

On a Ramanujan-Type Congruence for Partition Triples with 5-Cores

N. V. Majid and S. N. Fathima
Ramanujan School of Mathematical Science
Department of Mathematics
Pondicherry University
Puducherry
India
nvmajidtgi@gmail.com
dr.fathima.sn@gmail.com

Abstract

Let $B_5^{(3)}(n)$ denote the number of partition triples with 5-cores. In this short note, we prove a Ramanujan-type congruence modulo 5^{α} ($\alpha \ge 1$) for $B_5^{(3)}(n)$ by using recurrence relations for the coefficients of $B_5^{(3)}(n)$.

1 Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers whose sum equals n. Let p(n) be the number of partitions of n. The generating function for p(n) is given by

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q;q)_{\infty}},$$

where
$$(a;q)_0 = 1$$
, $(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k)$, and $(a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k)$.

The most inspiring congruences of p(n) discovered by Ramanujan for $n \geq 0$ are

$$p(5n + 4) \equiv 0 \pmod{5},$$

 $p(7n + 5) \equiv 0 \pmod{7},$
 $p(11n + 6) \equiv 0 \pmod{11}.$

Ramanujan's discovery inspired researchers to study the arithmetic properties of the restricted partitions, such as the *t-core partition*. A Ferrers-Young diagram of a partition

$$n = \sum_{i=1}^k \lambda_i$$
, where $\lambda_i \geq \lambda_k$, $i \leq k$, is a pattern of dots, with λ_i dots in the i^{th} row. The hook

number of a dot is defined by the number of dots directly below, together with the number of dots directly to the right, as well as the dot itself. For a positive integer $t \geq 2$, a partition is said to be t-core, if it has no hook numbers that are multiples of t.

Example 1. The Ferrers-Young diagram of the partition $\lambda = 4 + 3 + 2$ of 9 with the corresponding hook number is as follows:

Here λ is 7-core and λ is t-core for $t \geq 7$.

We let $B_t(n)$ denote the number of t-core partitions of n. The generating function for the $B_t(n)$ is given by [7, Eq. (2.1)]

$$\sum_{n=0}^{\infty} B_t(n)q^n = \frac{f_t^t}{f_1},$$

where $f_t = (q^t; q^t)_{\infty}$, for any integer $t \geq 2$. Arithmetic properties of t-core partitions have been studied by several mathematicians (see, for example [1, 3, 4, 5, 8, 9, 12, 13]).

A partition triple or a tripartition of n is a triple of partitions $(\lambda_1, \lambda_2, \lambda_3)$ such that the sum of all the parts of λ_1 , λ_2 , and λ_3 equals n. A tripartition with t-core of n is a partition triples $(\lambda_1, \lambda_2, \lambda_3)$ of n such that λ_1 , λ_2 , and λ_3 are t-cores. Let $B_t^{(3)}(n)$ denote the number of partition triples with t-cores of n. The generating function for $B_t^{(3)}(n)$ is given by

$$\sum_{n=0}^{\infty} B_t^{(3)}(n)q^n = \frac{f_t^{3t}}{f_1^3}.$$
 (1)

Dasappa [6] proved a Ramanujan-type congruence modulo 5^{α} for bipartition with 5-cores, which motivated establishing a Ramanujan-type congruence for tripartitions with 5-core.

The ultimate aim of this note is to prove the following Ramanujan-type congruence for $B_5^{(3)}(n)$:

$$B_5^{(3)}(5^{\alpha}n + 5^{\alpha} - 3) \equiv 0 \pmod{5^{\alpha}}, \quad \alpha > 1.$$

The following are crucial lemmas that help prove our main congruence for $B_5^{(3)}(n)$:

Lemma 2. Let $\sum_{n=0}^{\infty} P_4(n)q^n = qf_5^9f_1^3$. Then

$$\sum_{n=0}^{\infty} P_4(5n+4)q^n = 5f_5^3 f_1^9. \tag{2}$$

Proof. The following 5-dissection formula was first stated by Ramanujan [10, p. 212] without any proof:

$$f_1 = f_{25} \left(\frac{1}{R(q^5)} - q - q^2 R(q^5) \right), \tag{3}$$

where $R(q) = \frac{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}{(q^2;q^5)_{\infty}(q^3;q^5)_{\infty}}$. Watson [11] provided a proof of (3). Using (3), we obtain

$$\sum_{n=0}^{\infty} P_4(n)q^n = f_5^9 f_{25}^3 \left(\frac{q}{R(q^5)^3} - \frac{3q^2}{R(q^5)^2} + 5q^4 - 3q^6 R(q^5)^2 - q^7 R(q^5)^3 \right). \tag{4}$$

Extracting the terms involving q^{5n+4} from (4), dividing by q^4 , and replacing q^5 by q, we obtain (2).

Lemma 3. Let $\sum_{n=0}^{\infty} P_5(n)q^n = f_5^3 f_1^9$. Then

$$\sum_{n=0}^{\infty} P_5(5n+4)q^n = -90f_5^3 f_1^9 - 625q f_5^9 f_1^3.$$

Proof. Using (3), we obtain

$$\sum_{n=0}^{\infty} P_5(n)q^n = f_5^3 f_{25}^9 \left(\frac{1}{R(q^5)^9} - \frac{9q}{R(q^5)^8} + \frac{27q^2}{R(q^5)^7} - \frac{12q^3}{R(q^5)^6} - \frac{90q^4}{R(q^5)^5} + \frac{126q^5}{R(q^5)^4} + \frac{126q^6}{R(q^5)^3} \right) \\
- \frac{288q^7}{R(q^5)^2} - \frac{117q^8}{R(q^5)} + 365q^6 + 117q^{10}R(q^5) - 288q^{11}R(q^5)^2 - 126q^{12}R(q^5)^3 \\
+ 126q^{13}R(q^5)^4 + 90q^{14}R(q^5)^5 - 12q^{15}R(q^5)^6 - 27q^{16}R(q^5)^7 - 9q^{17}R(q^5)^8 \\
- q^{18}R(q^5)^9 \right).$$
(5)

Extracting the terms involving q^{5n+4} from (5), dividing by q^4 , and replacing q^5 by q, we obtain

$$\sum_{n=0}^{\infty} P_5(5n+4)q^n = f_5^9 f_1^3 \left(90q^2 R(q)^5 + 365q - \frac{90}{R(q)^5}\right).$$
 (6)

Berndt [2, Thm. 7.4.4] gave the following identity:

$$\frac{1}{R(q)^5} - 11q - q^2 R(q)^5 = \frac{(q;q)_{\infty}^6}{(q^5;q^5)_{\infty}^6}.$$
 (7)

Employing (7) in (6), we obtain

$$\sum_{n=0}^{\infty} P_5(5n+4)q^n = f_5^9 f_1^3 \left(-90 \frac{f_1^6}{f_5^6} - 625q \right) = -90 f_5^3 f_1^9 - 625q f_5^9 f_1^3.$$

Lemma 4. Let $\sum_{n=0}^{\infty} P_3(n)q^n = \frac{1}{f_1^3}$. Then

$$\sum_{n=0}^{\infty} P_3(5n+2)q^n = 9\frac{f_5^3}{f_1^6} + 375q\frac{f_5^9}{f_1^{12}} + 3125q^2\frac{f_5^{15}}{f_1^{18}}.$$

Proof. [2, Eq. (7.4.14), p. 165] We have

$$\frac{1}{f_1} = \frac{f_{25}^5}{f_5^6} \left(\frac{1}{R(q^5)^4} + \frac{q}{R(q^5)^3} + \frac{2q^2}{R(q^5)^2} + \frac{3q^3}{R(q^5)} + 5q^4 - 3q^5 R(q^5) \right) + 2q^6 R(q^5)^2 - q^7 R(q^5)^3 + q^8 R(q^5)^4 \right).$$
(8)

Using (8), we obtain

$$\sum_{n=0}^{\infty} P_{3}(n)q^{n} = \frac{f_{25}^{15}}{f_{5}^{18}} \left(\frac{1}{R(q^{5})^{12}} + \frac{3q}{R(q^{5})^{11}} + \frac{9q^{2}}{R(q^{5})^{10}} + \frac{22q^{3}}{R(q^{5})^{9}} + \frac{51q^{4}}{R(q^{5})^{8}} + \frac{78q^{5}}{R(q^{5})^{7}} + \frac{134q^{6}}{R(q^{5})^{6}} \right)$$

$$+ \frac{177q^{7}}{R(q^{5})^{5}} + \frac{216q^{8}}{R(q^{5})^{4}} + \frac{153q^{9}}{R(q^{5})^{3}} + \frac{219q^{10}}{R(q^{5})^{2}} + \frac{57q^{11}}{R(q^{5})} + 71q^{12} - 57q^{13}R(q^{5})$$

$$+ 219q^{14}R(q^{5})^{2} - 153q^{15}R(q^{5})^{3} + 216q^{16}R(q^{5})^{4} - 177q^{17}R(q^{5})^{5} + 134q^{18}R(q^{5})^{6}$$

$$- 78q^{19}R(q^{5})^{7} + 51q^{20}R(q^{5})^{8} - 22q^{21}R(q^{5})^{9} + 9q^{22}R(q^{5})^{10} - 3q^{23}R(q^{5})^{11}$$

$$+ q^{24}R(q^{5})^{12} \right).$$

$$(9)$$

Extracting the terms involving q^{5n+2} from (9), dividing by q^2 , and replacing q^5 by q, we obtain

$$\sum_{n=0}^{\infty} P_3(5n+2)q^n = \frac{f_5^{15}}{f_1^{18}} \left(9q^4 R(q)^{10} - 177q^3 R(q)^5 + 71q^2 + 177 \frac{q}{R(q)^5} + \frac{9}{R(q)^{10}} \right). \tag{10}$$

Employing (7) in (10), we deduce that

$$\sum_{n=0}^{\infty} P_3(5n+2)q^n = \frac{f_5^{15}}{f_1^{18}} \left(9 \frac{f_1^{12}}{f_5^{12}} + 375q \frac{f_1^6}{f_5^6} + 3125q^2 \right)$$
$$= 9 \frac{f_5^3}{f_1^6} + 375q \frac{f_5^9}{f_1^{12}} + 3125q^2 \frac{f_5^{15}}{f_1^{18}}.$$

Theorem 5. For all integers $\alpha \geq 0$, we have

$$\sum_{n=0}^{\infty} B_5^{(3)} (5^{\alpha+1}n + 5^{\alpha+1} - 3)q^n = A_{\alpha} f_5^3 f_1^9 + B_{\alpha} q f_5^9 f_1^3 + C_{\alpha} q^2 \sum_{n=0}^{\infty} B_5^{(3)}(n)q^n, \tag{11}$$

where $A_0 = 9$, $B_0 = 375$, $C_0 = 3125$, and for any integer $n \ge 1$

$$A_n = -90A_{n-1} + 5B_{n-1} + 9C_{n-1}, (12)$$

$$B_n = -625A_{n-1} + 5B_{n-1} + 375C_{n-1}, (13)$$

$$C_n = C_0^{n+1}. (14)$$

Proof. From (1), we have

$$\sum_{n=0}^{\infty} B_5^{(3)}(n) = \frac{f_5^{15}}{f_1^3}.$$

Employing Lemma 4, we obtain

$$\sum_{n=0}^{\infty} B_5^{(3)}(5n+2)q^n = 9f_5^3f_1^9 + 375qf_5^9f_1^3 + 3125q^2\sum_{n=0}^{\infty} B_5^{(3)}(n)q^n.$$
 (15)

Eq. (15) is the $\alpha = 0$ case of Eq. (11). Now assume for $\alpha \geq 0$. Replacing n by 5n + 4 in (11), using Lemmas (2) and (3), and (15), we obtain

$$\sum_{n=0}^{\infty} B_5^{(3)} (5^{\alpha+2}n + 5^{\alpha+2} - 3)q^n$$

$$= A_{\alpha} \left(-90f_5^3 f_1^9 - 625q f_5^9 f_1^3 \right) + B_{\alpha} 5f_5^3 f_1^9 + C_{\alpha} \left(9f_5^3 f_1^9 + 375q f_5^9 f_1^3 + 3125q^2 \sum_{n=0}^{\infty} B_5^{(3)}(n)q^n \right)$$

$$= \left(-90A_{\alpha} + 5B_{\alpha} + 9C_{\alpha} \right) f_5^3 f_1^9 + \left(-625A_{\alpha} + 375C_{\alpha} \right) f_5^9 f_1^3 + 3125C_{\alpha}q^2 \sum_{n=0}^{\infty} B_5^{(3)}(n)q^n$$

$$= A_{\alpha+1} f_5^3 f_1^9 + B_{\alpha+1} q f_5^9 f_1^3 + C_{\alpha+1} q^2 \sum_{n=0}^{\infty} B_5^{(3)}(n)q^n.$$

That is, (11) holds for $\alpha + 1$. This completes the proof by induction of (11).

Theorem 6. For all integers $\alpha \geq 1$ and $n \geq 0$, we have

$$B_5^{(3)}(5^{\alpha}n + 5^{\alpha} - 3) \equiv 0 \pmod{5^{\alpha}}.$$
 (16)

Proof. From (12), (13), and (14), we see that

$$\begin{array}{lll} A_1 \equiv 0 \pmod{5}, & B_1 \equiv 0 \pmod{5^3}, & C_1 \equiv 0 \pmod{5^5}, \\ A_2 \equiv 0 \pmod{5^2}, & B_2 \equiv 0 \pmod{5^4}, & C_2 \equiv 0 \pmod{5^{10}}, \\ & \vdots & & \vdots & & \vdots \\ A_{\alpha} \equiv 0 \pmod{5^{\alpha}}, & B_{\alpha} \equiv 0 \pmod{5^{\alpha+2}}, & C_{\alpha} \equiv 0 \pmod{5^{5\alpha}}. \end{array}$$

That is, A_{α} , B_{α} , and C_{α} are multiples of 5^{α} . Then (11) implies (16).

2 Acknowledgments

The first author is thankful to CSIR-UGC Junior Research Fellowship, Government of India, Council of Scientific & Industrial Research, CSIR Complex, Library Avenue, Pusa, New Delhi-110012. We would also like to extend our gratitude to the referee from the *Journal of Integer Sequences* for careful reading and comments on the manuscript.

References

- [1] N. D. Baruah and K. Nath, Some results on 3-cores, *Proc. Amer. Math. Soc.* **142** (2014), 441–448.
- [2] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., 2016.
- [3] M. Boylan, Congruences for 2^t -core partition functions, J. Number Theory **92** (2002), 131–138.
- [4] S. C. Chen, Congruences for t-core partitions functions, J. Number Theory 133 (2013), 4036–4046.
- [5] H. B. Dai, Arithmetic of 3^t-core partition functions, Integers 15 (2015), A7.
- [6] R. Dasappa, On a Ramanujan-type congruence for bipartition with 5-cores, *J. Integer Sequences* **19** (2016), Article 16.8.1.
- [7] F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, *Invent. Math.* **101** (1990), 1–17.
- [8] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of facts about 3-cores, Bull. Aust. Math. Soc 79 (2009), 507–512.
- [9] B. S. Lin, Some results on bipartitions with t-core, J. Number Theory 139 (2014), 44–52.

- [10] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927.
- [11] G. N. Watson, Ramanujan's Vermutung über Zerfällungsanzahlem, J. Reine Angew. Math. 179 (1938), 97–128.
- [12] E. X. W. Xia, Arithmetic properties of bipartitions with 3-cores, Ramanujan J. 38 (2015), 529–548.
- [13] O. Y. M. Yao, Infinite families of congruences modulo 3 and 9 for bipartitions with 3-cores, *Bull. Aust. Math. Soc.* **91** (2015), 47–52.

2020 Mathematics Subject Classification: Primary 05A17; Secondary 11P83. Keywords: congruence, partition, core partition.

Received December 29 2021; revised versions received December 30 2021; June 21 2022; June 23 2022. Published in *Journal of Integer Sequences*, June 23 2022.

Return to Journal of Integer Sequences home page.