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Abstract

Let Ω(n) denote the total number of primes in the factorization of the integer n.
We obtain asymptotic formulae for the sums

∑

n≤xΩ(n), where n runs over the square-
free numbers, the square-full numbers, the perfect powers, and generalizations of these
families of numbers.

1 Introduction

Let us consider the prime factorization of a positive integral number n, namely

n = qs11 · · · qsrr , (1)
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where the qi (i = 1, . . . , r) are its distinct prime factors and the si (i = 1, . . . , r) are their
respective multiplicities. Let Ω(n) be the total number of prime factors in the factorization
of n, that is, Ω(n) = s1 + · · · + sr. The following formula is well-known (see, for example,
[2, Thm. 430, p. 355] and [1, Sect. 1.4.4]):

∑

n≤x

Ω(n) = x log log x+ B2x+O

(
x

log x

)

(x ≥ 2), (2)

where

B2 = B1 +
∑

p

1

p(p− 1)
,

B1 is the Mertens constant given by

B1 = γ +
∑

p

(

log

(

1− 1

p

)

+
1

p

)

,

and

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)

≈ 0.57721566 . . .

is the Euler-Mascheroni constant.
A positive integer n is square-free if and only if its prime factorization has no factors with

an exponent larger than one, that is, n = q1 · · · qr, where the qi (i = 1, . . . , r) are distinct.
Let S2 denote the set of square-free numbers, and let Q2(x) denote the cardinality of the set
of square-free numbers not exceeding x. It is well-known [2, Thm. 333, p. 269] that these
numbers have density 1

ζ(2)
= 6

π2 , where ζ(s) denotes the Riemann zeta function, that is,

Q2(x) =
x

ζ(2)
+O

(
x1/2

)
=

6

π2
x+O

(
x1/2

)
. (3)

More generally, given a positive integer n with prime factorization n = qs11 · · · qsrr as in (1),
we shall say that n is h-free if si ≤ h − 1 (i = 1, . . . , r). In particular, if h = 2 we obtain
the square-free numbers. Let Sh denote the set of h-free numbers, and let Qh(x) be the
cardinality of the set of h-free numbers not exceeding x. It is well-known that these numbers
have density 1

ζ(h)
, that is,

Qh(x) =
x

ζ(h)
+O

(
x1/h

)
, (h ≥ 2). (4)

In this note we show a proof for the following statement.

Theorem 1. Let h ≥ 2 be an arbitrary fixed integer, and let Sh be the set of h-free numbers.

Then
∑

n≤x
n∈Sh

Ω(n) =
1

ζ(h)
x log log x+O(x).
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Let h ≥ 2 be an arbitrary fixed integer. A positive integer is said to be h-full if all
the factors in its prime factorization have exponent greater than or equal to h. That is,
the number n = qs11 · · · qsrr is h-full if si ≥ h (i = 1, . . . , r). If h = 2 these numbers are
called square-full or powerful. Let Nh denote the set of h-full numbers and let Ah(x) denote
the cardinality of the set of h-full numbers not exceeding x. The number Ah(x) has been
estimated by Ivić and Shiu [3] with the following asymptotic formula:

Ah(x) = γ0,hx
1/h + γ1,hx

1/(h+1) + · · ·+ γh−1,hx
1/(2h−1) +∆h(x),

where γ0,h, γ1,h . . . , γh−1,h are certain computable constants and ∆h(x) ≪ xρ with ρ ≤ 263
2052

.
(In fact, ρ can be much smaller, depending on h.)

The constant for the main term in the above asymptotics can be precisely described by
the following [5]:

γ0,h =
6

π2

∞∑

n=1

1

σ(u(n))n1/h
=
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

,

where σ(n) denotes the sum of divisors of n and u(n) is the greatest square-free integer that
divides n. Thus, if n = qs11 · · · qsrr , then σ(u(n)) = (q1 + 1) · · · (qr + 1).

In this note we prove the following result.

Theorem 2. Let h ≥ 2 be an arbitrary fixed integer, and let Nh be the set of h-full numbers.

Then

∑

n≤x
n∈Nh

Ω(n) = hγ0,hx
1/h log log x

+

(

h(B2 − log h) +
∑

p

(h+ 1)p1+1/h − hp− 2hp2/h + (2h− 1)p1/h

(p− 1) (p1/h − 1) (p1+1/h + p1/h − p)

)

γ0,hx
1/h

+Oh

(
x1/h

√
log x

)

.

Setting h = 2 in the previous result, we immediately obtain the following corollary.

Corollary 3. We have

∑

n≤x
n∈N2

Ω(n) = 2
ζ(3/2)

ζ(3)
x1/2 log log x

+

(

2(B2 − log 2) +
∑

p

3

p3/2 + 1

)

ζ(3/2)

ζ(3)
x1/2 +O

(
x1/2

√
log x

)

.
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A perfect power is a number of the form nm, where m and n are positive integers such
that m ≥ 2. Therefore, all perfect powers are square-full numbers. Let P denote the set of
perfect powers and let N(x) be the cardinality of the set of perfect powers not exceeding x.
The following formula is well-known [4, Thm. 5]

N(x) = x1/2 + f(x)x1/3,

where limx−→∞ f(x) = 1.
We prove the following result.

Theorem 4. Let P be the set of perfect powers. Then

∑

n≤x
n∈P

Ω(n) = 2x1/2 log log x+ 2(B2 − log 2)x1/2 +O

(
x1/2

log x

)

,

and therefore,
∑

n≤x
n∈P

Ω(n) ∼ 2N(x) log log x.

The proofs of Theorems 1, 2, and 4 are detailed in Sections 2, 3, and 4 respectively.

2 Proof of Theorem 1

We start by considering the following Euler product (converging at Re(s) > 1), which gives
the generating Dirichlet series for the h-free numbers:

ζ(s)

ζ(hs)
=
∏

p

(

1− 1
phs

1− 1
ps

)

=
∏

p

(

1 +
1

ps
+ · · ·+ 1

p(h−1)s

)

=
∑

n∈Sh

1

ns
.

We will incorporate the coefficient Ω(n) by introducing it as the exponent of an extra variable,
which we will later differentiate. This preserves the additive structure of Ω(n).

∏

p

(

1 +
z

ps
+ · · ·+ zh−1

p(h−1)s

)

=
∑

n∈Sh

zΩ(n)

ns
. (5)

We follow the Selberg-Delange method (see, for example, [6, Sect. 7.4] and [1, Sect.
1.4.4]). We will work with the Euler product

F (s, z) : =
∏

p

(

1− 1

ps

)z (

1 +
z

ps
+ · · ·+ zh−1

p(h−1)s

)

=
∏

p

(

1− 1

ps

)z
(

1− zh

phs

1− z
ps

)

=:
∏

p

H(p, s, z). (6)
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We claim that the product defining F (s, z) converges absolutely and uniformly over compact
subsets of Re(s) > 1/2, |z| <

√
2. Indeed, taking the logarithm of a single factor of (6), we

have

logH(p, s, z) = − log

(

1− z

ps

)

+ log

(

1− zh

phs

)

+ z log

(

1− 1

ps

)

=
∞∑

k=1

zk

kpsk
−

∞∑

k=1

zhk

kpshk
− z

∞∑

k=1

1

kpsk

=
∞∑

k=2

(zk − z)
1

kpsk
−

∞∑

k=1
h|k

hzk

kpsk
. (7)

The sums in (7) converge for Re(s) > 1/2 and |z| <
√
2. More precisely, we have

logH(p, s, z) ≪h

∞∑

k=2

max(1, |z|k)
pkRe(s)

= max





1
p2Re(s)

1− 1
pRe(s)

,

|z|2
p2Re(s)

1− |z|
pRe(s)



≪h,z
1

p2Re(s)
,

where we have used that the geometric series converges because |z|/pRe(s) < 1. Summing over
all the primes p, the above is bounded by ζ(2Re(s)) and is therefore finite for Re(s) > 1/2,
|z| <

√
2. Thus we deduce that logF (s, z) converges absolutely and uniformly over compact

subsets of Re(s) > 1/2, |z| <
√
2, and the same is true for F (s, z).

Back to equation (5), we have

∑

n∈Sh

zΩ(n)

ns
=
∏

p

(

1 +
z

ps
+ · · ·+ zh−1

p(h−1)s

)

= ζ(s)zF (s, z),

and this converges for Re(s) > 1, |z| <
√
2.

Now we apply Theorem 7.18 from [6] and obtain that

∑

n≤x
n∈Sh

zΩ(n) =
F (1, z)

Γ(z)
x logz−1 x+O

(
x(log x)Re(z)−2

)
. (8)

Differentiating both sides of (8) with respect to z, for z close to 1, we obtain

∑

n≤x
n∈Sh

Ω(n)zΩ(n)−1 =

(
F (1, z)

Γ(z)

)′
x logz−1 x+

F (1, z)

Γ(z)
x(log log x)(logz−1 x) +O (x) , (9)

where we have bounded the error term by using the mean value theorem and the fact that
(log log x)(logRe(z)−2 x) ≪ 1 when z is near 1. Evaluating (9) at z = 1 gives

∑

n≤x
n∈Sh

Ω(n) =
F (1, 1)

Γ(1)
x(log log x) +O (x) ,
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where the first term in (9) has been absorbed into the O(x) error upon evaluation. Since

F (1, 1) =
∏

p

(

1− 1

ph

)

=
1

ζ(h)
,

and Γ(1) = 1, we obtain the desired result.

3 Proof of Theorem 2

Let n be an h-full number. We proceed to separate the primes in the factorization of n
according to the congruence modulo h of their exponent. In other words, we write

n = q
ht1,0
1,0 · · · qhtℓ0,0ℓ0,0
︸ ︷︷ ︸

exp≡0( mod h)

q
ht1,1+1
1,1 · · · qhtℓ1,1+1

ℓ1,1
︸ ︷︷ ︸

exp≡1( mod h)

· · · qht1,h−1+h−1

1,h−1 · · · qhtℓh−1,h−1+h−1

ℓh−1,h−1
︸ ︷︷ ︸

exp≡h−1( mod h)

.

By setting

m = q
t1,0
1,0 · · · qtℓ0,0ℓ0,0

q
t1,1−1
1,1 · · · qtℓ1,1−1

ℓ1,1
· · · qt1,h−1−1

1,h−1 · · · qtℓh−1,h−1−1

ℓh−1,h−1 ,

rj = q1,j · · · qℓj ,j, (j = 1, . . . , h− 1),

we can finally write
n = mhrh+1

1 · · · r2h−1
h−1 ,

and we remark that the rj are square-free and coprime in pairs.
After the above observation, the sum under consideration becomes

∑

n≤x
n∈Nh

Ω(n) =
∑

mhrh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)Ω(m
hrh+1

1 · · · r2h−1
h−1 ). (10)

Since Ω is totally additive and the rj are square-free,

Ω(mhrh+1
1 · · · r2h−1

h−1 ) = hΩ(m) + (h+ 1)Ω(r1) + · · ·+ (2h− 1)Ω(rh−1)

= hΩ(m) + (h+ 1)ω(r1) + · · ·+ (2h− 1)ω(rh−1),

where ω(n) denotes the number of distinct prime factors in the factorization of n (if n =
qs11 · · · qsrr , then ω(n) = r).

Using this in (10), we obtain

∑

n≤x
n∈Nh

Ω(n) = h
∑

rh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)
∑

mh≤x/rh+1
1 ···r2h−1

h−1

Ω(m)

+ (h+ 1)
∑

rh+1
1 ≤x

ω(r1)
∑

mhrh+2
2 ···r2h−1

h−1 ≤x/rh+1
1

µ2(r1 · · · rh−1)

6



+ · · ·
+ (2h− 1)

∑

r2h−1
h−1 ≤x

ω(rh−1)
∑

mhrh+1
1 ···r2h−2

h−2 ≤x/r2h−1
h−1

µ2(r1 · · · rh−1)

= hT0(x) + (h+ 1)T1(x) + · · ·+ (2h− 1)Th−1(x). (11)

Eventually we will see that T0(x) gives the main term, while the Tj(x) give secondary terms.
In order to continue we need some auxiliary results.

Lemma 5. We have the following estimate

∑

rh+1
1 ···r2h−1

h−1 ≤x

1 ≪h x1/(h+1). (12)

Proof of Lemma 5. We expand the sum in (12) as a combination of iterated sums, and we
evaluate the successive terms starting from the innermost sum.

∑

rh+1
1 ···r2h−1

h−1 ≤x

1

=
∑

r1≤x1/(h+1)

∑

r2≤ x1/(h+2)

r
(h+1)/(h+2)
1

· · ·
∑

rh−2≤ x1/(2h−2)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

∑

rh−1≤ x1/(2h−1)

r
(h+1)/(2h−1)
1 ···r

(2h−2)/(2h−1)
h−2

1

≪h

∑

r1≤x1/(h+1)

∑

r2≤ x1/(h+2)

r
(h+1)/(h+2)
1

· · ·
∑

rh−2≤ x1/(2h−2)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

x1/(2h−1)

r
(h+1)/(2h−1)
1 · · · r(2h−2)/(2h−1)

h−2

.

In order to evaluate the innermost sum above, we approximate it with an integral

∑

rh−2≤ x1/(2h−2)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

x1/(2h−1)

r
(h+1)/(2h−1)
1 · · · r(2h−2)/(2h−1)

h−2

≪h

∫ x1/(2h−2)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

0

x1/(2h−1)t−
2h−2
2h−1

r
(h+1)/(2h−1)
1 · · · r(2h−3)/(2h−1)

h−3

dt

≪h
x1/(2h−1)t

1
2h−1

r
(h+1)/(2h−1)
1 · · · r(2h−3)/(2h−1)

h−3

∣
∣
∣
∣
∣

t= x1/(2h−2)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

t=0

≪h
x1/(2h−2)

r
(h+1)/(2h−2)
1 · · · r(2h−3)/(2h−2)

h−3

.
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Continuing in this way, we obtain
∑

rh+1
1 ···r2h−1

h−1 ≤x

1

≪h

∑

r1≤x1/(h+1)

∑

r2≤ x1/(h+2)

r
(h+1)/(h+2)
1

· · ·
∑

rh−3≤ x1/(2h−3)

r
(h+1)/(2h−3)
1 ···r

(2h−4)/(2h−3)
h−4

x1/(2h−2)

r
(h+1)/(2h−2)
1 · · · r(2h−3)/(2h−2)

h−3

...

≪h x1/(h+1),

as desired.

Lemma 6. We have the following estimate

∑

rh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

+Oh

(
x−1/(h(h+1))

)
.

Proof of Lemma 6. First notice that we can approximate the sum up to x with the full sum
as follows

∑

rh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∑

r1,...,rh−1

µ2(r1 · · · rh−1)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

+O




∑

r1≥x1/(h+1)

1

r
(h+1)/h
1

∑

r2

1

r
(h+2)/h
2

· · ·
∑

rh−2

1

r
(2h−2)/h
h−2

∑

rh−1

1

r
(2h−1)/h
h−1

+
∑

r1≤x1/(h+1)

1

r
(h+1)/h
1

∑

r2≥ x1/(h+2)

r
(h+1)/(h+2)
1

1

r
(h+2)/h
2

· · ·
∑

rh−2

1

r
(2h−2)/h
h−2

∑

rh−1

1

r
(2h−1)/h
h−1

+ · · ·

+
∑

r1≤x1/(h+1)

1

r
(h+1)/h
1

∑

r2≤ x1/(h+2)

r
(h+1)/(h+2)
1

1

r
(h+2)/h
2

· · ·
∑

rh−2≤ x1/(2h−1)

r
(h+1)/(2h−2)
1 ···r

(2h−3)/(2h−2)
h−3

1

r
(2h−2)/h
h−2

×
∑

rh−1≥ x1/(2h−1)

r
(h+1)/(2h−1)
1 ···r

(2h−2)/(2h−1)
h−2

1

r
(2h−1)/h
h−1








. (13)
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We proceed to express the main term in (13) as an Euler product. This gives

∑

r1,...,rh−1

µ2(r1 · · · rh−1)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∏

p

(

1 +
1

p(h+1)/h
+

1

p(h+2)/h
+ · · ·+ 1

p(2h−1)/h

)

=
∏

p

(

1 +
1

p

p−1 − p−1/h

p−1/h − 1

)

=
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

. (14)

Now we treat the error term in (13). The inner sums with no condition over r or with a
less-or-equal-than condition can be bounded by a constant, since

∞∑

r=1

1

r(h+j)/h
= ζ

(
h+ j

h

)

. (15)

Therefore, the error term from (13) is

Oh





h−1∑

j=1

∑

r≥x1/(h+j)

1

r(h+j)/h



 = Oh

(
h−1∑

j=1

∫ ∞

x1/(h+j)

dt

t(h+j)/h

)

= Oh

(
x−1/(h(h+1))

)
.

Combining the above with (14) in (13) yields the desired result.

We can now return to the proof of Theorem 2. First we proceed to calculate T0(x) in
(11). Using that Ω(m) = Ω(1) = 1 when x/2 < rh+1

1 · · · r2h−1
h−1 ≤ x and estimate (2) when

rh+1
1 · · · r2h−1

h−1 ≤ x/2, we obtain

T0(x) =
∑

x/2<rh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)

+
∑

rh+1
1 ···r2h−1

h−1 ≤x/2

µ2(r1 · · · rh−1)

(

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

log log

(

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

)

+B2
x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

)

+Oh







∑

rh+1
1 ···r2h−1

h−1 ≤x/2

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

log

(

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

)







. (16)

Notice that the first term in the sum above is ≪h x1/(h+1) by Lemma 5. To bound the big-O
error term, we fix 0 < ε < 1

h+1
. Since the function t

log t
is strictly increasing for t > e we

have, for ε > 1
log(y/r)

and 1 < r,

y
r

log
(
y
r

) =
εyε

rε

log
(
yε

rε

) · y
1−ε

r1−ε
≤ ε

yε

log (yε)
· y

1−ε

r1−ε
=

y

log y
· 1

r1−ε
. (17)
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On the one hand, we limit the sum so that 1
log(y/r)

≤ 1
h+2

and therefore we can take 1
h+2

<

ε < 1
h+1

. Taking y = x1/h and r = r
(h+1)/h
1 · · · r(2h−1)/h

h−1 , we have

∑

rh+1
1 ···r2h−1

h−1 ≤x/eh(h+2)

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

log

(

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

)

≤ x1/h

log (x1/h)

∑

rh+1
1 ···r2h−1

h−1 ≤x/eh(h+2)

1

r
(1−ε)(h+1)/h
1 · · · r(1−ε)(2h−1)/h

h−1

≪h
x1/h

log x
, (18)

where the final sum was bounded using a similar idea to the one we used in (15), since
(1−ε)(h+j)

h
> 1.

On the other hand,

∑

x/eh(h+2)<rh+1
1 ···r2h−1

h−1 ≤x/2

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

log

(

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

) ≪h

∑

x/eh(h+2)<rh+1
1 ···r2h−1

h−1 ≤x/2

heh+2

log 2

≪h x1/(h+1) (19)

by Lemma 5.
Now we study the main term in (16). By writing

log log
(y

r

)

= log log y + log

(

1− log r

log y

)

,

and applying this to log log

(

x1/h

r
(h+1)/h
1 ···r(2h−1)/h

h−1

)

we are led to consider

M : =
∑

rh+1
1 ···r2h−1

h−1 ≤x/2

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

∣
∣
∣
∣
∣
∣

log



1−
log
(

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

)

log (x1/h)





∣
∣
∣
∣
∣
∣

.

We use that for 0 ≤ t < 1, we have

− log(1− t) ≤ t√
1− t

,

10



which can be proven by considering the derivative of log(1− t) + t√
1−t

. This gives

M ≪
∑

rh+1
1 ···r2h−1

h−1 ≤x/2

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

·
log
(

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

)

log (x1/h)

√

1− log
(
r
(h+1)/h
1 ···r(2h−1)/h

h−1

)

log(x1/h)

≪ x1/h

log x

∑

rh+1
1 ···r2h−1

h−1 ≤x/2

log
(

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

√

1− log
(

x1/h

21/h

)

log(x1/h)

.

Taking advantage of the fact that
√
√
√
√

1−
log
(

x1/h

21/h

)

log (x1/h)
=

√

log 2

log x
,

and applying considerations similar to (15), we can simplify the bound to

M ≪h
x1/h

√
log x

. (20)

By applying Lemma 6 in (16) and by incorporating the error terms (18) and (20) we
obtain

T0(x) =
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h log log x

+ (B2 − log h)
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h +Oh

(
x1/h

√
log x

)

. (21)

We proceed similarly to calculate the Tj(x) in (11).

Tj(x) =
∑

rh+j
j ≤x

ω(rj)
∑

rh+1
1 ···r̂h+j

j ···r2h−1
h−1 ≤x/rh+j

j

µ2(r1 · · · rh−1)
∑

mh≤ x

rh+1
1 ···r2h−1

h−1

1

=
∑

rh+j
j ≤x

ω(rj)
∑

rh+1
1 ···r̂h+j

j ···r2h−1
h−1 ≤x/rh+j

j

µ2(r1 · · · rh−1)

⌊

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

⌋

,

where the hat symbol indicates that the corresponding factor has been excluded.
We write ⌊

x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

⌋

=
x1/h

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

+O(1)

11



and use the trivial bound

ω(n) ≤ log n

log 2
(n ≥ 2) (22)

to obtain

Tj(x) = x1/h
∑

rh+j
j ≤x

ω(rj)
∑

rh+1
1 ···r̂h+j

j ···r2h−1
h−1 ≤x/rh+j

j

µ2(r1 · · · rh−1)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

+O




log x

∑

rh+1
1 rh+2

2 ···r2h−1
h−1 ≤x

1




 . (23)

For the main term in (23), we complete the sum and proceed similarly as in the proof of
Lemma 6. The difference here is that we have to work with sums of the form

∞∑

r=1

ω(r)

r(h+j)/h
and

∑

r≥x1/(h+j)

ω(r)

r(h+j)/h
.

We can bound these sums using the fact that given any arbitrarily small ε > 0, it follows
from inequality (22) that ω(r) ≪ rε provided r is sufficiently large. This results in

∑

rh+1
1 ···r2h−1

h−1 ≤x

µ2(r1 · · · rh−1)ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∑

r1,...,rh−1

µ2(r1 · · · rh−1)ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

+Oh

(
x−1/(h(h+1))+ε

)
.

For the error term in (23) we can use Lemma 5. Combining the above with (12) in (23), we
obtain

Tj(x) = x1/h
∑

r1,...,rh−1

µ2(r1 · · · rh−1)ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

+Oh

(
x1/(h+1) log x

)
. (24)

We aim at simplifying the main term in the above expression as much as possible. In order
to do this, consider the following expression for a generating series with its corresponding
Euler product:

Gj(z) :=
∑

r1,...,rh−1

µ2(r1 · · · rh−1)z
ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∏

p

(

1 +
1

p(h+1)/h
+ · · ·+ z

p(h+j)/h
+ · · ·+ 1

p(2h−1)/h

)

.

The function Gj(z) is holomorphic, since the product converges independently of z. For us,
it suffices that Gj(z) be holomorphic in a neighborhood of z = 1. Notice that

G′
j(1) =

∑

r1,...,rh−1

µ2(r1 · · · rh−1)ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

.

12



In order to compute G′
j(1) from the Euler product, we consider the logarithmic derivative of

Gj(z) and obtain

G′
j(1)

Gj(1)
=
∑

p

p−(h+j)/h

1 + 1
p(h+1)/h + · · ·+ 1

p(2h−1)/h

=
∑

p

p1+(1−j)/h − p1−j/h

(p− 1) (p1+1/h + p1/h − p)
.

Multiplying by Gj(1) and using (14), we obtain

G′
j(1) =

∑

r1,...,rh−1

µ2(r1 · · · rh−1)ω(rj)

r
(h+1)/h
1 · · · r(2h−1)/h

h−1

=
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)
∑

p

p1+(1−j)/h − p1−j/h

(p− 1) (p1+1/h + p1/h − p)
.

Replacing the above in the main term of (24), and replacing this result, as well as (21), in
(11), we get

∑

n≤x
n∈Nh

Ω(n) = h
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h log log x

+

(

h(B2 − log h) +
∑

p

∑h−1
j=1 (h+ j)

(
p1+(1−j)/h − p1−j/h

)

(p− 1) (p1+1/h + p1/h − p)

)

×
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h +Oh

(
x1/h

√
log x

)

= h
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h log log x

+

(

h(B2 − log h) +
∑

p

p
(
p1/h − 1

)∑h−1
j=1 (h+ j)p−j/h

(p− 1) (p1+1/h + p1/h − p)

)

×
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h +Oh

(
x1/h

√
log x

)

.

We use that
h−1∑

j=1

(h+ j)xj =
(2h− 1)xh+1 − 2hxh − hx2 + (h+ 1)x

(x− 1)2

13



in order to obtain

∑

n≤x
n∈Nh

Ω(n) = h
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h log log x

+

(

h(B2 − log h) +
∑

p

(h+ 1)p1+1/h − hp− 2hp2/h + (2h− 1)p1/h

(p− 1) (p1/h − 1) (p1+1/h + p1/h − p)

)

×
∏

p

(

1 +
p− p1/h

p2 (p1/h − 1)

)

x1/h +Oh

(
x1/h

√
log x

)

.

This concludes the proof of Theorem 2.

4 Proof of Theorem 4

We first split the sum into a term involving squares and another term involving higher
powers, as we expect that the squares are the only contributors to the main term.

∑

n≤x
n∈P

Ω(n) =
∑

n2≤x

Ω(n2) +
∑

nk≤x
k≥3

Ω(nk)

= 2
∑

n≤x1/2

Ω(n) +
∑

nk≤x
k≥3

Ω(nk)

= S1(x) + S2(x). (25)

We can estimate the contribution from the squares by using (2),

S1(x) = 2x1/2 log log x1/2 + 2B2x
1/2 +O

(
x1/2

log x

)

= 2x1/2 log log x+ 2(B2 − log 2)x1/2 +O

(
x1/2

log x

)

. (26)

Using (22), we obtain the following bound for the contribution of the higher powers:

S2(x) =
∑

nk≤x
k≥3

Ω(nk) ≤
∑

nk≤x
k≥3

log nk

log 2
≤ log x

log 2
x1/3.

Combining this estimate with equation (26) in (25) gives the desired result.
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