
1=\sum_{k=0}^{m}(-1)^{k}\binom{q+m}{m-k}\binom{q+k-1}{k} x^{q+k}-(-1)^{m}\binom{q+m}{q} \sum_{k=1}^{q} \frac{k}{m+k}\binom{q}{k}(x-1)^{m+k} .
$$

Let us consider the formal series $S(z)=1+\sum_{n=1}^{\infty} a_{n} \frac{z^{n}}{n!}$. For every $\alpha \in \mathbb{C}$, let $\left(A_{n}^{(\alpha)}(x)\right)_{n \in \mathbb{N}}$ be the Appell polynomial sequence defined by (1). For non-negative integers n, m, a given integer ℓ and for every $\lambda \in \mathbb{C}$, we consider the polynomial

$$
P_{\lambda}(x, \alpha)=A_{n}^{(\alpha \ell)}(x)-\sum_{k=0}^{m}(-1)^{k}\binom{\alpha+m}{m-k}\binom{\alpha+k-1}{k} A_{n}^{(-k \ell)}(x+\lambda \ell(\alpha+k)) .
$$

Let $n_{\lambda}=n$ if $\lambda \neq a_{1}$ and $n_{\lambda}=\left\lfloor\frac{n}{2}\right\rfloor$ if $\lambda=a_{1}$. To prove our theorem it is equivalent to show that $P_{\lambda}(x, \alpha)=0$ for $m \geq n_{\lambda}$. For this, since $P_{\lambda}(x, \alpha)$ is a polynomial in x and α, this amounts to proving that $P_{\lambda}(x, q)=0$ for every non-negative integer q, provided that $m \geq n_{\lambda}$.

Let D denote the derivation operator of $\mathbb{C}[x]$. In the commutative \mathbb{C}-algebra $\mathbb{C}[[D]]$ of operators of composition of $\mathbb{C}[x]$, consider the operator of translation $T_{\beta}=\exp (\beta D)=$ $\sum_{n=0}^{\infty} \beta^{n} \frac{D^{n}}{n!}$ for $\beta \in \mathbb{C}$ and the automorphism $\Omega=S(D)=1+\sum_{n=1}^{\infty} a_{n} \frac{D^{n}}{n!}$ [11, p. 200], we can write $T_{\beta}\left(x^{n}\right)=(x+\beta)^{n}$ and $\Omega^{q}\left(x^{n}\right)=A_{n}^{(q)}(x)$. We remark that for all non-negative integer $n, P_{\lambda}(x, q)=\Lambda_{\lambda}\left(x^{n}\right)$ with

$$
\Lambda_{\lambda}=\Omega^{q \ell}-\sum_{k=0}^{m}(-1)^{k}\binom{q+m}{m-k}\binom{q+k-1}{k} \Omega^{-k \ell} \circ T_{\lambda \ell(q+k)} .
$$

Then, to get the desired result we must show that $\Lambda_{\lambda}\left(x^{n}\right)=0$ for $m \geq n_{\lambda}$. We can write

$$
\begin{equation*}
\Lambda_{\lambda}=\Omega^{q \ell} \circ \Psi_{\lambda} \tag{15}
\end{equation*}
$$

with

$$
\Psi_{\lambda}=1-\sum_{k=0}^{m}(-1)^{k}\binom{q+m}{m-k}\binom{q+k-1}{k}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}\right)^{q+k}
$$

Lemma 7 allows us to express Ψ_{λ} as follows:

$$
\Psi_{\lambda}=(-1)^{m+1}\binom{q+m}{q} \sum_{k=1}^{q} \frac{k}{m+k}\binom{q}{k}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}-1\right)^{m+k}
$$

Let T be a nonzero composition operator. We can write $T=\sum_{j \geq i} a_{j} D^{j}$ with a first nonzero coefficient $a_{i} \neq 0$. In this case, we say that the composition operator T has order i. Noting then that for every λ, $\operatorname{ord}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}-1\right) \geq 1$, and for the particular case $\lambda=a_{1}$, we have $\operatorname{ord}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}-1\right) \geq 2$, we deduce (for $k \geq 1$) that $\operatorname{ord}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}-1\right)^{m+k}>m$ and $\operatorname{ord}\left(\Omega^{-\ell} \circ T_{\lambda}^{\ell}-1\right)^{m+k}>2 m$ in the special case where $\lambda=a_{1}$. Thus for every integer $m \geq n_{\lambda}$, we have $\Psi_{\lambda}\left(x^{n}\right)=0$. Using (15), we obtain the equality $\Lambda_{\lambda}\left(x^{n}\right)=0$ for $m \geq n_{\lambda}$, which completes the proof.

References

[1] P. Appell, Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér. 9 (1880) 119-144.
[2] F. Bencherif, B. Benzaghou, and S. Zerroukhat, Une identité pour des polynômes d'Appell, C. R. Math. Acad. Sci. Paris 355 (2017), 1201-1204.
[3] L. Carlitz, Weighted Stirling numbers of the first and second kind, II, Fibonacci Quart. 18 (1980), 147-162.
[4] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44-51.
[5] B.-N. Guo and F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory 3 (2015), 27-30.
[6] S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), 53-68.
[7] C. Jordan, Calculus of Finite Differences, Second ed., Chelsea, 1950.
[8] Q.-M. Luo, An explicit formula for the Euler numbers of higher ordrer, Tamkang J. Math. 36 (2005), 315-317.
[9] N. E. Nörlund, Vorlesungen über Differentzenrechnung, Springer-Verlag, 1924, Reprinted by Chelsea, 1954.
[10] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100.
[11] A. M. Robert, A Course in p-adic Analysis. Graduate Texts in Mathematics, 198. Springer-Verlag, 2000.
[12] S. Shirai and K.-I. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001), 130-142.
[13] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2022.
[14] H. M. Srivastava and A. Pintér, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), 375-380.
[15] W. Wang, Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl. 364 (2010), 255-274.

2010 Mathematics Subject Classification: Primary 11B68; Secondary 05A10.
Keywords: Appell polynomial, Bernoulli number, Bernoulli polynomial, Euler number, Euler polynomial.
(Concerned with sequences A008277 and A122045.)

Received June 21 2022; revised versions received June 30 2022; September 16 2022; September 23 2022. Published in Journal of Integer Sequences, October 82022.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Corresponding author.

